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ABSTRACT

The architecture of a collaborative application is characterized by the modules, layers,
replicas, threads, and processes into which the application is decomposed; the awareness in
these components of collaboration functions; and the interaction among these components.
It influences the function, fairness, fault tolerance, ease of modification, and performance
of the application, the amount of programming effort required to implement the applica-
tion, and the reuse of existing single-user code. This chapter presents a design space of ex-
isting and potential collaboration architectures and discusses the consequences of choosing
different points in this space.

7.1 INTRODUCTION

The architecture of a software application characterizes the components of the application,
the function implemented by each component, and the interaction among these components
[ShaG96, Kaz94]. It is an important issue in the design of the application since it influences
the performance, ease of modification, and other properties desired by users and programmers
of the application. It is also a difficult issue to resolve since decomposing a large problem
into smaller parts is a challenging task: there are a number of different ways in which this
decomposition can be done, and the consequences of choosing different decompositions are
not always apparent.

For these reasons, a new discipline of computer science has emerged to help programmers
choose architectures for software applications [ShaG96]. The architectural techniques devel-
oped so far either apply to general software applications or are tied to specific functionality
such as database management [ShaG96] and user-interface support [ShaG96, Bas93]. This
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chapter addresses the domain of collaborative applications by describing the influence of col-
laboration support on the architecture of an application.

Five kinds of components of a collaborative application are considered: modules, layers,
threads, processes, and replicas. These components occur in both collaborative and non-
collaborative applications but the collaboration domain introduces special techniques for de-
composing an application into these components. The exact functionality of these components
is not identified, since it depends on application semantics. Instead, they are classified accord-
ing to whether or not they implement collaboration-specific functionality. Similarly, the exact
events communicated among these components are not identified. Instead, they are distin-
guished only by whether or not they carry collaboration-specific information.

The design space of collaboration architectures is characterized by presenting a generic
architecture that captures properties common to the points in this design space, and a set of
dimensions that represent the differences among these points. Different choices along each
of these dimensions are identified and evaluated by discussing their influence on properties
desired by programmers/users. Several generic properties are considered such as ease-of-
modification and performance that have been identified by previous work on software ar-
chitectures. In addition, the special case of reuse of existing single-user code, an important
goal in the design of collaborative applications, is considered.

To better explain the scope of this work, it is useful to identify what we are not addressing
here. We are not considering the functionality of a collaborative system, which is covered in
[Dew94a, Ols93] and the accompanying discussion on shared editors in Chapter 5 of this book
[Pra99]. Moreover, we are not describing tools/infrastructures for implementing collaborative
applications, some of which are surveyed in the accompanying discussions on toolkits and
infrastructures in Chapters 6 and 8 in this book [Gre99, Dou99]. The process of developing
a collaborative application is considered to consist of three main steps: 1) design the func-
tionality, 2) decompose the application into components, and 3) use tools for implementing
the components. We shall be looking at only step 2 of this process. Naturally, these steps are
not independent. For instance, the choice of the architecture may depend on the functionality
desired, and a tool is typically tied to a particular architecture. We will look at these relation-
ships but will not examine in depth the functionality and tools issues, per se. A preliminary
discussion of these concepts was presented at a conference [Dew95].

The remainder of this discussion is organized as follows. I first present a model of col-
laboration that defines the kind of collaborative applications considered. Next I describe the
generic collaboration architecture for implementing these applications. I then present the var-
ious dimensions along which collaboration architectures differ and discuss the tradeoffs to be
made in choosing different points along these dimensions. These dimensions are used to clas-
sify architectures supported by several existing collaboration tools, and I distill the discussion
about the tradeoffs by giving a set of architectural design rules that should be followed when
implementing collaborative applications, which are in the spirit of those given in [ShaG96]
for user-interface support. Conclusions and directions for future work complete the chapter.

7.2 COLLABORATION MODEL

To identify architectures of collaborative applications, we first need a model of collabora-
tion that characterizes the functionality supported by these applications. We use a collabora-
tion model based on the notion of generalized editing [Dew90, Dew92, Dew94a]. Figure 7.1
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Figure 7.1 Editing-based collaboration model

illustrates the model. According to this model, an application can be considered an editor of
semantic objects defined by it. A user interacts with the application by editing a rendering 1

of these objects using text/graphics/multimedia editing commands. Thus, interaction with an
interactive application is similar to interaction with a text or graphics editor. The difference
is that a rendering is “active” that is, changes to it can trigger computations in the application
and conversely, it can be modified in response to computations invoked by the application.

As shown in Figure 7.1, each user perceives a different rendering of the semantic objects.
However, the actions of the users are not isolated — they are linked by the application to
facilitate and control collaboration among them. For the purposes of this discussion, we will
divide the semantics of a collaborative application into single-user semantics, which define
the feedback users receive in response to commands entered by them or actions taken by the
application autonomously (in response to internal state changes or messages from other ap-
plications); and collaboration semantics, which define the feedback users receive in response
to commands entered by others.

This is a simple but general model of collaboration. It models the single-user semantics of a
variety of contemporary single-user and collaborative applications. A text/graphics editor can
be considered an editor of a text/graphics file; a language-oriented editor can be considered
an editor of a program syntax tree; a spreadsheet can be considered an editor of a matrix that
responds to an editing of an entry in the matrix by updating related entries; and a debugger
can be considered an editor of a debugging history that responds to the insertion of a new
command in the history by computing the command and appending the output to the history.

It also models the collaboration semantics of a variety of contemporary collaborative appli-
cations. A “same-time” (“different-time”) application is an editor that links (does not link) its
renderings in real-time; a “same-place” (“different-place”) application is an editor that creates
(does not create) all renderings at the same site; a WYSIWIS 2 (non-WYSIWIS) application is

1 On the suggestion of one of the referees, I use the term “rendering” here instead of “display” in order to include
non textual/graphical presentations of objects such as audio/video renderings of data.

2 What You See Is What I See [Ste87].
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Figure 7.2 Generic architecture

an editor that ensures that the renderings are identical (different); and a workflow application
is an editor that responds to editing commands by initiating the next step in the workflow.

Thus, at some level of abstraction, any collaborative application can be considered a gener-
alized editor. 3

7.3 GENERIC ARCHITECTURE

Figure 7.2 shows a generic collaboration architecture for implementing the model described
above. It is a generalization of the architecture Patterson proposed at the CSCW’94 work-
shop on “distributed systems, multimedia and infrastructure support in CSCW” [Dew94b]
that makes fewer assumptions about collaborative applications. As we shall see later, this
architecture can be instantiated to multiple specific architectures.

The architecture assumes that a user’s input/output is processed by a hierarchy of layers.
A lower-level layer (that is, a layer closer to the user) manages objects that are interactors
of objects in the immediately higher-level layer. I will refer to the latter as abstractions of
the former. An interactor of an abstraction creates a presentation of the abstraction, which
contains a transformation of the information in the abstraction (e.g. a text field representing
an integer, or a bitmap representing a text field) plus some additional information serving
as “syntactic sugar” (e.g. a label field or a window scrollbar). Thus, perceptible renderings of
abstractions are created by applying the presentation operator successively to their interactors,
and the interactors of these interactors, and so on. An abstraction can have a variable number
of interactors, which may change dynamically as users create or delete renderings of the
abstraction.

3 We refer to generalized editors that perform editing commands without computing additional application-specific
side effects as simply editors. These applications are addressed in depth in Chapter 5 of this book [Pra99].
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The layers communicate with each other using events. Often, this term implies that the
communication is sent asynchronously by the sender to the receiver. However, we will use it
here in a more general sense and allow the information to be retrieved synchronously from the
sender by the receiver. We divide events of a collaboration application into interaction events
and collaboration events based on whether they support single-user or collaboration seman-
tics. An interaction event may be an output event or an input event depending on whether it is
sent to a lower- or upper-level layer.

Abstractions send output events to their interactors and receive input events from the latter.
Output events received by objects from their abstractions may be transformed into lower-level
events before they are sent to their interactors. Conversely, input events received by objects
from their interactors may be transformed into higher-level events before they are sent to their
abstractions. Not all input events received by interactors need to be sent to their abstractions
— in particular, events that request manipulation of local syntactic sugar. Moreover, not all
output events transmitted down by interactors are triggered by output events received from
their abstractions. These include not only those events that change local syntactic sugar but
also those that generate local echo/feedback in response to requests for changing the higher-
level state in the abstraction.

A collaboration event may be a copy or extension of an interaction event or it may be an
entirely new kind of event. It may be sent not only to a lower-level and upper-level layer but
also a cross layer, that is a layer in an another branch, as shown in the figure.

Some levels in this architecture are shared while others are versioned or replicated. A
shared level is associated with a single, shared layer that processes the input/outputof multiple
users of the application, while a versioned or replicated level is associated with a private
layer for each user of the application, which processes the input/output of only that user and
collaboration events concerning the user. An object in a private layer is private while an object
in a shared layer is shared by multiple users. We refer to the collection of all private objects
of a user and the shared objects accessible to the user as the interaction state of that user.
All levels below a private level are constrained to be private levels and all levels above a
shared level are constrained to be shared levels. Thus, the architecture defines a tree of layers
rather than a general graph. We refer to this tree as a protocol tree in analogy with the related
networking concept of a protocol stack. We refer to the lowest shared layer as the base, the
highest versioned layers as branch points, the base and all layers above it as the stem, and a
branch point and all the layers below it as a branch of the architecture. Moreover, we refer to
all private layers at a certain level as peers or replicas of each other.

An abstraction may have interactors in zero or more replicated layers. We refer to the dif-
ferent interactors of an abstraction as replicas, peers, or versions. In general, they can create
different logical presentations of the abstraction. However, in most current collaboration ar-
chitectures, they create different physical replicas (for different users) of the same logical
presentation. It is for this reason, we have used the term “replica” for a peer interactor and
layer, though strictly speaking, the term “version” is more general. In the rest of the discus-
sion, we will use these terms interchangeably. It is important to note that an interactor in a
layer may not have a peer interactor in a peer layer, since not every layer creates an interactor
for an abstraction in the layer above.

Abstractions and interactors may not only transform interaction events but also control the
interaction by checking access rights, consistency, and other constraints. Unlike the Smalltalk
Model–View–Controller paradigm [Kra88] but like the abstraction-view paradigms supported
by InterViews [Lin89], Rendezvous [Hil94], PAC [Cou87], and several other frameworks,
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we do not treat the transformation and control components as separate objects. Similarly,
unlike the Clover model [Sal95], we do not differentiate among the different collaboration
functions implemented by an abstraction or interactor, clubbing them all in one multi-function
object. Furthermore, unlike the PAC model, we do not capture the structure of a hierarchical
abstraction or interactor, modelling it as a single unit. We do not assume that an abstraction
or interactor is actually implemented as a programming language object. Similarly, we do not
assume that an architectural event is actually implemented as a programming event. It may
be sent in response to the evaluation of a programming constraint or some other higher-level
computation that is not explicitly aware of events. Programming issues are beyond the scope
of this discussion since we are focusing here only on architectural issues.

The bottom-most layers in this architecture are the workstation (operating system and hard-
ware) layers managing the screen and input devices attached to a workstation. The workstation
layers are usually replicated to allow the collaborators to use different workstations. A notable
exception is MMM [Bie91], which allows a single workstation layer to be shared by multiple
users concurrently manipulating the same screen using different input devices. We refer to
the topmost layer in the architecture as the semantic layer and the abstractions in this layer
as semantic objects. Unlike a lower-level object, a semantic object is not itself an interactor
for another object. However, like an interactor, a semantic object in a replicated layer may
have peers or replicas in peer layers. Peer semantic objects are (the highest-level) computer
representations of the same user-level abstract object.

Not all application modules are layered in the protocol tree shown in the figure. We refer
to such modules as external modules. The layers and modules in a collaboration architecture
include both applicationcomponents implemented by the application programmer, and system
components provided by an infrastructure or tool. When characterizing the “architecture” of
a collaboration tool, we will, in fact, be characterizing those aspects of the architectures of
clients of the tool that are defined by the tool. An individual client may refine this architecture
by adding further layers and modules.

7.4 DESIGN SPACE

The generic architecture given above defines a design space of collaboration architectures that
differ in the way they resolve several important issues:

� Single-User Architecture: What is the architecture for implementing single-user seman-
tics?

� Concurrency: Which components of the application can execute concurrently?
� Distribution: Which of these components can execute on separate hosts?
� Versioning/Replication: Which of these components are replicated?
� Collaboration Awareness: Which of these components are collaboration aware, that is,

implement collaboration semantics?

Specific answers to these questions cannot be given here, since they would depend on par-
ticulars of the application. Instead, general constraints or approaches for resolving these issues
are presented along with the consequences of using these approaches.

In the discussion, we consider two decompositions of a collaborative application: by com-
putation and concurrency unit. The first one, used in Figure 7.2, assumes that an application is
divided into one or communicating modules, a module may be composed of one or more lev-
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Figure 7.3 Decomposing an application by computation and concurrency units

els, and each level consists of one or more replicated layers. In the rest of the discussion, we
shall often use the terms “level” and “layer” interchangeably, especially when a level consists
of a single layer. The second one assumes that an application is decomposed into one or more
distributable processes, and each process forks one or more concurrent threads. The differ-
ence between a process and a thread is that the former is a heavyweight unit of concurrency,
associated with its own address space, which can be created on different hosts. In contrast, all
threads within a process share a common address space and host, though they may execute on
different processors on the host. Figure 7.3 shows the two decompositions of an application.
As shown later, these two kinds of decompositions are not independent in the architectures
presented below.

7.4.1 Single-User Architecture

The single-user architecture or basis of a multiuser architecture describes those aspects of the
latter that implement single-user semantics. In this discussion, of course, we are concerned
mainly with those aspects that influence/are influenced by collaboration semantics. We con-
sider single-user architectures here because the design of the collaborative aspects is often
dependent on the basis.

Strictly speaking, the basis is a view of a collaboration architecture that may not have
an independent existence. In practice, however, collaboration architectures are designed by
extending existing single-user architectures. A large variety of single-user architectures have
been devised in the context of single-user user-interface software. We will focus here only
on those that are known to have formed the bases of existing collaboration architectures.
Our architectural descriptions are a set of assumptions regarding the nature of a single-user
architecture. Thus, they apply to a family of architectures rather than a specific architecture.

The most general architecture is one that makes no assumption about the nature or number
of application layers. By making no assumptions about an application, we can cover arbitrary
applications, but cannot reason about any of them. The architecture of these applications can
be described as a single level of Figure 7.2 that contains arbitrary abstractions/interactors.
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It is possible to subclass this architecture in several ways depending on the assumptions we
make about the kinds of user-interface layers used. Four main kinds of general layers have
been identified so far: window, widget, view, and model [Mye95, Kra88], which would have
increasing levels in a layered architecture that includes them (Figure 7.4).

An architecture that supports one of these levels does not necessarily have all the potential
levels below it. For instance, a view layer may be implemented directly on top of the worksta-
tion without defining a widget layer. We can distinguish among these architectures by defining
a layering degree, L, which gives the number of software layers in the architecture. For in-
stance, TeamWorkStation [Ish90] has a layering degree of 2, since it assumes workstation and
application layers (see also Chapter 4 in this book [Ish99]); XTV [Abd94], Rapport [Ens88],
Shared X [Gar94], and MMConf [Cro89] have layering degrees of 3, since they assume an
additional window layer; GroupKit [Ros96] has a layering degree of 4, since it assumes an
additional widget layer (see also Chapter 6 in this book [Gre99]); and Suite [Dew92], Weasel
[Gra92], and Clock [Gra96] have a layering degree of 5, since they assume an additional view
layer. The application layers in all cases may be further subdivided into other layers. The lay-
ering and other degrees we associate with a tool (infrastructure) give the minimum degrees of
client applications that use the tool. As we shall see later, the layering degree of an architecture
bounds its awareness, replication, concurrency, and distribution degrees.

It is possible to further specialize these architectures by classifying them according to the
specific instances of the abstract layers used in their implementation. For instance, an early
version of GroupKit was based on InterViews widgets [Lin89] while the current one is based
on Tk widgets [Ous94]. However, we will not distinguish among these specific instances,
since from the architectural point of view, these differences are not important.
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7.4.2 Collaboration Awareness

We discuss now different approaches to transforming a single-user layering to a multiuser
one.

One approach is to keep the exact same set of layers and add collaboration functionality
to one or more of these layers. This approach is used in many existing architectures includ-
ing Shared X, which extends the X Window server, and Suite, which extends the view layer.
However, it supports limited reuse of existing software since it requires changes to the layers
that are made collaboration-aware. Moreover, all implementations of a layer must be changed
even if they provide the same interface. It also supports limited modifiability in that a single-
layer implements both the single-user and collaboration semantics. (These problems may be
reduced, but not eliminated, if these layers are coded in an object-oriented programming lan-
guage, since the changes may be localized in high-level classes and automatically inherited
by unchanged lower-level classes.) Finally, it is not viable if the source code of the layer to be
changed is not available.

Another approach is to put a pseudo-layer between two existing layers of the single-user ar-
chitecture. To each of these two layers, the pseudo-layer provides an extension of the interface
the other one provided. As a result, it accepts all of the input and output events sent to it by the
layers below and above it, respectively. Depending on the nature of the interface between the
two existing layers, the addition of the pseudo-layer may require recompiling and/or relinking
of the existing layers. However, unlike other approaches, it does not require changes to the
original layers. Moreover, it allows the same pseudo-layer to be added between multiple im-
plementations of the two layers, as long as these implementations provide the same interface.
It also supports increased modifiability since a pseudo-layer does not have to be changed in
response to changes in the implementations of the original single-user layers. This approach
is supported in XTV, which inserts a pseudo-layer between an X server and client, and COLA
[Tre94] and DistView [Pra94], which add pseudo-layers at higher-levels (see also Chapter 5
in this book [Pra99]).

The pseudo-layer approach has two main drawbacks: First, all communication between the
two layers of the original architecture must now pass through an extra layer, which may reside
in a separate address space. For instance, in XTV, all communication between an X server and
client must pass through a pseudo X server. Second, a pseudo-layer may need to duplicate the
data structures and code of the original layers. For instance, an X pseudo-server that allows
only certain windows to be shared must recreate the window tree hierarchy maintained by the
X server.

Adding a pseudo-layer does not change the layering degree of the architecture, since the
layer is not a “real” layer in that it does not transform its input or output. A pseudo-layer
can be considered as logically belonging to the next lower layer, and should be replicated,
threaded, or distributed with this layer.

Which levels of the architecture should be made collaboration-aware; that is, at which levels
must collaboration-awareness be added to existing layers or new pseudo-layers introduced?
One approach is to localize these modules at a single level. Assuming this approach is used,
we need to choose the collaboration-aware level. There are several advantages of choosing
a lower level. First, a lower level is typically common to a larger number of applications. 4

For instance, the X Window System is used by both Suite and non-Suite applications, while
the Suite view layer is used only by the subset of X applications that are Suite applications.

4 This is not always the case since a higher-level layer might be ported to multiple lower-level layers.
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Figure 7.5 Modifying a 1-user layer vs. adding a new pseudo-layer

As a result, adding collaboration-awareness at a lower level typically provides collaboration
support for a larger number of applications, since it is available not only to direct clients of
the layer but also clients of higher-level layers implemented on top of this layer. Second, a
lower-level layer can give users earlier feedback than higher-level layers. In general, there
is a delay between the time information is received by a lower-level layer and the time it is
transmitted to a higher-level layer. For instance, a widget layer may transmit edits to a form
item to the higher-level layer only when the user completes the item. Hence, the lower-level a
collaboration-aware layer is, the earlier it can distribute a user’s edits to others and point out
access and concurrency control violations. Earlier feedback allows users to collaborate more
synchronously and reduces the amount of work that may have to be undone. Finally, under this
approach higher-level layers are not required to process interaction events from lower-level
layers (see below), which makes them more modular and portable since they are dependent
on handling fewer kinds of events from lower levels.

On the other hand, there are two important, related advantages of adding collaboration sup-
port at higher-levels. First, coupling, locking, access control, and other collaboration functions
can operate on units that are more meaningful to the user/programmer. For instance, unlike a
window layer, a view layer can separately lock the different views displayed in a window. Sec-
ond, a higher collaboration-aware level can, if it is replicated, typically, provide more degrees
of sharing among peers at that level. To explain why, we make the following two observations.
The sharing of peer interactor objects implies the sharing of the next-level abstraction objects,
assuming that abstractions are kept consistent with their interactors. However, the sharing of
an abstraction does not imply sharing of its interactors, since the peer interactors may trans-
form the shared abstraction in different ways and add different kinds of syntactic sugar. Thus,
a collaboration-aware layer can allow a) no sharing between peer abstractions, b) sharing of
peer abstractions without sharing of lower-level interactors, and c) sharing of lower-level in-
teractors if appropriate input events can be solicited from the lower-level layers. For instance,
Suite can allow a) no sharing between peer views, b) sharing of peer views without sharing
of the windows displaying them, and c) sharing of peer windows by soliciting all X events. In
contrast, a lower collaboration-aware level cannot allow sharing of higher-level abstractions
without sharing of their interactors at this level.

In the higher-level case, sharing of lower-level interactors is achieved, at the cost of in-
creasing the interaction awareness in the higher-level layer; that is, the awareness of interac-



ARCHITECTURES FOR COLLABORATIVE APPLICATIONS 179

Degree LDegree 1

Degree 2

Workstation−Awareness Application−Awareness

Window−Awareness
Partitioned−Awareness

Figure 7.6 Approaches to collaboration-awareness

tion events of lower-level layers. For instance, to allow sharing of lower-level interactors such
as windows, multi-user Suite is forced to handle several low-level X events such as window
movement and resize events, which single-user Suite was unaware of.

We associate a collaboration architecture with an awareness degree, which is the level
of the highest layer that is collaboration-aware. The value of this degree ranges from 1 in
TeamWorkStation, which provides all collaboration support at the workstation level; to 5 in
DistView, which requires the model layer to be collaboration-aware.

Since there are benefits of adding collaboration-awareness at both lower and upper levels,
it is useful to consider an approach that partitions this awareness among multiple layers. Such
an approach could offer the benefits of both the lower-level and higher-level approaches. In
particular, it can offer logical collaboration units, flexible sharing, and low interaction aware-
ness. However, unlike the localized approach, this approach would require providers of multi-
ple modules to address collaboration, coordinate their activities, and often implement similar
functionality (such as remote invocation) multiple times. This approach is offered in MMConf
by making both the window and application layers collaboration-aware, and in Suite, by al-
lowing both the view and application layers to be collaboration-aware. Figure 7.6 illustrates
the various approaches to collaboration awareness.

7.4.3 Versioning and Replication

The versioning/replication architectural dimension determines the base and branch points in
the generic architecture of Figure 7.2. As mentioned before, all layers below a base are repli-
cated. We can thus associate an architecture with a replication degree, which is the level of
the branch point. Two extreme approaches to replication are the centralized and replicated
approaches. The former creates no replicated level while the latter creates no base level. In
between these two approaches, several semi-replicated approaches are possible, which choose
different levels for the base layer. Thus, the replication degree of an architecture withL levels
is in the range 0 to L (Figure 7.7).
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There are important advantages of choosing a higher replication degree. As we shall see
later, the replication degree of an architecture bounds its distribution and concurrency de-
grees. Thus, a higher replication degrees allows more distribution and concurrency benefits
(discussed later). Moreover, a higher replication degree allows more divergence in the interac-
tion states of the users since fewer levels are shared. For instance, if the view level is shared,
then all users are constrained to see the same views of models. A higher degree of replication
allows but does not force more divergence since it is possible for peer objects to share state
via collaboration events, as mentioned in the previous section.

On the other hand, replicating a level requires a mechanism for keeping the peer layers at
that level consistent. If these layers are meant to be exact replicas, then often a tool can auto-
matically provide this mechanism. Automatic consistency among the objects in exact replicas
is typically achieved by executing the same set of operations on these objects (see Chapter 5
in this book [Pra99]). For instance, if a user presses a button widget, then this operation is
also invoked on all peers of the widget that are meant to be exact replicas. However, multiple
invocations of an operation lead to several problems:

� Inefficiency: They can lead to serious efficiency problems if the operation is an expensive
one.

� Access bottleneck: They may try to simultaneously access a central resource (such as a file)
thereby causing an access bottleneck.

� Incorrect writes: They may modify the same central resource, thereby causing the same
value to be written multiple times. The access and write problems would be eliminated in
a system that replicated all resources.
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� Incorrect side effects: They may send mail, print documents, and perform other side effects
multiple times.

The last two problems can be averted in collaboration-aware peer layers that ensure (based,
for instance, on user identities) that only one of these layers performs the write and other side
effects.

Not all layers perform operations with one or more of these properties. Typically, it is
the topmost layer — the one containing semantic objects — that performs such operations.
Therefore, several systems adopt a special case of the semi-replicated architecture that keeps
the semantic layer centralized and the lower-level layers replicated. We refer to this architec-
ture as the hybrid architecture. Given an application with L levels, the replication degree of
the hybrid architecture for this application is L � 1.

Since replication has both important advantages and disadvantages, there is substantial vari-
ation in the replication degrees of collaborative applications. Another cause for this variation
is the variation in the level of the collaboration tools used for automatically implementing
replication. A collaboration tool can either replicate all or none of the layers in its client.
Since there are important disadvantages of replicating the topmost layer, typically the tool
will replicate its layers but not those of its client. As a result, tools at different levels will offer
different replication degrees.

Systems supporting the hybrid architecture include Rendezvous, Suite, Weasel and Clock.
Systems that offer full replication include GroupKit and GroupDesign [Kar93], while the
only one known to offer pure centralization is MMM. TeamWorkStation supports a replica-
tion degree of 1. A window-based architecture such as XTV and Rapport that centralizes its
client has been traditionally called a centralized architecture [Lau90]. However, under our
terminology, it is a semi-replicated architecture with degree 2, since the workstation and win-
dow layers are replicated. Because of the replication degree supported by them, MMM/Team
Workstation/XTV/Suite cannot allow screen/windows/views/models to diverge. GroupKit and
GroupDesign allow all of these layers to diverge, but require collaboration-awareness to solve
the problems with invoking the same operation on multiple replicas.

7.4.4 Concurrency

Decomposing an application into multiple threads is important in single-user applications
since it allows these threads to execute simultaneously on a multiprocessor system. It is par-
ticularly important in multimodal applications where the devices for different I/O modes such
as audio, video, mouse, and keyboard can be managed by different threads. The multi-user
case offers additional opportunities and reasons for creating multiple threads. Typically, the
users of a collaborative application can input and output data concurrently. Thus, the dif-
ferent branches created for these users are potential concurrency units that can be executed
simultaneously by different processors of a multiprocessor system. Even in a single-processor
system, creating separate threads for these branches is important. It supports fair (preemptive)
scheduling among these threads by ensuring that a computation triggered in a branch by the
actions of a user does not lock out other users for an unbounded time.

However, there are reasons why a complete branch may not be associated with its own
thread. The system support needed to create threads may not be available to programmers.
Moreover, programmers may not be willing to put the effort required to create and synchronize
threads. A collaboration tool can automate this task for the layers it knows about but not those
in its clients. Similarly, it may not be possible to assign a thread to a layer without requiring
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changes to the layer since the syntax and semantics of an invocation in the same or different
thread may be different. Thus, the goal of increasing the concurrency may conflict with the
goal of reuse since the former may require changes to source code of an existing layer.

As a result, different architectures may take different approaches to concurrency depending
on how they tradeoff the benefits of concurrency with its drawbacks. To capture differences
among these architectures, we associate them with a concurrency degree, which is a measure
of how many layers in a branch execute in their own thread. An architecture has concurrency
degree, C, if no layer at or below level C shares a thread with a stem layer or a layer in a
different branch. Different layers in a branch may, and typically do, share a common thread.
The concurrency degree of a collaboration architecture ranges from 0 to R, where R is its
replication degree. We refer to architectures with concurrency degree 0 and R as sequential
and concurrent architectures, respectively, and the remaining architectures as semi-concurrent
architectures (Figure 7.8). A sequential architecture must be a centralized architecture. In a
non-centralized architecture, the workstation level is guaranteed to be replicated. A replicated
workstation level (but not other levels) must be distributed, by definition, since a level is
distributed if it resides on multiple workstations. Furthermore, we assume that distributed
layers execute concurrently. Hence no non-centralized architecture is sequential.

All collaboration tools known to the author offer the concurrent approach. Of course, the
replication degrees in these systems may be different, as mentioned before, which causes
variations in the concurrency offered by them. For instance, the concurrency degree in Ren-
dezvous and Suite is 4 and in XTV it is 2. In all existing replicated architectures it is the same
as the layering — and hence replication — degree.

The above discussion identifies a simple approach to introducing concurrency in a collabo-
rative application: assign all branch layers below some levelC to a separate thread. A concur-
rent architecture created using this approach does not necessarily offer the maximum possible
concurrency, which would require an approach that identifies all portions of the application
that could potentially execute concurrently and assigns each of these to a separate thread. We
refer to such an approach as the maximal-concurrent approach. This approach is highly appli-
cation dependent and either requires the programmer to identify the threads, which has proven
to be a tedious, error-prone, and difficult task in general, or the system to automatically per-
form this task, which in general is impossible. Unlike the maximal-concurrent approach, our
approach does not process concurrently the actions in a branch or stem invoked by a single-
user (such as concurrent mouse and key clicks by the same user), or the actions in the stem
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invoked by different users (such as concurrent key clicks by two independent users handled by
a central layer). However, it does allow the computation of the local feedback in the branches
of different users to be performed concurrently.

Note that the notion of the concurrency degree applies to all collaboration architectures
including those that assign threads based on approaches other than the one given above. How-
ever, it does not capture all concurrency differences among these architectures. For instance,
as mentioned above, a concurrent architecture may or may not be a maximal concurrent ar-
chitecture.

7.4.5 Distribution

Once the threads of an application have been identified, they must be assigned to process
address spaces, which in turn must then be assigned to hosts. Assigning different threads
to multiple address spaces increases fault tolerance since fatal errors in one thread do not
necessarily cause the whole application to fail. This is particularly important in the multi-user
case, since users would like to be protected from the errors of others. If the replicas created
for different users are assigned to different address spaces, then a fatal error in one replica
would not necessarily cause the other replicas to crash.

Distributing different processes to different hosts also allows an address space to be close
to the resources it is accessing the most. Again, this is particularly important in the multi-
user case, since the replicas created for different users need to access different and possibly
widely separated workstations. By executing replicated layers on a local workstation, no re-
mote communication is required to generate the local feedback computed by these layers.
Moreover, events transmitted from these workstations are high-level events generated by the
local layers rather than low-level events generated by the workstation. Typically, a higher-level
I/O event contains less data and is communicated less frequently than a lower-level one, and
thus generates less traffic on the network. For instance, communicating committed changes to
an integer value communicates less data than communicating incremental changes to a slider
representation of it.

On the other hand, distributing portions of an application on different workstations is not
without drawbacks. The distributed parts of the application are not guaranteed to see the same
environment, which can cause problems. For instance, problems would occur if the applica-
tion uses a file name that is not valid at all sites unless the application is site-aware. Moreover,
synchronizing distributed replicas is a difficult problem. Often an event received by a layer
must also be sent to remote replicas to satisfy consistency constraints among them. To en-
sure good response times for the local users, such events must be processed immediately by
the local layers without trying to ensure a global ordering among them. As a result, the dis-
tributed replicas may get inconsistent unless application-specific techniques [EllG89] are used
to transform or abort received events, or the events are guaranteed to commute.

As a result, different architectures take different approaches to distribution depending on
how they tradeoff its communication benefits with its drawbacks. To capture differences
among these architectures, we associate an architecture with a distribution degree, which is
analogous to its concurrency degree. It is a measure of how many layers in a branch can exe-
cute on the local host. An architecture has distribution degree, D, if no layer at or below level
D shares an address space with a stem layer or a layer in a different branch. Different layers
in a branch may, and typically do, share a common address space. The concurrency degree
of a system is always higher than its distribution degree since distributed modules execute
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concurrently. However, it is not the same, since a particular address space can execute multi-
ple threads concurrently. Thus, the distribution degree of a collaboration architecture ranges
from 0 to C, where C is its concurrency degree. We refer to architectures with distribution
degree 0 and C as single-site and distributed architectures, respectively, and the remaining
architectures as semi-distributed architectures (Figure 7.9). A single-site architecture must be
a sequential architecture since distributed modules execute concurrently. Like the maximal-
concurrent approach, it is possible to imagine a maximal-distributed approach that dynam-
ically assigns each application module to the workstation accessing it the ‘most’. However,
such an approach [Jul88] is still a subject of research and requires application-specific support.
Our notion of a distribution degree does not distinguish between those distributed architecture
that offer maximal distribution and those that do not.

The distributed approach determines only how the application is decomposed into pro-
cesses and not how these processes are assigned to hosts. Depending on the workstation and
network speed, it may, in fact, be sometimes beneficial to execute branch layers on a fast re-
mote workstation. The higher the distributiondegree of an architecture, the more the flexibility
in reducing the communication costs.

Not all communication costs go down when a replica is executed on a local host. In partic-
ular, the cost of communicating with remote higher-level and peer layers goes up. However,
assuming that information gets abstracted as it flows upwards and that a collaboration or input
event received by a layer triggers a lower-level output event, the overall communication cost
is reduced. To better understand the logic behind this conclusion, consider Figure 7.10, which
shows the difference between placing replicas, A and A0, on local and central hosts. Consider
how an input IA, to layer A, is processed by the various layers in the architecture. Layer A
produces some local feedback, OAL, sends a collaboration event, CA, to its peer, and an input
event, IB, to the higher-level layer. The higher-level layer, in turn, produces feedback TOB
(which is the total feedback consisting of feedback of B and all of the layers above), which,
in turn, is transformed to TOA by layer A. On receiving CA, layer A0 produces coupling
feedback CAO, and sends an input event IB0 to B0. Layer B0, in turn, produces total feedback
TOB0, which, in turn, is transformed by A0 to TOA0.

Consider the local and central placement schemes shown in Figure 7.10. The difference
between them is in the placement of the replicas — under local placement, replicas A and A0

are placed on the local workstations, while under central placement, they are placed on the
central site. In the local case, events IA, TOA, CAO, TOA0, OAL are transmitted locally, and
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events IB, TOB, CA, TOB0, and IB0 are transmitted across the network, while in the central
case, the converse is true. If we assume that information gets condensed when it is processed
by a higher-level layer, then the following relationships hold among the size of these events:
IA > IB, TOA > TOB, CAO > CA, TOA0 > TOB0. Also, if we assume that a higher-level
event triggered by an input event is smaller than any lower-level event also triggered by the
same input, then OAL > IB0. These relationships imply that more information is transmitted
locally in the first case.

We have ignored, above, peer collaboration events sent to B0 and other layers above A0. In
both cases, such events will be communicated locally. However, under local placement, the
resulting output sent to the remote user will be higher level — the output of B 0 rather than
A0 — thereby further reducing the communication cost. We have also ignored collaboration
events sent to cross layers. For similar reasons, they also favor local placement of modules.

Most existing architectures offer the distributed approach, that is, distribute all of their
concurrent threads. A notable exception is the Rendezvous architecture, which offers a distri-
bution of degree of 2 but a concurrency degree of 4. In this architecture, all layers except the
X Window layers execute at a central site. However, at the central site, the layers in different
branches execute in separate threads. The Clock system provides a hybrid approach, allowing
the same application program to have degrees 2 to 4, depending on whether it centralizes the
replicated widget and view layers.

We have assumed that every collaboration event sent to a peer layer results in an output
event. This may not be true for constraint-based systems such as Rendezvous, Weasel, and
Clock, which may need several collaboration events to be exchanged before the constraint
evaluation can fire the output events. It is perhaps for this reason that Rendezvous does not
use a distributed architecture, though preliminary performance results from Weasel and Clock
show advantages of using such an architecture even in a constraint-based environment.

7.5 EXTERNAL MODULES

Not all collaboration modules can be added to existing single-user layers or new pseudo-
layers. It may also be necessary to create new external modules that do not belong in the
protocol tree, for several reasons (Figure 7.11):
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Figure 7.11 Reasons for adding external modules

� Session Management: In a collaborative system, session management modules are needed
to create/delete the protocol tree of an application when a session with an application is
started/terminated. In the single-user case, the operating system is responsible for creat-
ing/deleting interactive sessions, but in the multi-user case, special, possibly application-
specific, protocols are necessary for session management [Ros96]. Since these protocols
create/delete protocol trees, they cannot be implemented within the tree itself, and thus
must be provided by external modules.

� Centralization: Replicated collaboration-aware layers may need to communicate with cen-
tral modules to keep central resources such as locks or ensure global ordering of messages
communicated among these layers. These modules can be implemented in the stem of
the protocol tree, which is the approach taken in Suite. However, this approach cannot be
taken if the architecture is fully replicated or if it cannot have any collaboration-aware stem
layers. In these cases, the central modules must be external to the protocol tree.

� Site-Specific Processing: Centralized collaboration-aware layers may need to communi-
cate with modules that must be located at a particular site for efficiency or other reasons.
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Examples of such modules are those that access files, devices, or processes at a particular
site or keep information about the active users or sessions at a site. These modules can be
implemented in collaboration-aware branch layers at that site if such layers exist; other-
wise they must be modules external to the protocol tree. Systems that distribute replicas
create a site-specific server for creating and terminating processes at that site. Similarly,
Suite creates an audio server at each site to access the audio devices at that site [Rie93].

� Collaboration and Interaction Independence: For modularity reasons, it may be desirable
to separate the processing of interaction and collaboration events. As mentioned before,
pseudo-layers can be used to increase this separation since such layers are responsible only
for transmitting interaction events and not for transforming them. However, these layers
have the performance disadvantages mentioned before and support limited separation since
they must process both kinds of events. Similarly, within a layer, encapsulation may be used
to separate the interaction-aware and collaboration-aware objects. An approach providing
more separation is to process collaboration events in external modules, which can be shared
by multiple layers and branches.

� Inter-Branch Independence: It is useful to reduce the awareness a branch has about
branches created for other users. This increases the modularity of the system, and more
important, reduces the cost of connecting a branch to other branches. If every branch kept
track of every other branch it may need to communicate with, then branch awareness and
interaction awareness would be implemented by the same layers, and more important, a
branch would need to be informed each time a new branch is created that may need to
communicate with it. It may be more attractive to implement one or more (possibly repli-
cated) external message servers [Rei90], responsible for linking the replicated branches.
A message server receives message patterns from information clients indicating the kind
of messages they are interested in receiving, and announcements from information servers
announcing events in which information clients may be interested. The message server for-
wards an announcement from an information server to all information clients who have reg-
istered an interest in the announcement. This is essentially the approach taken in [Bon89].
A message server leads to more modularity and reduced connection cost, but increases the
“hop count” of inter-branch messages; that is, it increases the number of modules respon-
sible for processing inter-branch messages. The increased hop count is a serious problem if
the message server is centralized and the branches are distributed, since the message server
can become a central bottleneck. On the other hand, as mentioned before, such a central
agent may be necessary in any case to implement global ordering of distributed operations.

In many of the cases above, we have not defined the specifics of how the external modules
are connected to each other, threaded, distributed, or replicated. These issues can be resolved
in the same way they were resolved for the original modules. In fact, it is possible to create
a hierarchy of replicated, distributed, concurrent external modules. For instance, GroupKit
creates a central registrar that acts as a connection point and name server, with replicated local
session managers at all sites deciding the policy for how people enter groupware sessions.

7.6 RULES

Ideally, we would like to identify universal principles that should be followed in the design
of all collaboration architectures. However, as explained in the sections above, there are no
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absolute rules in the design of these architectures. Therefore, what we offer, instead, is a
set of qualified rules summarizing the advantages/disadvantages of different architectural ap-
proaches. These can be used by developers of an application/tool to optimize the set of prop-
erties that are important for that application/tool.

� Layering: A higher degree of layering can support higher degrees of awareness and repli-
cation.

� Awareness: A higher degree of awareness leads to more flexible sharing and higher-level
units of collaboration, but supports less reuse, delays feedback, and increases interaction
awareness (if the partitioned approach is not taken).

� Replication: A higher degree of replication supports more divergence and a higher degree
of concurrency; but requires more layers to be kept consistent, and results in inefficiency,
access bottlenecks, and incorrect writes and other side effects.

� Concurrency: A higher degree of concurrency increases fairness, performance, and the
maximum degree of distribution; but reduces reuse, requires special system support, and
increases programming overhead.

� Distribution: A higher degree of distribution increases fault tolerance and reduces commu-
nication costs, but introduces problems of synchronization and heterogeneity.

� Partitioning: Partitioned collaboration awareness reduces interaction awareness; but re-
quires more programming effort and supports less reuse.

� Pseudo-Layer: The pseudo-layer approach supports more reuse and modularity; but offers
less performance and can result in duplication of effort.

� External Modules: External modules are necessary for supporting session management,
centralization, site-specific processing, collaboration and interaction independence, and
inter-branch independence; but increase the complexity of the system and can reduce per-
formance.

7.7 CLASSIFYING EXISTING SYSTEMS

Tables 7.1 and 7.2 describe architectures of several existing collaboration systems. Table 7.1
gives the layering and associated degrees supported by them. Since all of these systems are
collaboration tools, these values refer to the minimum values of these degrees, since some
clients may create additional layers, replicas, processes, and threads in the application. We
have assumed above that all view layers are built on top of widget layers so that a comparison
of the various degrees is more meaningful. Table 7.2 indicates the other properties supported
by them: pseudo-modules, partitioned awareness, and external modules to support session
management, centralization, site-specific computing, collaboration awareness, and message
servers. These tables show the similarities and differences among these tools. All systems
except MMM support multi-workstation collaboration. Among these systems, TeamWorkSta-
tion is workstation-based; XTV, Shared X, and MMConf are window-based; and Rendezvous,
Suite, Weasel, and DistView are view-based. MMM offers the pure centralized architecture;
MMConf, GroupKit, and DistView the replicated architecture; and TeamWorkStation, XTV,
Rendezvous, Weasel, and DistView the semi-replicated architecture. In all systems except
Rendezvous, the distribution degree is the same as the concurrency degree. From an architec-
tural point of view, there are no differences between Suite and Weasel.
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Table 7.1 Layering and associated degrees of existing architectures

Lyr. Awr. Rep. Conc. Dist.
System Layers Deg. Deg. Deg. Deg. Deg.

MMM [Bie91] app/workst 2 2 0 0 0
TeamWorkStation[Ish90] app/workst 2 1 1 1 1
XTV [Abd94] app/win/workst 3 2 2 2 2
Shared X [Gar94] app/win/workst 3 2 2 2 2
MMConf [Cro89] app/win/workst 3 3 3 3 3
GroupKit [Ros96] app/wid/win/workst 4 4 4 4 4
Rendezvous [Hil94] app/view/wid/win/workst 5 5 4 4 2
Suite [Dew92] app/view/wid/win/workst 5 5 4 4 4
Weasel [Gra92] app/view/wid/win/workst 5 5 4 4 4
Clock [Gra96] app/view/wid/win/workst 5 5 4 4 2–4
DistView [Pra94] app/view/wid/win/workst 5 5 5 5 5

Table 7.2 Pseudo-layers, partioned awareness, and different kinds of external modules

System Pseudo Part. Sess. M. Central Site-Spec. Colab. Awr. Msg. Serv.

MMM N Y N N N N N
TeamWorkStation N N Y N N N N
XTV Y N Y N Y N N
Shared X N N Y N N N N
MMConf N Y Y N Y N N
GroupKit N Y Y N Y N N
Rendezvous N Y Y N N N N
Suite N Y Y N Y N N
Weasel N Y Y N N N N
Clock N Y Y N N N N
DistView Y Y Y N N N N

7.8 CONCLUSIONS AND FUTURE WORK

This work makes several contributions. It motivates the need for studying software architec-
tures of collaborative systems, describes a generic architecture that encapsulates architectural
properties common to a wide range of collaborative systems, identifies a set of issues that a
designer of a specific architecture must face, discusses and evaluates competing approaches
to addressing these issues, classifies existing systems according to the approaches they have
taken, and gives a set of architectural rules.

This work is related to the SAAM model for describing architectures of software systems
[Kaz94]. This model advocates:

1. a canonical decomposition of the functionality of the system
2. identification of the structure of the system, that is, the set of components of the system

and the communication among these components
3. identification of the functions performed by each component
4. selection of a set of abstract properties for evaluating the architecture
5. selection of a set of concrete tasks that have these properties, and
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6. evaluation of the extent to which the architecture supports the abstract properties and con-
crete tasks.

This work has applied several of these steps. In particular, it has applied step 1 by decom-
posing the functionality of a collaborative application into interaction functions and collabo-
ration functions, 2 by identifying the layers, threads, and processes of a collaborative system,
3 by distinguishing between collaboration-aware and unaware layers, 4 by selecting function-
ality, performance, programming effort, reusability, and modularity as evaluation properties,
and 6 by evaluating how well each of these abstract properties are satisfied by an architecture.
It would be useful to extend this work by :

� identifying concrete tasks that have the evaluation properties and evaluating how well the
architecture supports these tasks

� doing a finer structural decomposition that identifies the components of the layers and the
external modules of the architecture, and

� doing a finer task assignment that distinguishes among layers based not only on whether
they perform interaction or collaboration functions but also on the set of collaboration
functions they perform.

The framework and associated terminology can be used for understanding, comparing, and
classifying existing collaboration systems. It can also be used to varying degrees to design new
systems. One method would be to take the set of approaches supported in an existing system
to develop a new system that addresses details not covered here differently. For instance, the
set of approaches used in XTV can be used to develop a shared window system based on
a different network single-user window system such as the Plan 9 window system [Pik90].
A more novel use of the framework would be to choose a new combination of the set of
the approaches described here. For instance, a new version of Suite can be developed that
supports a fully replicated architecture. This framework makes these tasks easier by telling
the designers which questions they have to answer, what choices are available, and what the
consequences of these choices are.

This work can be extended in many other ways. It would be useful to decompose a layer by
structure, as in the PAC model, and function, as in the Clover model. A first-cut at combining
this architecture with PAC and Clover has been published recently [Cal97]. It is also necessary
to identify other assumptions, issues, approaches, and criteria for comparing architectures. In
particular, it is useful to relax the assumption that all levels above a central level are also
centralized. In a single-workstation collaborative system such as MMM, it may be useful to
create different branches for different users. Moreover, in such a system, it would be useful
to capture, in the concurrency degree, the notion of assigning different devices to different
threads. This architecture was developed based on experiences with implementing multi-user
textual/graphical user-interfaces. It would be useful to test its applicability for multi-user au-
dio/video and 3-D virtual reality user-interfaces. It may also be useful to relax the assumption
that a layer is replicated/threaded/distributed as a whole, which does not apply to Shastra
[Anu93]. In Shastra, the semantic layer consists of two parts: one performs expensive compu-
tations while the other performs relatively inexpensive ones. The expensive part is centralized
but the inexpensive one is replicated and distributed since computation costs dominate in one
case and communication costs in the other. It would also be useful to consider migration and
caching of centralized components of collaborative applications [Gra96, Chu96] and their
impact on performance.
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