
8

Software Infrastructures
PAUL DOURISH

Xerox PARC

ABSTRACT

Increasingly, personal computers and workstations come ready “out of the box” to partic-
ipate as nodes of a distributed computing network. Elements of distributed computing in-
frastructure, from network file systems and shared printers to high-speed connection back-
bones, are part of our everyday experiences as users of computers. This chapter discusses
software infrastructures for the design of CSCW applications. In particular, it is concerned
with how developments in distributed computing and user interface architecture can be ex-
ploited in applications that support collaborative activity. The chapter considers a variety
of currently-available infrastructure components and discusses how they can be used in
collaboration, before going on to suggest a new approach which revises the nature of the
relationship between infrastructure and applications.

8.1 INTRODUCTION

CSCW is a highly diverse discipline. From its very beginnings, it has drawn from psychology
and sociology as much as from computer science. In turn, within computer science, issues
from the areas of network communication and distributed systems have been as important as
those from user interface design and usability.

The focus of this chapter is software infrastructure in the design of CSCW systems. By
“infrastructure”, I mean those elements which lie below the level of the collaborative systems
themselves, but which can be exploited in the design of those systems. Explicitly collaborative
infrastructures, or collaboration toolkits, are discussed in Chapter 6 of this book [Gre99]. So,
many of the infrastructure components that will be discussed here have been (or are being)
designed outside the CSCW domain itself. This chapter will take a CSCW perspective on
these non-CSCW technologies, and discuss how they can be used in CSCW applications.

Computer Supported Cooperative Work, Edited by Beaudouin-Lafon
c 1999 John Wiley & Sons Ltd



196 DOURISH

Later on, we will also consider implications both for the design of CSCW technologies and
the future development of software infrastructures.

8.1.1 Overview

This chapter is organized into two main parts.
First, in Sections 8.3–8.5, we will consider software technologies that provide infrastruc-

ture services which can be used in CSCW systems. This will cover both the general use of
particular types of infrastructure system, as well as discussing particular tools applicable to
CSCW.

The second part (Section 8.6 onwards) will outline new work on CSCW support based on
computational reflection. This approach provides a way for applications to become involved
in aspects of infrastructure, so that the infrastructure can be tailored to the specific needs
of particular applications. I have been developing this approach in the design of a prototype
CSCW toolkit called Prospero.

8.2 INFRASTRUCTURE ELEMENTS IN CSCW

The nature of CSCW software lends itself to the appropriation of other technological bases
as an infrastructure for collaboration. We will consider three particular areas here: first, dis-
tributed systems, which support network-wide computation; second, database systems and
related concerns in storage and replication; and third, user interfaces to distributed, network-
wide applications.

8.2.1 CSCW and Distributed Systems

CSCW software is inherently distributed, and so a variety of techniques and systems devel-
oped within the distributed systems community can be fruitfully adopted in CSCW. Aspects
of distributed systems technology which are relevant include shared distributed objects, mo-
bile services, replication mechanisms, global coordination, distributed naming schemes and
architectural considerations in data and application distribution.

As with most other elements of infrastructure discussed in this chapter, distributed system
technologies can be deployed as infrastructure at a variety of levels. On one level, distributed
system components can be used to provide a basic set of services on top of which CSCW
systems will be built. In these cases, the CSCW system is seen as an application of the dis-
tributed system infrastructure. Implemented at a different level, the CSCW system can be seen
as being itself a distributed system. In this approach, the distributed system technologies can
be directly incorporated into the collaborative application or environment.

8.2.1.1 Transparency in Distributed Systems

However, the observation that CSCW systems are distributed, and hence potentially amenable
to distributed system solutions, can be a misleading one. Whether CSCW applications are
implemented as distributed services or clients of those services, designers must take care not
to confuse the goals of distribution with those of collaboration.

Many distributed systems set out to achieve some form of transparency. Typically, the goal



SOFTWARE INFRASTRUCTURES 197

of transparency takes the form of attempting to hide from the user the consequence of some
aspect of distribution, while still realizing the benefits. Consider some examples below:

� Location transparency refers to isolating the application or client from the effects intro-
duced by the location of the computation.

� Concurrency transparency refers to isolating the application or client from the effects in-
troduced by the fact that their computation might, in fact, consist of multiple concurrently-
executing subprocedures which, together, can be regarded as a single computation.

� Replication transparency refers to attempts to hide the fact that what appears to be a single
data item may, in fact, be copied and reproduced at different points in a network.

� Failure transparency refers to attempts to hide from applications the consequences of a
potential failure at one point in the network, by attempting to recover using other resources
available in the distributed system.

In different settings, different forms of transparency can be invaluable in providing users
and applications with seamless access to an apparently unified large computational resource
which is, in fact, made up of discrete, connected units. However, these same features can be-
come problematic in the CSCW setting, since the goals of CSCW are different. For instance,
issues such as location and replication, which might be hidden by a traditional distributed sys-
tem, can often turn out to be significant for the ways in which a group will work, or even for
the nature of the work which they attempt to perform. Greenberg and Marwood [Gre94] dis-
cuss the ways in which concurrency management, for example, can interfere with the smooth
and natural flow of user interaction when a distributed systems layer makes concurrency con-
trol “transparent” to the CSCW application. They point out that the details which distributed
systems hide (by making them transparent) are ones which are highly significant for the coor-
dination of group tasks.

Distributed system techniques are important elements of CSCW infrastructure, and ex-
tremely valuable. Data replication allows fast, concurrent access in cases where it would oth-
erwise be impossible, and location transparency allows users to interact in mobile or fluid
settings. However, before these techniques are applied directly to collaborative systems, the
designer must develop a more detailed understanding of potential interactions between the
behavior of users and the action of the system. Certainly, collaborative activity is often dis-
tributed; but this does not imply that collaborative applications and distributed applications
are one and the same.

8.2.2 CSCW and Databases

Many features of CSCW applications make database technology an attractive candidate for in-
frastructure. Most programs are data-based, of course, but in particular CSCW systems often
involve sets of computations over an explicit data store (or collaborative workspace). Simi-
larly, database technologies have evolved to provide the means to coordinate and share data
across time and space. As such, many collaborative systems can benefit from techniques de-
veloped in database management, and the persistence which databases offer may be exploited
in supporting asynchonous working styles.

Most database systems support multiple users, but mapping the needs of collaborating
groups onto the multi-user facilities of an existing database technology can be problematic.
Multi-user databases are generally constructed so that they hide the activities of multiple users.
Database systems erect walls between simultaneous users, in order to render each user imper-



198 DOURISH

vious to the actions (or even the presence) of others. The goal is to present each user with
the illusion of a dedicated system. This is not simply an issue in how their interfaces are
constructed, but reaches down to the basic conceptual model. Even the transaction execution
model, for example, is explicitly designed to shield users from the effects of each other’s
actions, and to maintain the idea of a dedicated resource for each user.

The activities of others, then, are hidden and may become visible only through activity
within the data store itself; and that activity is organized as essentially single-user, so that
database consistency constraints can be maintained. However, a wide range of research stud-
ies in CSCW (typically going under the general term “awareness”) have emphasized the im-
portance of the visibility of others’ work as a resource for coordination. In Heath and Luff’s
seminal study of the activities in the control rooms of the London Underground, for instance,
they uncover a range of practices by which the controllers not only monitor each other’s ac-
tions in order to coordinate the work as a whole, but also ways that they explicitly make their
work visible to each other [Hea92]. Dourish and Bellotti [Dou92] observe similar issues at
work in experimental collaborative design tasks. This sort of mutual visibility of action is
hard to achieve in traditional databases. So while the database model might enable cooper-
ative work by allowing multi-user data access, it generally doesn’t support a collaborative
model of data management.

However, some database research work has focused on extending the database model in
ways which extend to collaborative settings. Extended transaction models such as nested
transactions (originally introduced by Davies [Dav73]) or multiple granularity concurrency
control [Gra75] have been developed. These extended models were driven by the require-
ments of domains such as computer-aided design or software development environments,
where transactions may last much longer, involve multiple participants, or be transferred
from one participant to another before being committed. At the same time, new techniques
for semantics-based concurrency control in database applications (such as those of Herlihy
[Her90] or Farran and Ozsu [Far89]) allow for greater parallelism in transaction execution,
and hence more flexibility in mapping collaborative actions onto a database kernel. In the
same way, aspects of database infrastructure may have to be extended for collaborative set-
tings. (A semantics-based technique, similar to those cited above but specifically designed
for CSCW applications, will be described in Section 8.6.4.2.) Barghouti and Kaiser [Bar91]
provide a comprehensive overview of these developments, which hold considerable promise
for the future role of database technologies in CSCW.

8.2.3 CSCW and User Interfaces

CSCW systems are generally interactive, and so the design of the user interface is critical to
their acceptibility and use. However, as in the domains discussed above, CSCW introduces
new challenges for user interface design.

In a single-user system, the user interface is responsible for presenting representations of
the system’s activity. For instance, the “hourglass” cursor indicates that the system is currently
performing some time-consuming operation in response to a user request; dialog boxes may
appear, asking for confirmation for requested actions (especially ones with potentially severe
consequences); user-initiated changes in system state are reflected in changes to the display
state of user interface objects (e.g. reversing black and white to indicate object selection).

Although these same mechanisms can be exploited in collaborative systems, we must, once
again, consider the implications of moving into a multi-user setting. There’s an important



SOFTWARE INFRASTRUCTURES 199

piece of context which allows these kinds of behaviors to make sense in traditional inter-
active systems; the fact that there’s only one user. This is particularly important because it
implies that there is a straightforward relationship between the user’s request and the system’s
response. Objects do not highlight themselves, but do so because they have been selected; dia-
log boxes asking for action confirmations do not appear at random, but in response to specific
user actions. By and large, the system need not explain why (for example) a dialog box has
appeared, because the user knows that it is in response to their recent activity. If something
happens in the interface, it must be as a result of either the user’s action or the system’s.

However, in collaborative systems, this assumption may no longer hold. There are now
multiple users to be considered, and actions which are observable in the interface may well
be the result of someone else’s activity, which may or may not be visible to other users. The
direct connection between the user’s activity and the system’s has been broken, and with it,
many of the assumptions on which user-interface design rests. So, as in the previous cases,
the needs of CSCW applications often force us to re-think the elements and functionality of
the traditional user interface.

That said, there have been cases where elements of current user interface systems have
been fruitfully exploited in collaborative systems. One particular line of work has been with
network-based interface architectures such as the X Window System and NeWS. These sys-
tems separate window clients (programs which use the window system to display results) from
window servers (which provide windowing functionality for particular screens or displays),
potentially across a network, using a hardware-independent protocol for drawing and window-
ing actions. This network independence immediately leads to the potential for multiplexing
the windowing protocol, and hence sharing a single client between a number of displays. A
number of systems of this sort have been developed, of which the best-known is probably
Shared X [Gar89]. Application replication via window sharing allows previously single-user
applications to be operated in a multi-user environment, albeit with certain restrictions to man-
age input streams. This is an extremely powerful approach, especially since it allows users to
carry on working with familiar, everyday applications.1

Other user interface toolkits, widgets and mechanisms have been extended to support col-
laborative working. This work has typically been done in groupware toolkits, which are dis-
cussed in Chapter 6 of this book [Gre99] and so will not be discussed further here.

We will now go on to look at some particular technologies which can be valuably exploited
as infrastructure for CSCW systems. For clarity, they will be addressed in three different areas:
communication; coordination; and storage.

8.3 COMMUNICATION

Most CSCW technologies depend critically on digital communication infrastructures. Indeed,
there have been claims that the most successful CSCW products are those which we might
think of as simply being communication systems (such as electronic mail, networked file ser-
vices or the World Wide Web). This section will explore the communication facilities which
underpin CSCW applications development, and recent advances in communication facilities
which are particularly relevant to collaboration.

1 The sad truth about many collaborative editors which have been developedby CSCW researchers is that, while they
might well be collaborative, they are rarely very good editors. This is another reason to value application-sharing
approaches.



200 DOURISH

8.3.1 Internet Multicast and the MBone

One infrastructure advance of the past few years which is particularly relevant for CSCW is the
development and widespread deployment of Multicast Internet Protocols, and the emergence
of the multicast backbone or “MBone”, a virtual Internet backbone for the distribution of
multicast data.

The original Internet Protocol (IP) [Pos81] is a unicast protocol. That is, it supports one-
to-one communication; each packet identifies a single receiver, and IP routes it precisely to
that host. Receivers are named by IP addresses, which identify particular hosts. (Actually,
IP addresses identify particular network connections, so that “multi-homed” machines with
multiple network connections will actually have multiple addresses, but the fiction that IP
addresses name hosts will be convenient here.)

In his thesis work at Stanford, Steve Deering developed mechanisms for IP multicast which
could be layered on top of the existing unicast internet architecture [Dee88]. In his model, a
set of addresses are recognized as naming “multicast groups” rather than single hosts. Using a
low-level protocol called the Internet Group Multicast Protocol (IGMP), hosts can add them-
selves to multicast groups, essentially declaring an interest in the data sent to that group.2 Any
packets sent to a group (by using the group address as the packet destination address) will be
routed to all hosts which have added themselves to the group. The IP multicast implementa-
tion is responsible for finding efficient distribution patterns for multicast data, so that packets
sent to multicast groups will traverse any particular network connection at most once.

Multicast IP is managed by extending the routing mechanism of the traditional IP mech-
anism. IP packets sent to unicast addresses are handled normally, but packets sent to the
multicast addresses will be processed specially. However, existing IP routing software and
hardware were developed without support for Deering’s new multicast model. The solution to
this bootstrap problem was to develop, along with the new multicast routing mechanism, a way
for multicast-aware routers to communicate with each other over traditional unicast channels.
This approach — called IP tunnelling — treats unicast connections (the “tunnels”) as simple
network links between multicast routers. The unicast channels that distribute multicast data
between multicast routers form a virtual internet over the existing Internet infrastructure. This
is the so-called MBone, and it allows experiments with internet-wide multicasting to proceed
before support for multicast protocols has migrated into the standard internet routing hardware
and software.

Deering’s original work was based on a multicast routing mechanism called DVMRP (Dis-
tance Vector Multicast Reverse Path). More recently, new routing mechanisms, such as MO-
SPF (Multicast Open Shortest Path First) [Moy94] and CBT (Core Based Trees) [Bal93] have
emerged as possible internet-wide routing mechanisms. However, the choice of routing pro-
tocol does not affect the basic multicast service model.

Multicast extends the one-to-one model of unicast routing to a many-to-many model. Any
member of a group can send data to the group, and any data sent to the group will be dis-
tributed to all participants. A multicast group can be thought of as a “software bus” allowing
arbitrary communication between all connected components (group members). Multicast IP,
then, provides a natural model for group communication in CSCW applications, and a num-
ber of widely-used multicast applications — the so-called “MBone Tools” — are collaborative
applications.

2 IGMP occupies roughly the same place in the IP multicast stack as ICMP (the Internet Control Message Protocol)
plays for unicast IP.



SOFTWARE INFRASTRUCTURES 201

8.3.1.1 Audio and Video Communication: vat, rat, nv and vic

The best known MBone tools are those which support the most common MBone activity —
videoconferencing. While videoconferencing is rarely classed as a collaborative technology
in itself, the long tradition of research in media spaces and video-mediated interaction (e.g.
[Bly93] and Chapter 3 in this book [Mac99]) mean that it could certainly be regarded as a
CSCW infrastructure component in its own right; but more pertinently here, it illustrates the
use of multicast mechanisms in supporting cooperative work.

Early MBone tools, vat and nv, support audio- and videoconferencing respectively using
multicast protocols. Audio and video sessions are made available as multicast groups, so that
any MBone-connected host can subscribe to the group and “tune in”. Since multicast is a
many-to-many (rather than one-to-many) distribution model, this allows any member of the
group to send multimedia data to all others.

However, the current Internet is a harsh environment for reliably delivering real-time data
such as audio and video. Different participants may be connected by different means, have
different levels of bandwidth available to them, and different latencies; and activity elsewhere
on the network can introduce congestion at different points in the network. Factors like these
make it difficult to provide continuous, timely streams of multimedia data uniformally across
a multicast group. To address these problems, many MBone tools support a model called
lightweight sessions [Flo95].

In TCP, reliable delivery is the responsibility of the sender. However, this approach does
not work in multicast situations for a variety of reasons. One of these is the scaling problem;
in a sender-based approach, the sender would be responsible for the different timeouts and
resends for hundreds or thousands of receivers. Another is the danger of “ACK implosion”,
as all the receivers acknowledge receipt of a packet. Instead, in the lightweight sessions ap-
proach, receivers are made responsible for managing reliable streams. In addition to the data
components, “session messages” are used to maintain a view of session membership, as well
as to provide other checkpointing mechanisms around which the data protocols can operate.
This approach to managing multicast sessions applies not only to the audio and video tools,
but also to artifact-based collaborative tools described in the next section.

In addition to the problem of reliability in multicast streams, there is also a need to en-
sure timely delivery of temporal streams such as audio and video. The network itself provides
no support for timely delivery. Instead, in the lightweight sessions model, incoming data is
buffered in the receiver, which then attempts to deliver it to the user in a timely manner. The
“playback point”, corresponding to buffering delay, is continually adapted to current network
conditions; closer to packet arrival time in the case of good network connectivity and perfor-
mance, and further from packet arrival time if network response is poor (thus allowing more
time for misordered packets to arrive and fill holes in the buffer).

Two newer tools, vic [McC95] and rat [Har95], are improved tools for video and audio
respectively, incorporating lessons gleaned from the widespread deployment and use of tools
like vat and nv over the MBone since 1990. They reflect greater understandings of network-
friendly approaches to compression and encoding, architectures for real-time streams man-
agement on the Internet, and the integration of user interface and network level concerns.

8.3.1.2 Collaboration Tools: wb and nte

The first widespread MBone tools, discussed above, were for audio- and videoconferencing.
More recently, tools directly supporting artifact-based collaborative work have appeared.



202 DOURISH

Wb [Flo95] is a shared whiteboard application from Lawrence Berkeley Labs (where vat
and vic were developed). Wb is commonly used not only for collaborative interaction, but also
as a presentation medium for Internet-broadcast talks. It presents a collaborative whiteboard
with multiple pages. Any multicast group member can create a page, and any can draw on
any page. Wb has been designed with a concern for scalability which is somewhat unusual in
real-time CSCW design, with the result that it can support hundreds of receivers distributed
across the Internet in a single session.

One particularly interesting aspect of wb, which emphasizes the way in which it combines
networking and CSCW technologies, is the mechanism used for late joining (allowing clients
to join a session which is already in progress). In general, wb uses a retransmission request
mechanism for wb clients (or trees of clients) to ask for lost packets to be delivered again.
Wb uses this same retransmission request mechanism to allow clients which join sessions
in progress to catch up with the session state. Essentially, a client which joins a session in
progress can be thought of as a client which has not successfully received any packets in
the session so far. So the standard retransmission request mechanism provides a way for late
arrivals to be brought up-to-date.

Wb provides collaborative access to drawings, and while text can be added to pages, it does
not provide a way to collaboratively edit that text. Nte [Han97] is a collaborative text editor
which uses multicast to support group collaboration over the Internet and MBone. Like wb,
nte employs the techniques of lightweight sessions and Application Layer Framing [Cla90] to
provide a high degree of scalability. Reliability and resilience to transient network failures in
the face of this scalability is achieved through a loose consistency model, and the exploitation
of natural redundancy; nte uses text lines as its basic data unit, but most characters are entered
on the same line as the previously-entered character, so successive data transmissions involve
inherent redundancy, which reduces the need for retransmissions.

8.4 COORDINATION

Along with communication, simply getting the data from one point to another or a set of
others, a critical concern for CSCW technologies is the coordination of distributed action.
While communication and coordination are two sides of the same coin, in this section we
look at approaches which focus more on the management of concerted action, rather than on
data transfer.

8.4.1 Group Communication: ISIS and Horus

Isis is a group communication system developed at Cornell University (and subsequently at
Isis Distributed Systems) [Bir94a]. Its design was originally aimed at the production of reli-
able, fault-tolerant systems. Isis provides a process group abstraction in which inter-process
communication can be directed towards groups rather than individual processes, as in the
internet multicast model described above.

The basis for group communication in Isis is a model called virtual synchrony [Bir87].
Message deliveries to the members of a group are virtually synchronous. In this approach,
message delivery is controlled so that there are no observable differences in the message ar-
rivals at process group members. The motivation behind this model is support for replication-
based fault-tolerance in distributed applications. Critical services are replicated as members



SOFTWARE INFRASTRUCTURES 203

of process groups rather than individual components. The system can continue to function
even though the individual members of a process group may fail; every member of the group
must fail before the group as a whole fails. Virtual synchrony ensures that all members of a
process group see the same pattern of network activity; in turn, this ensures that their state is
accurately replicated, so that they are each maintained in equivalence.

Althoughreplication for fault-tolerance was the original motivation behind the development
of group communication in Isis, it has been used by a number of researchers as the basis for
the development of CSCW systems, including the DistEdit toolkit [Pra99] (see Chapter 5 in
this book), the collaborative virtual reality system DIVE [Car93] and the COLA application
platform [Tre95].

Horus [Ren96] is a more recent group communication system designed by the researchers
who previously developed Isis. The primary research focus behind the development of Horus
is flexibility through micro-protocol configuration. Rather than providing group communica-
tion mechanisms as a monolithic protocol, Horus allows programmers to compose a series
of microprotocols which provide different functional elements, such as total ordering, reli-
able delivery, encryption and fragmentation and reassembly. In this way, the programmer can
configure the protocol stack to the specific needs of any particular application, eliminating po-
tentially costly features not needed in particular circumstances. These issues of configuration
and customization will be addressed in more detail later in this chapter (Section 8.6).

8.4.2 Coordination Languages

One particularly interesting set of coordination technologies which can be exploited in de-
veloping CSCW applications is coordination languages. The earliest explicit coordination
language is Linda [Gel85], originally developed at Yale in the mid-1980s. Linda comprises a
set of programming language extensions which provide coordination facilities for distributed
programming. Gelernter explicitly draws a distinction between the coordination language —
provided by the Linda facilities — and the computation language — a standard programming
language within which the Linda primitives are embedded. Early versions of Linda were em-
bedded in a variety of languages, including C and Lisp.

A number of other languages have emerged for explicitly distributed programming, in
which coordination mechanisms become programming language features, rather than library
extensions for process communication, and so on. Obliq is a simple but powerful language of
this sort, developed by Luca Cardelli at DEC’s System Research Center. Obliq is of partic-
ular interest here, since it has been used as the basis of a graphical builder for collaborative
applications, Visual Obliq [Bha94].

8.4.2.1 Linda

Linda was originally developed for parallel programming applications, although the loose
coupling of components which it provides also makes it suitable for styles of programming
more readily classed as “distributed” than as “parallel”. Linda comprises a set of program-
ming language extensions embedded in a traditional “computational” programming language
in order to provide the coordination facilities needed for distributed programming. Linda’s co-
ordination model is explicitly designed independently of underlying connection models and
topology, making it suitable for a wide range of parallel programming environments, from
distributed processing on a LAN to tightly-coupled shared memory parallel computers.



204 DOURISH

The Linda model augments the base language with access to an associatively-matched
shared tuple space. Any process can place data objects into the tuple space, and retrieve them
by associative pattern-matching. Tuples are added to the space using the out primitive, which
creates a tuple of its arguments and enters it into the space. Tuples can be retrieved using the
in primitive. Arguments to in can be marked as formals — that is, variables which should
be bound by the primitive, rather than used to specify patterns.

For example, consider the situation in which some process or processes have executed the
following statements:

out(5, i, ‘‘foo’’);
out(6, i, ‘‘bar’’);
out(7, ‘‘baz’’);

These place three tuples into the tuple-space. The first two are 3-element tuples in which the
second element has been initialized to the value of the variable i in the running process. Some
other process can now execute the primitive in(5, ?j, ‘‘foo’’). The question mark
before the variable j marks it as a formal. The Linda system will then search the tuple-space
for any 3-tuple with first element 5 and third element “foo”. If there are multiple matches,
then one will be selected at random and the variable j will be bound to its second element. If
there are no matches, then the primitive will block until one becomes available.3

The blocking behavior of in can be used to coordinate the activity of different processes. A
third Linda primitive,in?, is a non-blockingequivalent which returns true if there is currently
some tuple in the tuple space which matches, and false if there is none (rather than blocking
until it becomes available).

The fourth Linda primitive is eval. The argument to eval is a computational which,
when complete, returns a tuple which will be added to the tuple space. The computation is
spawned in parallel, and the original process continues immediately. For instance, in a “task
farm” approach, a single process might spawn a whole set of computations using eval and
then use in to wait for and collect the results.

Unlike the multicast mechanisms described earlier, Linda’s basic (in/out) communication
model transmits data to a single recipient (unless in? is used to read data without removing
it from the tuple space). However, the senders need not name recipients; instead, data are
simply placed in the tuple space and then retrieved by pattern matching. This feature makes
Linda an interesting basis for CSCW implementation, since it abstracts away from details such
as group membership, group naming and connectedness, as well as away from the topology
and communication mechanism which supports the Linda model itself. Like the multicast
model, Linda’s abstract communication model supports a receiver-independent “software bus”
architecture, distributed across multiple machines; but unlike multicast (or at least, current
multicast applications such as wb and nte), it provides a framework for CSCW application
programming which is independent of the underlying network service model.

8.4.2.2 Obliq

Obliq is not a coordination language in the same sense as Linda — that is, it is not a language
dealing simply with coordination issues and which can then be embedded in an existing lan-
guage for computation. Instead, it is a fully-functional object-oriented programming language

3 In statically typed base languages, type information may also be used as input to the tuple matching process.



SOFTWARE INFRASTRUCTURES 205

in its own right. However, it is a language specifically design for distributed object-oriented
computation, and one which has been used as the basis not only for collaborative applications,
but for a graphical builder for collaborative applications. As such, it merits attention here.

Obliq takes the basic object/message model of object-oriented programming and uses this
as a means to distribute communication across a network. Objects in Obliq are implemented
using the “Network Objects” mechanism of Modula-3 [Bir94b], and inter-object communica-
tion across a network becomes a natural expansion of the message-passing model of object-
oriented programming.

Obliq objects have state, and in the presence of network communication this raises a set of
potentially complex issues to do with the replication of objects and the consequent replication
of state. Obliq deals with this through a distributed scoping mechanism. First, it makes objects
static, and local to their own sites. Objects cannot move across network connections. Instead,
object references are made available to be communicated across network links. In combi-
nation with other language facilities, such as aliasing and object cloning, this allows object
migration facilities (for example) to be built up out of the state-safe primitives which Obliq
provides. In general, then, it is not objects which move around the network, but computations.
Computations run across the network either through invocations or through the transmission
of procedures and closures. Since Obliq is lexically scoped, all free variables in closures are
bound to references at their original site (using the network reference model).

8.4.2.3 Obliq as CSCW Infrastructure: Visual Obliq

One reason that it is particularly interesting to look at Obliq from the perspective of CSCW
infrastructure is that it has been used as the basis for a research project on the development
of CSCW technologies. The goal of the Visual Obliq project [Bha94] was to develop a direct
manipulation graphical interface builder for collaborative applications which was no more
complicated to use than familiar equivalent tools for single-user interfaces (such as NeXT’s
“Interface Builder”, or Sun’s “Guide”).

To the application developer, the Visual Obliq interface builder looks like a traditional
direct-manipulation interface builder. It provides a canvas, onto which the user can drag inter-
face components, which can be laid out according to the needs of the particular application.
Dialog boxes provide controls over the attributes of each component, so that aspects of their
appearance or behavior can be changed. Interfaces can be tested from within the builder, or
the builder can be used to generate code which implements the created design.

The interface designer can associate callback code, written in Obliq, corresponding to the
actions of the various components (e.g. pressing a button, or selecting a menu item). How-
ever, in addition to the pure Obliq language (which, of course, already embodies a model
of distributed programming), facilities are also provided which support collaborative activity.
The basic Obliq mechanisms — in particular, distributed lexical scope and network object
references — provide a rich but simple model of distributed processing which can be used to
support data migration, remote object access and distributed state.

8.5 STORAGE

Given the phenomenal growth of the World Wide Web (WWW) over the past few years, the
use of WWW as a basic infrastructure for CSCW development is clearly something to inves-



206 DOURISH

tigate. The combination of platform independence and Internet accessibility makes WWW
technology a clear infrastructure candidate.

8.5.1 CSCW and WWW

A variety of systems have exploited WWW in different ways. At GMD, the BSCW (Basic
Support for Cooperative Work) system [Ben95] uses WWW as a means to provide Internet-
accessible shared workspaces supporting group work. Projects such as Freeflow [Dou96c] use
WWW to provide platform-independent interfaces to network-based collaborative services
such as workflow systems. Mushroom [Kin95] uses WWW to provide a virtual shared space
for group interaction, while systems such as America On-Line’s “Virtual Places” augment
WWW with collaborative access over existing WWW-based document repositories.

The emergence and increasing interest in CSCW systems based on WWW technology
raises a number of questions for the future development of WWW, which is undergoing con-
siderable change. There are three components of WWW technology which are exploited in
the development of CSCW systems.

1. Shared document access. The basic hypertext access model provided by HTTP (the Hy-
perText Transmission Protocol for communication between WWW clients and servers)
provides for access to distributed document repositories across the Internet. Unified access
to a shared document repository can in turn support collaborative activities.

2. User interface management. HTML extends the basic document markup model with sup-
port for user interfaces constructed from basic widget components. It provides a platform-
independent basis for user interface management.

3. Unified access to services. Through the CGI mechanism, which makes external programs
accessible as WWW documents, WWW technology provides distributed access to network
services to participants across the Internet, independent of platform and location.

These mechanisms, independently and collectively, provide significant support for the cre-
ation of collaborative applications and, perhaps even more significantly, for their deployment.

8.5.1.1 BSCW

BSCW (Basic Support for Cooperative Work) is a Web-based collaborative system [Ben95].
BSCW maintains workspaces accessible to multiple participants over the Internet. Documents
can be stored in the workspace, making them available to other participants, and retrieved by
others. The workspace is a coordination point for the multiple users, as well as providing a
simple visualization of the document store.

BSCW provides an access control mechanism to maintain control over who can read and
write documents in the workspace. It also uses a general event mechanism to maintain users’
awareness of activities in the shared space. These mechanisms are all part of the BSCW server.
The Web is used to provide a network-accessible user interface and visualization environment,
as well as access to the document repository (workspace) itself.

8.5.2 SEPIA and CoVer

The World Wide Web is, of course, a distributed hypertext system. However, as suggested
in the previous section, most uses of WWW as CSCW infrastructure have not focused on it



SOFTWARE INFRASTRUCTURES 207

as a distributed hypertext system, but rather have exploited its facilities for shared access to
documents and platform-independent interface functionality. A number of other projects have
used hypertext more generally as a means to support collaborative working.

SEPIA [Str92, Haa92] is a collaborative authoring system developed at GMD which uses
hypertext and hypermedia to support collaboration in various ways. The basic hypertext model
provides a means to structure interactions. One component of SEPIA — the argumentation
space — is a collaborative argumentation system, similar to models such as IBIS. Argumen-
tation structures allow users to post issues (as hypertext nodes) and then annotate them with
argumentation (backing, agreements, comments, disagreements, and supportive argumenta-
tion). The various relationships between pieces of argumentation (such as “supports” or “re-
futes”) can be modeled as different forms of hypertext link. As the collaboration progresses,
the argumentation structure emerges as a hypertext document. In this way, then, the basic
hypertext model directly supports this form of collaboration.

Another component, the rhetorical space, exploits hypertext to represent and manipulate
the structure of the document being produced. Document sections are unpacked as hypertext
nodes, with the rhetorical organization of the document made visible as hypertext relation-
ships. Again, the basic hypertext model provides a decomposition of the task, and so supports
visualization of the collaborative process.

SEPIA uses a collaborative versioning system called CoVer [Haa93] which is also special-
ized to the need of collaboration. Activity over hypertext nodes causes new versions to be
created, and CoVer maintains the relationships between new and old versions. The version
mechanism provides a historical record of the actions of individuals and the evolution of the
document. It also allows concurrent versions to be created in the presence of simultaneous
work by multiple participants, as well as providing for their subsequent integration into a
single, unified document.

8.6 INFRASTRUCTURE AND SPECIALIZATION

In the first part of this chapter, we have seen a number of elements of CSCW infrastructure,
and technologies which can be used to provide infrastructure services to collaborative appli-
cations. In this second part, I want to take a different tack. Here, we will step back to consider
the issue of infrastructure provision more generally.

The focus in this section will be on what it means to provide infrastructure services, and
what is demanded of them by applications and application programmers. I will outline a set
of systematic problems introduced by conventional approaches to system structure, and in-
troduce a solution which has been developed and demonstrated by a prototype CSCW toolkit
called Prospero.

8.6.1 Layered Models

A critical assumption underlying the discussion of CSCW and infrastructure in the discus-
sion above concerns the separation of system components. At some point or other, we have
discussed a large number of components — networking services, distributed object services,
hypertext storage services, CSCW support, user interface and applications. We have relied,
implicitly, upon a standard model of the relationship between these components in which the
operating services assume the “lowest level”, the applications the “highest”, and other compo-



208 DOURISH

nents are ranged in between, organized in a “stack” separated into different “levels” each using
facilities offered by components lower in the stack, and offering services to the components
above.

This approach to structuring large software systerms is familiar, even commonplace — so
much so, in fact, that it can remain implicit in discussions such as those above without caus-
ing confusion. Perhaps one of the best-known layered models of this sort is the seven-layer
ISO Reference Model (ISORM) created as part of the Open Systems Interconnection stan-
dardization effort [Zim80]. The ISORM defines seven different levels of network processing
(Physical, Data, Network, Transport, Session, Presentation, and Application) layered on top
of each other and each depending on the services provided by the layers below. It is perhaps
because this influential model was developed in the context of data networking that, while
the layered approach is very common in all sorts of systems, it is particularly common in
describing networked and other distributed systems, including CSCW systems.

8.6.2 Abstraction and Mapping Dilemmas

The development of models such as the ISORM described above arises directly from the no-
tion of abstraction in software design. Abstraction is a basic tool which we use to manage
system problems — to break them down into components, to compose them into larger sys-
tems, and to separate issues of concern for independent analysis and solution. Abstraction
allows us to separate the details of an implementation from the means by which it will pro-
vide its functionality or set of services to other system components. It allows for a separation
of (and hence an independence between) the implementation of a system and the interface it
provides. Abstraction allows us to tackle large problems, to organize the work of large soft-
ware teams, and to reuse software. Our concern here is on the place of abstraction in CSCW
infrastructure.

A module, or system component, offers an abstraction at its interface, which sets the terms
in which other system components can make use of its services. The responsibilityof a compo-
nent is to allow other components to talk in terms of that abstraction, while the implementation
itself talks in other terms (perhaps those terms offered to it as a client of other system compo-
nents). For example, a window system provides abstractions such as windows and scroll bars,
while internally it deals with screen areas and pixels; a statistical package offers abstractions
such as distributions and means, while internally it deals with data arrays and functions; and
a programming language compiler offers abstractions such as function calls and arrays, while
internally it deals with stack frames and memory blocks. The job of the implementation (or
the job of the implementor) is to map these higher-level structures of the abstraction into the
lower-level structures available at the implementation. Since there are frequently a range of
ways in which some higher-level feature can be implemented, the implementor makes a set of
mapping decisions from higher to lower level. For instance, in implementing a simple records
system, an implementor might choose whether to store records as an array or a linked list.
Decisions like these — normally quite simple — occur throughout an implementation. They
are the work of programming.

However, these decisions — such as between arrays and linked lists — carry with them con-
sequences for the use of the abstraction by clients. Linked lists favor particular sorts of access
patterns at reduced storage cost, while arrays represent a different approach to the same trade-
offs. The programmer is, then, making a set of decisions which are informed by expectations
of likely access patterns; that is, expectations of the need of clients of the abstraction.



SOFTWARE INFRASTRUCTURES 209

The problems begin to emerge when multiple clients (different programs or system mod-
ules) wish to make use of the same abstraction and implementation. This is a common —
indeed, desirable — state of affairs. We would hardly exert much effort developing a window
system unless we expected it to be able to support more than one windowing application.
However, consider the case where the two applications wish to make quite different use of the
abstraction. One wishes fast access to any record, in unitary time; the other favors sequential
access to large, sparse sets of records. This is a mapping dilemma — the implementor must
make one decision or the other, but in doing so, favors one style of client over the other.

So the mapping decisions which the implementor makes can affect the performance and be-
havior of clients. What’s more, these decisions are invisible to the clients. Locked away behind
opaque abstraction barriers, mapping decisions cannot be seen by the client. This combination
of opacity and mapping dilemmas leads to mapping conflicts — occasions on which the client
code encounters problems because it presumed that a mapping decision has been made one
way, while in fact it has been made another.

These problems are endemic to the way abstraction is used in system design, and occur in
all areas of system development. Dealing with them is part of the daily experience of pro-
gramming, and mechanisms to cope with them are familiar to any programmer. For example,
the way in which some systems — such as databases and graphics systems — have to be
written carefully so as not to cause excessive paging behavior in the virtual memory system is
an example of the efforts which programmers have to exert in the face of mapping dilemmas.
However, rather than developing new programming strategies to cope with these situations,
the approach we will explore here takes a deeper look at the source of the problems and
opportunities for avoiding the mapping dilemmas altogether.

8.6.3 Open Implementation and Reflection

The problems with abstraction encountered in the previous section have been the motivation
for recent work in Open Implementations [Kic96]. An open implementation is one which
reveals aspects of its internal design in a principled way, so that these aspects can be examined
and controlled by clients of the abstraction. The clients can adjust their behavior according
to the details of the implementation which lies below the abstraction or, more radically, can
adjust the abstraction, tailoring it to their own particular needs.

One technique which has been particularly useful in open implementation is Computational
Reflection [Smi84]. The reflective approach was originally developed in the area of program-
ming language design, but it has much wider potential applications. The principle behind
computational reflection is that a system can embody a representation of its own behavior
which is “causally connected” to the behavior it describes. This causal connection defines a
two-way relationship between the representation and the behavior. Changes in the system’s
behavior will result in changes in the representation (so that the representation always pro-
vides an accurate view of the system’s behavior at any time); and, at the same time, any
change made to the representation will result in a change to the system’s behavior.

Early work with reflection took place in the domain of programming language design and
implementation. A reflective programming language might give programs access to a run-
time model of the language’s execution model. Programs written in that language have access
to, and control over, an operational model of the language’s semantics, portable across im-
plementations of that language. This can be used to extend language semantics (adding new
language features, such as procedure parameter mechanisms), or to adjust implementation de-



210 DOURISH

cisions to suit the needs of the client (specializing internal language implementation features,
such as data representation procedures). From the problems identified with abstraction in the
previous section, the argument is that this access can be used to see and control the mapping
decisions which have been made, and so avoid mapping dilemmas, where the needs of the
client and the (hidden) details of the implementation are in opposition.

Open implementations provide not only an implementation of a core set of abstractions, but
also an abstract view onto the inherent structure of the implementation. The interface to the
core abstraction is called the “base level interface” (or just the base interface), while access to
the abstract view of the implementation is provided through the “metalevel interface” (or just
meta-interface). The meta-interface provides the means to view and control the way in which
mapping decisions are made, so that applications can customize how the abstractions which
the system offers are provided. The separation of base and meta-interfaces results in a clean
separation between base code (which uses the base interface and implements the system)
and the meta-code (which uses the meta-interface to customize the implementation). This
separation results in more easily maintainable systems.

8.6.3.1 Reflection in CLOS

Let’s consider a more detailed example. One of the best-developed and most widespread re-
flective systems is the Common Lisp Object System (CLOS). CLOS is an object system for
Common Lisp, which is directly incorporated into the language (and which is now included
in the ANSI language specification). CLOS programmers can write object-oriented programs
using familiar object-oriented mechanisms such as classes, objects and methods (as well as a
few less familiar ones, such as multi-methods and method combination). These basic compo-
nents of the programming language constitute CLOS’s base level.

CLOS also offers a metalevel, which allows the internal details of the programming lan-
guage and its implementation to be tailored to the needs of specific applications. The CLOS
implementation offers a view of its own internal mechanisms — for instance, the creation of
new instances, or the search for method code when a generic function is invoked.4 This model
of internal action is structured as a CLOS progam; essentially, CLOS is defined as if it, itself,
were a CLOS program. Representations of the internal structures of CLOS, such as classes
and methods themselves, are presented as CLOS objects. So, any particular class is available
in CLOS as an instance of the predefined class standard-class. Newly defined classes
are, by default, instances of standard-class (that is, standard-class is their meta-
class); and operations over classes (such as finding their superclasses, allocating instances or
adding methods) are represented as methods on standard-class.

This metalevel arrangement allows CLOS programmers to “reach into” the implementation
and change aspects of it to suit their own needs. Since standard-class is a normal CLOS
class, it can be subclassed like any other. New methods defined on the subclass will override
those already defined. Since the methods defined on standard-class are the internal
behaviors of the object system, those internal behaviors will be replaced for any class whose
metaclass is the new programmer-supplied metaclass, rather than standard-class. The
programmer has changed how aspects of the language behave.

This mechanism can be used for a wide range of purposes:

1. The reflective mechanism can be used to make efficiency improvements for particular cases.

4 A generic function occupies the place in CLOS of a virtual function in C++ or a message in Smalltalk.



SOFTWARE INFRASTRUCTURES 211

For instance, a programmer might wish to make changes to the way the language imple-
ments instance allocation and slot lookup, perhaps to support “sparse” objects which define
many slots (instance variables) but only use a small number.

2. The reflective mechanism can be used to effect compatibility changes, such as how the
conflict resolution mechanism works for multiple inheritance. This can be used so that
legacy code from a different object system can still be supported.

3. The reflective mechanism can be used to extend the base language’s functionality. For
instance, we might wish to provide a constraint mechanism which looks to the programmer
like normal slot lookup.

The reflective approach allows these sorts of modifications to be done within the scope of
the language, rather than being performed on a particular implementation, which would be
inherently non-portable.

It is important to note that what CLOS offers at the metalevel is a representation of its in-
ternals, in terms of a CLOS program. In other words, there is a level of interpretation between
the representation at the metalevel and the details of the actual implementation which lie be-
low. After all, the structure of the CLOS metalevel is part of the definition of CLOS, and must
be portable across different implementations. The details and performance optimizations of
specific implementations, such as the uses of partial evaluation in the PCL implementation
[Kic90], play no part in the metalevel representation. So while aspects of the implementation
— or views of specific mapping decisions — are offered at the metalevel, this is at least one
step removed from the details of the implementation code itself. The essence of open imple-
mentation design is to give principled access to aspects of the implementation; access that is
organized around the metalevel designer’s expectations of future needs.

Open implementation techniques developed largely in the domain of programming lan-
guages, although recently they have been applied to other systems, including window systems
[Rao91], distributed systems [Oka94] and databases [Bar96]. My own recent work has fo-
cused on the use of these same principles and techniques in the CSCW context, leading to the
development of a reflective CSCW toolkit called Prospero.

8.6.4 Prospero: Open Implementation and CSCW

The problems described above, problems of opaque interfaces, abstractions and mapping con-
flicts, are endemic to the way we use abstraction in systems design. As a result, they occur in
all the various domains to which system design principles are applied. In CSCW, we can see
a number of manifestations.

For instance, consider the problem of data replication. Toolkits for building collaborative
applications will often provide a “shared data object” abstraction, which allows different
clients to process and manipulate data, with the effects being propagated across a network
to other interfaces. This is clearly an extremely valuable abstraction for collaborative applica-
tions, and one which we would certainly wish to exploit and build upon. However, we have to
consider what implementation decisions are being masked by the shared data abstraction.

One set of decisions focus on data replication. Is the user data object to be replicated, so
that copies of it exist at each likely access site, or is there one central copy on which actions
are performed? If there is a single copy, where is it located? If there are multiple copies, how
are conflicts managed? The goal of the abstraction is to hide exactly these sorts of decisions
— ones which are unnecessary for the maintenance of the abstraction itself. However, these
decisions are critical when it comes to using the abstraction. Data replication and conflict



212 DOURISH

management decisions have significant implications for the ways in which the abstraction can
be used to support collaboration. For instance, if there is a single copy of the data item, then
the access latency for widely distributed users may increase beyond the level necessary for fast
interactive response. On the other hand, if there are multiple copies, then conflict management
and resolution strategies may begin to have effects which are reflected at the interface. Users
may have to obtain locks on data, for instance, and there may be pauses while these are
obtained; or actions may be subsequently “undone” in order to maintain overall consistency.
(These issues are discussed in detail by Greenberg and Marwood [Gre94] and in Chapter 5 of
this book [Pra99].)

Prospero is a prototype toolkit for collaborative applications which uses open implemen-
tation to give the application developer control over how the toolkit will provide its support
[Dou95a, Dou96a]. In particular, Prospero provides mechanisms for data distributionand con-
currency control which not only support particular styles of CSCW application, but also al-
lows application programmers to reach into the toolkit and customize those mechanisms to
the needs of specific applications.

8.6.4.1 Data Distribution and Divergence

Traditional approaches to data distribution in CSCW are concerned with issues such as cen-
tralization versus replication, or supporting synchronous versus asynchronous working. How-
ever, as discussed earlier, distinctions like these begin to affect the ways in which applications
can be built on top of toolkits, and in which those applications can be used in collaborative
working.

The standard approach is to manage access over potentially distributed data by mapping the
activities of multiple users onto a single stream of activity. Techniques such as dividing access
across asynchronous sessions, establishing total orderings over simultaneous distributed activ-
ities, or serializing access at a single central data store, are all ways of mapping the activities
of multiple users into a single, unified stream.

The establishment of a single stream out of multiple, potentially simultaneous sources of
activity is the focus for a number of mapping decisions critical of significance to collaborative
activity. The distribution mechanism which Prospero offers is explicitly based on multiple
streams of activity, around which it manages distributed data and distributed action in terms
of divergence and synchronization [Dou95b].

Actions which arise in the course of collaboration — creating objects, editing them, chang-
ing attributes, or whatever — are each associated with some particular stream. Streams nor-
mally correspond to different individuals in each collaborative session, although this is not
a requirement of the model. Streams might represent session recorders, for instance, or be
proxies for remote groups, etc. When an action is added to a stream, the effect is to cause a
divergence between that stream’s view of the data store and the views of other streams, since
those streams have not yet seen the action take place. Periodically, streams are synchronized
to re-establish a shared view of the data store.

The model is defined independently of any particular period of synchronization, so that the
period can be varied in different applications. With a small period of synchronization, streams
will be synchronized frequently, after only small changes have been made. For instance, when
the period is fractions of a second, then the effect will be similar to that of traditional “syn-
chronous” applications, in which the activities of one user are reflected quickly in the views
or interfaces of others. However, when the period of synchronization is large, perhaps of the



SOFTWARE INFRASTRUCTURES 213

order of hours or days, then the effect is similar to that of traditional “asynchronous” applica-
tions, in which individuals work separately, coordinating their work and exchanging changes
less frequently.

Divergence and synchronization are made explicit in this model so as to open them up
for examination and change within the toolkit. Application programmers can gain control
over the means for adding actions to streams, and for establishing divergence. Similarly, the
programmer can gain control over the conditions under which synchronization takes place, as
well as the extent of synchronization required.

8.6.4.2 Consistency Guarantees

One traditional way of managing exclusion and hence maintaining data consistency in the face
of parallel user activity is the use of locks. Prospero extends the basic locking approach with
a new abstraction called consistency guarantees [Dou96b]. Consistency guarantees provide a
more flexible approach to managing data consistency, as well as supporting customization by
application programmers to define new models of consistency management specialized to the
semantics of individual applications.

The basis of the traditional locking mechanism is that the server (or lock-granting authority)
gives a guarantee of data consistency (the lock) in exchange for a characterization that the
client provides of upcoming activity (commonly, a description of the area over which the lock
should operate). The lock can be regarded as a guarantee of future consistency for two reasons:
first, because inconsistency could arise due to simultaneous activity if the locking mechanism
was not used; and second, because the server will grant the lock to only one client, ensuring
serial access.

The consistency guarantees mechanism which Prospero provides generalizes the locking
mechanism in two ways. First, clients can provide richer descriptions of upcoming activity.
These are called promises, specified in terms of the semantics of operations. Clients create
promises from sets of semantic properties (idempotency, monotonicity, destructiveness, etc).
These promises contain more useful information than the traditional read/write distinctions,
which allow the server to make more informed decisions.

The second generalization is in the form of the locks. Rather than returning normal locks,
Prospero servers return guarantees of achievable consistency when synchronization occurs.
(Although this discussion is framed in terms of client/server for familiarity, Prospero uses a
peer-to-peer model.)

A traditional lock guarantees absolute consistency. Prospero consistency guarantees, on the
other hand, may offer more limited forms of consistency (such as “syntactic consistency”, in
which multiple possible values for data items are collected together so that all participants
share a common view, although more work must be done later to resolve the situation).

Although the consistency guarantees approach loosens various restrictions of traditional
locking, there is still a significant problem with the promise/guarantee model. Because
promises must be given before action, there is a need to predict what user action will take
place, and then to restrict action to precisely what was promised. Especially in asynchronous
(or, rather, infrequently synchronized) working, this restriction can prove a serious limitation
to the styles of work which users can perform. To avoid this, Prospero allows clients to break
their promises. If a user “breaks a promise” — that is, engages in activity other than that which
was promised — then the guarantee no longer holds, although the system may still attempt to
incorporate the changes made. Particular client applications may or may not offer this facility



214 DOURISH

to their users; they may insist upon keeping to plan, or they may choose to warn users when
a promise may be broken. The framework as a whole, however, is designed to deal with these
sorts of situations.

8.6.4.3 Configuring Infrastructure in Prospero

Like other open implementations, there are two aspects to Prospero. The first is the default or
base level behavior — the basic mechanisms which programmers can use to develop appli-
cations. Programmers can use Prospero to develop CSCW applications in which user actions
are associated with streams of activity which are periodically synchronized with each other.
The default stream type, bounded-stream, allows a certain number of actions to be ac-
cumulated before it automatically forces synchronization with peer streams in the system.
Concurrency control is optimistic by default.

The second aspect is the metalevel control which the open implementation provides. In
Prospero, the relationships between actions, streams, divergence and synchronization mech-
anisms is made available through the provision of the system’s meta-objects and the generic
functions which relate them within a programming structure. So programmers can reach in
and modify the ways in which divergence is observed, or the triggers to synchronization, or
the nature of synchronization which will be performed. Similarly, the consistency guaran-
tees mechanism provides a programmatic way for application developers to express semantic
features of their programs, so that these can be incorporated into the consistency manage-
ment mechanism, effectively specializing internal toolkit behaviors to the characteristics and
requirements of particular applications.

Just as in the CLOS example provided earlier, this metalevel programming takes place
largely through the subclassing and specialization of the metaobject classes which the toolkit
reveals. This allows programmers to precisely direct their adjustments, in two ways. First,
it reduces the amount of metalevel programming they need to perform; most behaviors can
simply be inherited, rather than rewritten, and only the new behaviors must be described.
Second, it narrows their focus to the particular areas of the system requiring modification;
the generic dispatch mechanism of object-oriented programming allows multiple behaviors to
exist side-by-side.

These mechanisms have supported the development of widely different applications in
Prospero; synchronous and asynchronous, graphical and data-based, with centralized and
replicated data, and loose and strict consistency policies. These applications demonstrate
the way in which Prospero’s open implementation design allows application programmers
to avoid the mapping conflicts which emerge in traditional designs, and take control of the
infrastructure which supports them.

8.6.4.4 Example: The Bibliographic Database

Let’s consider a brief example to illustrate how Prospero is used to create collaborative ap-
plications and, at the same time, illustrate the new role of infrastructure under a reflective
approach. Longer and more detailed examples are provided in [Dou96a].

Consider creating a shared application for managing bibliographical entries. You might
read the store of references to browse them, look up specific entries, or to generate a set of
formatted references from the citations in a document. You might update the store to correct an
error in an existing entry or to add new publications as they become available. The application



SOFTWARE INFRASTRUCTURES 215

is shared amongst a number of users, perhaps the members of a research group who share a
set of common interests (and, therefore, are likely to refer to the same set of publications).

The first step is to organize the actions around streams. Updates, changes, lookups and re-
trievals are separate operations which are captured in streams of activity associated with each
user. The critical issue is the set of circumstances under which streams will be synchronized.
Prospero offers a number of pre-defined streams with different synchronization characteris-
tics; bounded-stream is a stream which will synchronize with its peers whenever a certain
number of operations have been performed on it, or an explicit-synch-stream will
accumulate actions until one particular synchronization action occurs. Alternatively, at the
metalevel, a new stream class can be constructed with specialized behaviors for any given
setting. However, in this case, let’s take explicit-synch-stream.

To encode the application’s behavior in Prospero, the programmer creates new application
action classes which corresspond to the different sorts of activities in which clients can engage
(lookup, new-record, change-record). Objects corressponding to each application
action are generated as the actions are performed, and are added to the stream. Prospero
handles the synchronization between streams.

Prospero’s behavior can be further specialized by using semantic properties of the appli-
cation actions to increase parallelism. As described earlier, the idea here is that we can use
the detailed semantics of the application domain as the basis for consistency management,
rather than simply using the generic “read” and “write” of the database infrastructure. In this
example, the major opportunity is in the two conditions in which data might be written —
correcting a record or adding a new record. Three observations are critical:

1. Updates are far more common than corrections.
2. Updates do not conflict with lookups.
3. Two parallel updates are unlikely to conflict. Even if they are for the same publication, then

they should contain the same information, and so either one can be executed and the other
discarded.

These observations allow us to encode application semantics in the consistency management
mechanism. First, we adjust the definitions of the application actions defined above, so that
they are now defined in terms of a set of application semantic properties — in this case,
whether or not they introduce potentially conflicting changes into the data store. This is only
true of corrections, so only the correct-record action class will inherit from the property
class changes-data.

Now that actions are specified in terms of semantic properties, the consistency management
mechanism is updated in terms of these properties. The programmer can choose how to make
use of the properties and what sorts of consistency guarantees to use. This is specified by
providing methods for the compatibility testing methods which compare specific operations
and return an indication of compatibility. In some cases, this might involve consulting recent
execution history, or combining a set of compatibility predicates over a number of operations.
In this case, however, we can solve the problem with only two operations — one method
which says that any two generic application actions are compatible, and a second overrid-
ing method which says that no action is compatible with one which inherits the property
changes-data.

As with the streams mechanism, once the action of the application has been specified in
these terms, the Prospero mechanisms will handle synchronization and consistency manage-
ment independently. However, in much the same way as these mechanisms have provided the



216 DOURISH

means for the programmer to specialize the toolkit’s mechanisms for particular settings, so
these automatic mechanisms may themselves be further appropriated and specialized. This
example, however, does not require further specialization.

8.6.5 Reconsidering Infrastructure

The reflective approach opens up a new view of infrastructure. Instead of having to map the
functionality required of an application into the generic facilities which the infrastructure pro-
vides, this approach instead allows programmers to specialize the infrastructure components
so that they match the needs of particular settings.

This radically changes the nature of infrastructure, which takes a much more active role
in the applications we might develop. Further, the relationship between application and in-
frastructure is changed, since the infrastructure no longer stands alone, unchanging, against
the backdrop of different uses. Instead, it provides a framework within which each applica-
tion can gain access to resources, but deploy them differently, reflecting the different needs,
requirements and expectations for different applications or domains.

Prospero is a demonstration and exploration of these ideas as applied to CSCW. As was
explored in the first half of this chapter, collaborative applications and settings can require
significant flexibility in the underlying infrastructure. Prospero shows how the reflective/open
implementation approach can recast this relationship and so provide a means to creating much
more flexible levels of infrastructure.

8.7 SUMMARY

Since the design and implementation of CSCW applications draws on a number of areas of
system design, such as data communication, distributed systems and user interfaces, there are
a range of technologies and techniques which can be employed as infrastructure for CSCW
systems design. This chapter has provided an overview of some of these areas, as well as dis-
cussing particular components which have been, or can be, used as infrastructure supporting
CSCW systems development.

However, there are some important considerations to be borne in mind when evaluating
infrastructures for CSCW systems. Experience has demonstrated that the needs and goals of
CSCW design are often at odds with the design goals of these infrastructural components,
and in particular, the way in which infrastructure services are implemented and combined can
systematically introduce problems for the design and use of CSCW systems. For example,
the management of distributed or replicated data, and subsequently the mechanisms which
are used to maintain consistency in the face of potentially simultaneous action by multiple
individuals, can interfere with patterns of collaborative activity. To support the rich forms of
interaction which we observe in studies of cooperative work, applications need to be able to
configure the way in which infrastructure services are offered to them.

In the final section of this chapter, I outlined an approach to this problem. The solution uses
an architectural technique called Open Implementation, which provides clients of an abstrac-
tion with a principled form of access to a model of internal operations. The clients can use
this mechanism to examine the way in which internal mapping decisions have been made, and
to adjust those to suit particular application requirements. This approach has been exploited



SOFTWARE INFRASTRUCTURES 217

in Prospero, a prototype toolkit for CSCW applications, based on the open implementation
approach.

CSCW is a young and rapidly expanding field; and at the same time, many of the infras-
tructures on which we base our technologies are changing even faster. As we learn more
about how these infrastructures can be deployed, and more about how CSCW applications are
designed and used, then we can expect to see not only new opportunities for infrastructure
support, but also new models of the integration and mutual adaptation of infrastructure and
CSCW applications programming.

ACKNOWLEDGEMENTS

Jim Holmes provided useful feedback on an earlier draft of this chapter, and Jon Crowcroft and
Mark Handley useful pointers for the section on internet multicast. Prospero was developed
while I was working at the Rank Xerox Research Centre, Cambridge Laboratory (formerly
EuroPARC) and at University College, London.

REFERENCES

[Bal93] Ballardie, A., Francis, P. and Crowcroft, J., Core Based Trees (CBT): A scalable inter-domain
multicast routing architecture. Proc. ACM Symposium on Computer Communications SIG-
COMM’93, San Francisco, California. ACM, New York, 1993.

[Bar96] Barga, R. and Pu, C., Reflection on a legacy transaction processing monitor. Proc. Reflec-
tion’96, San Francisco, California, 1996.

[Bar91] Barghouti, N. and Kaiser, G., Concurrency control in advanced database applications. ACM
Computing Surveys, 23(3):269–317, 1991.

[Ben95] Bentley, R., Horstman, T., Sikkel, K. and Trevor, J., Supporting collaborative information
sharing with the World-Wide Web: The BSCW Shared Workspace System. Proc. Fourth
International World Wide Web Conference, Boston, Mass. O’Reilly and Associates, Cam-
bridge, Mass., 1995.

[Bha94] Bharat, K. and Brown, M., Building distributed, multi-user applications by direct manipu-
lation. Proc. ACM Symposium on User Interface Software and Technology UIST’94. ACM,
New York, 1994.

[Bir87] Birman, K. and Joseph, T., Exploiting Virtual Synchrony in Distributed Systems. ACM
Operating Systems Review, 22(1):123–138, 1987.

[Bir94a] Birman, K. and van Raneese, R., Reliable Distributed Computing with the Isis Toolkit. IEEE
Computer Society Press, Los Alamitos, California, 1994.

[Bir94b] Birrell, A., Nelson, G., Owicki, S. and Wobber, E., Network Objects. Systems Research
Center Research Report 115, Digital Equipment Corporation, Palo Alto, California, 1994.

[Bly93] Bly, S., Harrison, S. and Irwin, S., Media spaces: Bringing people together in a video, audio
and computing environment. Communications of the ACM, 36(1), 1993.

[Car95] Cardelli, L., A language with distributed scope. Proc. ACM Symposium on Principles of
Programming Languages. ACM, New York, 1995.

[Car93] Carlsson, C. and Hagsand, O., DIVE: A platform for multi-user virtual environments. Com-
puter Graphics, 17(6):663–669, 1993.

[Cla90] Clark, D. and Tennenhouse, D., Architectural considerations for a new generation of proto-
cols. ACM Communications Review, 20(4):200–208, 1990.

[Dav73] Davies, C., Recovery semantics for a DB/DC system. Proc. ACM National Conference.
ACM, New York, 1973.

[Dee88] Deering, S., Multicast routing in internetworks and extended LANs. Proc. ACM Symposium
on Computer Networks SIGCOMM’88. ACM, New York, 1988.



218 DOURISH

[Dou92] Dourish, P. and Bellotti, V., Awareness and coordination in shared workspaces. Proc. ACM
Conference on Computer-Supported Cooperative Work CSCW’92, Toronto, Canada. ACM,
New York, 1992.

[Dou95a] Dourish, P., Developing a reflective model of collaborative systems. ACM Transactions on
Computer–Human Interaction, 2(1):40–65, 1995.

[Dou95b] Dourish, P., The parting of the ways: Divergence, data management and collaborative work.
Proc. European Conference on Computer-Supported Cooperative Work ECSCW’95, Stock-
holm, Sweden. Kluwer, Dordrecht, 1995.

[Dou96a] Dourish, P., Open Implementation and Flexibility in CSCW Toolkits. Ph.D. dissertation,
Department of Computer Science, University College, London, UK, 1996.

[Dou96b] Dourish, P., Consistency guarantees: Exploiting application semantics for consistency man-
agement in CSCW toolkits. Proc. ACM Conference on Computer-Supported Cooperative
Work CSCW’96, Cambridge, Mass. ACM, New York, 1996.

[Dou96c] Dourish, P., Holmes, J., Maclean, A., Marqvardsen, P. and Zbyslaw, A., Freeflow: Me-
diating between representation and action in workflow systems. Proc. ACM Conference
on Computer-Supported Cooperative Work CSCW’96, Cambridge, Mass. ACM, New York,
1996.

[Far89] Farran, A. and Ozsu, M.T., Using semantic knowledge of transactions to increase concur-
rency. ACM Transactions on Database Systems, 14(4):503–525, 1989.

[Flo95] Floyd, S., Jacobson, V., McCanne, S., Lui, C-H. and Zhang, L., A reliable multicast frame-
work for light-weight sessions and application level framing. Proc. ACM Symposium on
Computer Communications SIGCOMM’95, Boston, Mass. ACM, New York, 1995.

[Gar89] Garfinkel, D., Gust, P., Lemon, M. and Lowder, S., The SharedX Multi-User Interface User’s
Guide, Version 2.0. Software Technology Lab Report STL-TM-89-07, Hewlett-Packard Lab-
oratories, Palo Alto, California, 1989.

[Gel85] Gelernter, D., Generative communication in Linda. ACM Transactions on Programming
Languages and Systems, 7(1), 1985.

[Gra75] Gray, J., Lorie, R. and Putzolu, G., Granularity of Locks and Degrees of Consistency in a
Shared Database. Research Report RJ1665, IBM, San Jose, California, 1975.

[Gre94] Greenberg, S. and Marwood, D., Real-time groupware as a distributed system: Concurrency
control and its effect on the interface. Proc. ACM Confeerence on Computer-Supported
Cooperative Work CSCW’94, Chapel Hill, North Carolina. ACM, New York, 1994.

[Gre99] Greenberg, S. and Roseman, M., Groupware toolkits for synchronous work. In Beaudouin-
Lafon, M. (Ed.), Computer Supported Cooperative Work, Trends in Software Series 7:135–
168. John Wiley & Sons, Chichester, 1999.

[Haa93] Haake, A. and Haake, J., Take CoVer: exploiting version support in cooperative systems.
Proc. InterCHI’93, Amsterdam, Netherlands. ACM, New York, 1993.

[Haa92] Haake, J. and Wilson, B., Supporting collaborative writing of hyperdocuments in SEPIA.
Proc. ACM Conference on Computer-Supported Cooperative Work CSCW’92, Toronto,
Canada. ACM, New York, 1992.

[Han97] Handley, M. and Crowcroft, J., Network Text Editor (NTE): A scalable shared text editor for
the MBone. Proc. ACM Symposium on Computer Communications SIGCOMM’97, Cannes,
France. ACM, New York, 1997.

[Har95] Hardman, V., Sasse, A., Handley, M. and Watson, A., Reliable audio for use over the internet.
Proc. INET’95, Hawaii. 1995.

[Hea92] Heath, C. and Luff, P., Collaboration and control: Crisis management and multimedia tech-
nology in london underground control rooms. Computer Supported Cooperative Work, 1(1),
69–94, 1992.

[Her90] Herlihy, M., Apologizing versus asking permission: Optimistic concurrency control for ab-
stract data types. ACM Transactions on Database Systems, 15(1):96–124, 1990.

[Kic90] Kiczales, G. and Rodriguez, L., Efficient method dispatch in PCL. ACM Symposium on Lisp
and Functional Programming LFP’90, Nice, France. ACM, New York, 1990.

[Kic96] Kiczales, G., Beyond the black box: Open implementation. IEEE Software, 8–11, January
1996.

[Kin95] Kindberg, T., Mushroom: a framework for collaboration and interaction across the Internet.
Proc. ERCIM Workshop on CSCW and the Web, Sankt Augustin, Germany, 1995.



SOFTWARE INFRASTRUCTURES 219

[Mac99] Mackay, W.E., Media spaces: Environments for informal multimedia interaction In
Beaudouin-Lafon, M. (Ed.), Computer Supported Cooperative Work, Trends in Software
Series 7:55–82. John Wiley & Sons, Chichester, 1999.

[McC95] McCanne, S. and Jacobson, V., Vic: A flexible framework for packet video. Proc. ACM
Multimedia’95, San Francisco, California. ACM, New York, 1995.

[Moy94] Moy, J., Multicast Extensions to OSPF. RFC 1584, SRI Network Information Center, Menlo
Park, California, 1994.

[Oka94] Okamura, H. and Ishikawa, Y., Object location control using meta-level programming.
Proc. European Conference on Object-Oriented Programming ECOOP’94, Bologna, Italy.
Springer-Verlag, Heidelberg, 1994.

[Pos81] Postel, J., Internet Protocol. RFC 791, SRI Network Information Center, Menlo Park, Cali-
fornia, 1981.

[Pra99] Prakash, A., Group editors. In Beaudouin-Lafon, M. (Ed.), Computer Supported Cooperative
Work, Trends in Software Series 7:103–133. John Wiley & Sons, Chichester, 1999.

[Rao91] Rao, R., Implementational reflection in Silica. Proc. European Conference on Object-
Oriented Programming ECOOP’91, Geneva, Switzerland. Springer-Verlag, Heidelberg,
1991.

[Ren96] van Reneese, R., Birman, K. and Maffeis, S., Horus: A flexible group communication system.
Communications of the ACM, 39(4):76–83, 1996.

[Smi84] Smith, B.C., Reflection and semantics in Lisp. Proc. ACM Symposium on Principles of
Programming Languages, Salt Lake City, Utah. ACM, New York, 1984.

[Str92] Streitz, N., Haake, J., Hanneman, J., Lemke, A., Shutt, W. and Thuring, M., SEPIA: A co-
operative hypermedia authoring environment. Proc. ACM Conference on Hypertext, Milano,
Italy. ACM, New York, 1992.

[Tre95] Trevor, J., Rodden, T. and Blair, G., COLA: A lightweight platform for CSCW. Computer-
Supported Cooperative Work, 3:197–224, 1995.

[Zim80] Zimmerman, H., OSI Reference Model — The ISO model of architecture for open systems
interconnection. IEEE Transactions on Communications 28(4):425–432, 1980.




