
9

Expanding the Role of Formal
Methods in CSCW

CHRIS JOHNSON

University of Glasgow

ABSTRACT

Before we can build CSCW systems it is important to have a clear idea of the requirements
that they must satisfy. This chapter argues that formal methods can be used to help repre-
sent and reason about these requirements. Unfortunately, the formal notations that support
the development of single-user interfaces cannot easily be used to support the design of
multi-user applications. Traditional approaches abstract away from the temporal proper-
ties that characterize interaction with distributed systems. They often neglect the input and
output details that have a profound impact upon multi-user interfaces. The following pages
argue that these details can be integrated into formal specifications. For the first time, it
is shown how mathematical specification techniques can be enhanced to capture physical
properties of working environments. This provides a link between the physiological studies
of ergonomics and the interface design techniques of HCI. Such links have been completely
neglected within previous work on design notations. In all of this, the intention is to fight
against a narrow, myopic, view of formal methods. These notations need not simply be
used to focus in upon a relatively small number of software engineering principles. The
aim is to show that formal methods can be used creatively to solve a vast range of design
problems within complex multi-user interfaces.

9.1 INTRODUCTION

The term “formal method” is used to refer to a variety of notations and development tech-
niques that support the rigorous development of complex systems. By the term rigorous, we
mean that they have a mathematical basis which can be used to determine whether a par-
ticular description of a complex system is in some sense correct. At first sight, the use of

Computer Supported Cooperative Work, Edited by Beaudouin-Lafon
c 1999 John Wiley & Sons Ltd

222 JOHNSON

Formal Specifications

Implementations

Toolkits Architectures

establish
requirements

establish
requirements

define
structures for
eventual
implementation

support
prototyping
and iterative
development

embody

support

Figure 9.1 Formal methods and the development of CSCW systems

abstract mathematics may seem to have little connection with the previous chapters in this
collection. These have focused upon particular CSCW interfaces, development architectures
or multi-user toolkits. In contrast, this chapter argues that formal methods offer considerable
benefits for the development of CSCW systems. Figure 9.1 illustrates how they might guide
the different approaches described in the previous chapters of this book. Before designers
can select appropriate architectures, they must have a clear idea of the requirements that their
system must satisfy. Before development teams can identify potential toolkits, they must first
establish the constraints that their interface must satisfy.

9.1.1 Why Use Formal Methods In CSCW Systems?

There are a number of additional, commercial reasons why formal methods are being recruited
to support the design of CSCW systems. Mathematical notations are increasingly being used
in the development of large-scale applications. Craigen, Gerhart and Ralston’s survey for the
US Department of Commerce cites projects ranging from nuclear reactor control systems to
French rapid transport applications [Cra93]. Formal methods have also been used to support
the development of interactive systems [Joh96b]. A number of authors have extended these
techniques to support the design of multi-user interfaces. For instance, Palanque and Bastide
have developed a graphical notation to represent simultaneous transactions by multiple users
on shared interaction objects [Pal95]. The applications, cited above, all focus upon CSCW
interfaces for office-based applications. Safety-critical systems, perhaps, represent the greatest
potential for the application of formal methods. Johnson, McCarthy and Wright have exploited
a range of graphical formalisms to identify human factors problems amongst the aircrews in
several major accidents [Joh94a]. A common motivation behind all of this work has been a
concern to avoid some of the weaknesses that natural language presents for the development
of multi-user systems [Joh95a].

9.1.2 The Limitations of Natural Language

What is a formal method? In one sense, a formal method is any notation that has a clear syntax
and a well-understood semantics. By syntax, we mean that there are rules for building up

FORMAL METHODS IN CSCW 223

sentences out of simpler components. For instance, the sentence “all users can quit the system
at any time” follows the established grammatical rules for the English language. “ Time users
all any system the quit can at the” breaks the rules. The term semantics is used to refer to
the meaning of a sentence. We can all hopefully agree upon the intended meaning of the first
example. If we break the syntactic rules, as in the second example, then it is more difficult to
extract the meaning of a sentence.

According to our definition, natural language is a formal method. The previous paragraph
has shown that it has both a syntax and semantics. Without these underlying properties it
could not be used to support the development of multi-user systems. Designers and engineers
would not be able to interpret phrases such as “all users can quit the system at any time”.
Unfortunately, there are a number of problems. The intended meaning of an English sentence
is not always clear. For instance, the previous example does not describe the input devices
and command sequences that each user might exploit to quit the system. Such ambiguity may
cause irritation and inconvenience in the design of collaborative working environments. In
safety-critical applications, the consequences can be much more profound. For example, the
following recommendation was published by the United Kingdom’s Department of Energy in
the aftermath of the Piper Alpha accident:

“ There should be a system of emergency exercises which provides Offshore Installations
Managers with practice in decision-making in emergency situations, including decisions on
evacuation. All of the Offshore Installations Managers and their deputies should participate
regularly in such exercises” [Cul90, page 399, para 20.61].

These natural language requirements cannot easily be used to support the detailed develop-
ment of CSCW systems. They do not provide enough information about the “emergency ex-
ercises” for designers to review existing practice. It is ambiguous in the sense that any two
individuals might disagree about what is meant by an “emergency situation”. These problems
provide real barriers to the use of natural language in the team-based development of CSCW
systems.

9.1.3 The State of the Art

Formal notations help to reduce the ambiguity and imprecision that characterize natural lan-
guage. This is, typically, done by imposing constraints upon the sentences that are valid within
a language. For example, syntactic rules can be used to define a structure or format for natural
language clauses. Within this general approach, there are a range of different ways in which
formal notations can support the development of CSCW systems.

9.1.3.1 Formal Methods for Principled Design

An important benefit of formal methods is that they enable designers to express important
properties of CSCW systems at an extremely high level of abstraction. By stripping out low-
level implementation details, it is possible to focus in upon common properties that affect
a large number of multi-user systems. For example, Dix, Rodden and Somerville use the
following formulae to specify the notion of fidelity in a multi-user version control system
[Dix97]. By fidelity, they intend that the version history for any object should accurately
reflect the transactions that have been performed upon it. In the following, @(context) is an
actual context corresponding to a context label in a version manager:

224 JOHNSON

1 54

9

7

3

6

8

2
A: Request B: Promise

B:Reject
A: Withdraw

A: Reject
B: Withdraw

A: Counter

A: Accept
B: Counter

A: Withdraw

B: Renege

B: Assert

A: Declare
A: Decline

Figure 9.2 Conversation for action (from Winograd and Flores)

8context 2 Contexts; context0 2 dom world context(entity0) :

world context(entity0)(context0) = world@(context0)(entity) (9.1)

The important point here is that mathematical abstractions, such as the set ofContexts, can
be used to represent the concept of fidelity without referring to the particular details that must
be considered during a full implementation. The use of mathematics encourages designers to
carefully formulate an explicit expression or representation for such properties. This avoids
the misunderstandings that can arise when such high-level goals are left as implicit objectives
for design teams.

9.1.3.2 Formal Methods for Interaction Architectures

The previous section briefly argued that formal notations can be used to represent high-level
design objectives. They can, however, also be used to direct the implementation of particular
systems. Winograd and Flores exploited this approach when using state transition diagrams to
develop a high-level architecture for their Coordinator application [Win87]. Figure 9.2 shows
how the states, denoted by circles, are used to represent critical points in a “conversation for
action”. The transitions between states, denoted by arcs, are used to represent communication
between the participants. The key point here is that the syntactic structures of the notation
help designers to strip aside the mass of irrelevant detail that can obscure critical properties of
CSCW systems. By focusing on states and the transitions between them, the previous diagram
clearly illustrates the various opportunities that face each participant at each stage of an in-
teraction. Figure 9.2 also illustrates some of the weaknesses of this approach. State transition
diagrams provide a very sequential view of interaction with CSCW systems. It can also be
difficult to capture some of the detailed cognitive and system factors that affect interaction
with multi-user applications.

FORMAL METHODS IN CSCW 225

User 1 Computer/communications
 infrastructure

user
(articulatory)

actions
internal
actions

perceivable
computer actions

internal
actions

locate button select button button hilited on 1

user 2's machine
shows request
pending

user 1's request
sent

"re-connecting"
message on 1

location

Sector A

Sector B

dispatch
transfer request
from 2

User 2

location

observe
request
pending
symbol

select view
request
menu item

Sector C

internal
actions

user
(articulatory)

actions

Figure 9.3 UAN showing interaction over a mobile network

9.1.3.3 Formal Methods for Task Analysis in Traces of Interaction

The semi-formal User Action Notation (UAN) avoids some of the limitations of state tran-
sition diagrams [Hix93]. UAN organizes the actions comprising a task into categories based
on the agent that executes them and their function in the task. These categories define the
syntax of the notation and are represented as the columns of a tabular format. For example,
Figure 9.3 shows how an extended form of UAN can be used to analyze mobile communi-
cation between concurrent users of a multiple computer system [Joh97]. Initially, user 1 is
in cell A and requests information from user 2. The communications infrastructure forwards
the request to user 2 who views it before dispatch. In the meantime, user 1 has moved into
another cell and the system must reestablish their connection through another transceiver. It
is important to emphasize that Figure 9.3 represents a different application of formal methods
from that shown in Figure 9.2. Rather than representing a high-level architecture for interac-
tion, as in the case of Coordinator, the UAN diagram is being used to represent and reason
about particular user tasks during a particular trace of interaction. Unfortunately, a number of
problems limit the utility of this notation. It provides no means of reasoning about temporal
properties. This is important because the handover delay in Figure 9.3 might have a minimal
effect if it lasted a few seconds. If it took several minutes then the “re-connecting” message
might have to be reworded to provide more information about the cause of the delay. Tem-
poral information can be represented using the extended XUAN notation [Gra95]. The more
general point here is again that the restricted syntax of formal notations helps designers to
focus in on critical properties of a CSCW system. In Figure 9.3, those properties include the
physical locations of the users and their observable actions. However, this is only achieved at
the cost of other properties, such as temporal relationships, that cannot be so easily captured
within the syntactic structures.

9.1.3.4 Formal Methods for Accident Analysis

In contrast to the tabular form of UAN, Petri Nets provide a graphical notation that has
long been used to represent temporal properties of interactive systems [Kra91]. Bastide and
Palanque [Bas90] exploit Petri Nets to derive formal specifications of interactive systems at a
very high level of abstraction. Johnson et al [Joh94a] have shown that Petri Nets can be used
to represent the operator–system interaction which can lead to accidents in safety-critical sys-

226 JOHNSON

Fan blade fracture

Captain
incorrectly
diagnoses
engine #2

Captain believes
fault is in the #2 engine

Captain correctly
diagnoses engine#1

Captain believes
it's engine #1

Captain is
unfamiliar
with
ventilation

Captain is aware
of smoke on
the flight deck

Smoke enters
ventilation

There is smoke

There is vibration
in engine #1

AVM is displaying
out of range reading

Crew and passengers
are aware of smoke
in the cabin

Passengers
become
alarmed

Cabin
crew
are
busy

1st Officer incorrectly
polls the AVM

1st Officer makes
informed decision

1st Officer
is considering
the information

1st Officer forced
to make a guess

Commander is considering
command

Captain: OK throttle is back...

Workload
is high

Display
layout
is poor

1st Officer is
unaware of
the AVM

AVM is
unreliable

Sensors begin to
detect vibration

1st Officer is
unsure

1st Officer: It's the le...
It's the right one.

1st Officer: Its the le...
It's the right one.

1st Officer is liable
to make a verbal slip

Captain hears the
1st Officer's
observation

Figure 9.4 A high-level Petri net

tems. Timing properties are represented by sequences of places. These are denoted by a circle
and can be used to show states of interaction. Places are linked by transitions. These are
denoted by rectangles and can be used to represent events during interaction. Figure 9.4 illus-
trates this approach. It also shows how Petri Nets can be used to analyze relatively complex
traces of group interaction. Once again, it is important to emphasize that the previous diagram
represents a different style of application for formal methods. Previous examples have used
state transition diagrams to analyze high-level architectures for CSCW systems, UAN was
used to analyze user tasks during a potential trace of interaction. Here, Petri Nets are being
used to analyse crew interaction prior to the Kegworth air crash. This more situated use of a
notation helps to focus in upon critical features of a previous failure as a means of establishing
requirements for future systems. There are, however, a number of limitations that restrict the
utility of Petri Nets for the design of CSCW systems. For example multi-user undo cannot eas-

FORMAL METHODS IN CSCW 227

ily be represented using this notation [Gra95]. Similarly, the associated proof techniques that
support this approach can be surprisingly complex given the intuitive appeal of the graphical
representation.

9.1.3.5 Formal Methods for Proof

The ability to prove properties of a system, prior to implementation, is a key benefit of formal
methods. Proof is essentially a form of reasoning or argument that uses the syntactic rules of
a notation to determine the validity of a theorem or hypothesis. This can be illustrated by the
following example using first-order logic. Designers might specify that a system should be
shut down if two users issue input to that effect:

shut down(

input(user 1; stop) ^ input(user 2; stop): (9.2)

The system is shut down if user 1 and user 2 issues input to stop the system.

First-order logic provides a proof rule which states that if we know that some fact P is
implied by some other fact Q and we know Q then it is safe to conclude P :

P (Q;Q ` P: (9.3)

Given that P is true if Q is true and we know Q then it is safe to conclude that P is true.

Given the two previous clauses we can now establish whether or not the system will ever
be shut down. In a model checking approach to theorem proving, this would be achieved by
generating possible states of the system and inspecting those states to determine whether or
not both users had issued the appropriate input. This illustrates an important weaknesses of
theorem proving for interactive systems. There is no automatic means of determining whether
or not users will actually provide the anticipated input in any state of the system. On the
other hand, this approach does force designers to consider the assumptions that they make
about operator behavior. For instance, the proof process outlined in (9.3) forces designers
to consider those situations in which users might be expected to cooperate in the manner
described by (9.2).

A range of tools support the application of formal methods. For example, theorem proving
tools provide designers with a semi-automatic means of checking whether certain properties
do or do not hold for a particular design [Har95]. Similarly, model checking tools can be used
to search for particular situations that may or may not arise during the course of interaction.
These tools increase the level of automation provided by theorem proving systems and pro-
vide direct means of searching for particular scenarios of interaction. Other tools can also
be recruited to aid the formal development of multi-user systems. For example, Figure 9.5
illustrates the user interface to Logica’s commercial Z tool, called Formaliser. This automati-
cally helps designers to construct syntactically correct specifications through structure editing.
Other tools can be used to “directly” develop prototype implementations from formal specifi-
cations [Joh92]. This is important because mathematical specification techniques provide an
extremely poor impression of what it would be like to interact with a potential interface.

228 JOHNSON

Figure 9.5 The Formaliser syntax editing tool

The remainder of this chapter focuses upon the application of logic to support the design
of CSCW systems. This decision is justified by a number of arguments. Firstly, logic forms
a key component of most undergraduate degrees in computing science and engineering. This
supports the skill base that is necessary for the pragmatic application of these techniques
within commercial development practices. Secondly, there exist a range of relatively simple
transformations between other formalisms, such as Petri Nets, and first-order logic. This of-
fers designers the possibility of recruiting different notations during different stages of the
development process. Finally, logic programming environments, such as that supported by
PROLOG, offer a means of deriving prototype implementations from abstract specifications.
As mentioned, this is vital if designers are to validate the products of formal analysis.

9.2 STARTING FROM THE GROUND UP: THE APPLICATION OF
FORMAL METHODS TO CSCW

The limitations of natural language stem from the fact that it is difficult to write down the exact
syntactic rules which guide its use. Similarly, it can be difficult to agree upon the semantics
of particular words. Dictionaries provide many different definitions for common words and
phrases. Even human factors experts disagree about the meaning of terms such as “workload”
[Kan88]. Given such ambiguity and inconsistency, people have long sought to strip away the
clutter of everyday language to focus in upon the essentials of communication. Much of this
work has built upon the use of mathematics to define syntactic rules for the development of
valid sentences. The same mathematical constructs can also be used to specify an exact se-
mantics for these phrases. For example, the designers of a CSCW interface must consider the
commands that can be issued by system operators. The following clause might be used to

FORMAL METHODS IN CSCW 229

specify that user 1 issues input to quit the application. The intention is to express require-
ments in a clear and simple manner without the elaborate syntax of natural language:

input(user 1; quit): (9.4)

User 1 issues input to quit the system.

Even with such simple beginnings it is possible to reason about the design of a potential
interface. For example, the previous clause does not state that other operators, user 2, user 3
etc., also issue input to quit the system. In other words, clause (9.4) does not require agreement
between multiple operators. Designers must identify such collaborative requirements if they
are to provide the additional cues and prompts that are necessary to achieve coordination.
A further benefit is that additional requirements can be gradually introduced as development
progresses. For example, the followingclause states that the application is shut down ifuser 1
or user 2 issues input to quit the system:

shut down(system) (input(user 1; quit)_ input(user 2; quit): (9.5)

The application is shut down if user one or user two issues input to quit the system.

This clause relies upon logic operators, _ (read as “or”) and ((read as “if”). These provide
the syntax that is needed to construct more complex requirements out of basic relationships
such as input(user 1; quit). We have previously argued that natural language cannot eas-
ily be used to support the large-scale development of CSCW systems because it may have
ambiguous semantics. We face a similar problem here. What is the meaning of _ or of (?
Fortunately, there are a number of techniques that can be used to capture the meaning of such
operators. For example, the following truth table provides the semantics for the _ operator.
The first line states that whenever we know that P is true and we know that Q is true then
it is safe to conclude that P _ Q is true. The second line states that whenever we know that
P is true and Q is false then it is safe to conclude that P _ Q is true. The rest of the table
can be read in a similar fashion. It is important to emphasize, however, that the formal de-
velopment of software requires more complex tools than truth tables. The following table is
included to reinforce the central idea behind formal specifications. Mathematical structures
restrict and focus the components of requirements documents so that they have a precise and
concise meaning:

P Q P _Q

true true true
true false true
false true true
false false false

Rather than present a complete introduction to first-order logic, the remainder of this chap-
ter focuses upon the application of formal methods to support the design of CSCW systems.
Hodges provides a fuller description of the underlying mathematics [Hod77]. Natural lan-
guage annotations will be provided in the following pages to help readers who are more inter-
ested in the application of the logic rather than its theoretical foundations.

230 JOHNSON

9.2.1 An Example Application

We are concerned that a real-world example is used to illustrate our approach. The following
pages, therefore, investigate the design of a control room for an oil production facility. These
systems have posed a significant challenge for both systems designers and human factors
specialists [War89]. Oil production facilities are complex applications. For instance, operators
must monitor the extraction of oil from geological structures under the sea-bed. They must
also control the extraction and purification of any gas which is recovered with the oil. The
UK Government’s Gas Conservation Policy prevents these gas products from being “flared”
or burnt on the rig. Operators must also monitor repair activities and maintenance schedules.
This involves the coordination of many different teams. These properties of the application
help to ensure that oil production control systems exhibit many of the problems that frustrate
the design of CSCW applications. Groups of operators must monitor computer displays in
order to identify faults in many different processes. Users must detect and coordinate their
responses to a range of potential errors. Information systems present their operators with
information about the extraction of oil products from geological structures deep beneath the
sea-bed. Not only must users monitor the rate of extraction but they must also maintain a
constant watch for problems that threaten the safety of the rig. For instance, gas leaks pose a
considerable risk of fire. If gas is detected then control-room personnel must investigate the
cause and identify potential solutions.

9.3 DIALOGUE SEQUENCES

First-order logic provides a means of focusing in upon critical properties of interfaces to
applications such as the oil production control system. Designers can represent and reason
about a design without being forced to consider the low-level details of device polling and
event handling. An important point in all of this is that the elements of a specification should
provide a common focus for multi-disciplinary design teams. For instance, it might be stated
that a fault monitoring system is ready to start logging failures if a user issues a command to
start. In order to satisfy such a requirement, interface designers must enable users to easily
issue such high-frequency commands. Application engineers must support the functionality
that lies behind these commands. A key issue here is that the use of the formal notation does
not bias or pre-judge the work of these groups. For instance, the designer is not forced to
consider which devices will be used to issue the start command. The choice of presentation
strategies can profoundly affect the usability of the final interface. Formal methods can be
used to construct a design without forcing commitment to a particular implementation early
in the development process:

start logging (

input(user 1; start) ^ effect(start; off; logging): (9.6)

The monitoring system starts logging faults if user 1 issues input to start the application
and the effect of that input is to transform the state of the system from one in which it is off
to one in which it is logging faults.

First-order logic can be recruited to reason about the complexity of concurrent interaction

FORMAL METHODS IN CSCW 231

between multiple users. Contention is a frequent problem in multi-user systems which allow
two or more operators to access the same resources. For example, one user might attempt to
quit the application while another attempts to log a fault:

log contention(

input(user 1; quit) ^ input(user 2; log pump A error): (9.7)

Contention arises in the logging system if user 1 issues input to quit the system and user 2
issues input to log a fault.

This conflict could be resolved by always giving priority to commands from a particular user
[Pen90]. Alternatively, priority might be associated with certain commands [Ell91]. Input with
a lower priority may be disregarded. The input quit does not affect the state of the system:

resolve contention (log contention^

effect(quit; on; on) ^ effect(log pump A error; on; pump A error): (9.8)

Contention is resolved if the logging command takes effect but input to quit the system
does not change the state of the application.

Unfortunately, a number of problems must be resolved before first-order logic can be used
to support the design of concurrent multi-user systems. In particular, there is no notion of
ordering in first-order logic. This creates problems because many critical issues in the devel-
opment of CSCW systems arise from the sequencing of events. In our example, no conflict
need arise if the system were closed down after the fault had been recorded. As there is no
notion of sequence in first-order logic, the previous clause would still specify that contention
occurs even if quit were issued some time after log pump A error. Temporal sequencing
must be introduced if such concurrency requirements are to be made explicit within logic
specifications of interactive systems.

9.3.1 Time and First-Order Logic

The lack of sequencing in first-order logic has important consequences for the design of
CSCW systems. Delays in receiving information, from systems and other users, can lead to
breakdown and referential failure [McC91]. Concurrent input can lead to contention and in-
terference. The following section describes how the temporal properties of an interface can be
made explicit within logic specifications. This provides the designer with a medium in which
to reason about the possible impact of timing properties upon the users of CSCW applications.

9.3.1.1 Fixed Time-Stamps

Fixed time-stamps provide one means of avoiding the limitations of first-order logic. This ap-
proach associates a particular instant of time with each clause in a specification. For example,
it might be specified that quit and log pump A error should be input at twenty seconds past
midday. An additional requirement might also be that the command to quit the system should
not take effect when the fault is being logged at twenty-five seconds past midday. An impor-

232 JOHNSON

tant point here is that time-stamps help to build a standard time-line for critical requirements.
This provides a means of explicitly representing synchronization requirements:

fixed solution (

log contention(120020) ^ effect(quit; on; on; 120025) ^

effect(log pump A error; on; pump A error; 120025): (9.9)

Contention is resolved if quit and log pump A error are input at twenty seconds past
midday and five seconds later the monitoring system logs the fault.

There are a number of limitations which restrict the utility of fixed time-stamps within a
specification. Considerable burdens are imposed upon the designer who must provide and
maintain the temporal parameters in each clause. A further problem is that it is difficult to
represent persistent properties of CSCW interfaces. For instance, a designer might wish to
ensure that quit does not take effect before log pump A error:

persistent solution(log contention(120020)^

not(effect(quit; on; off; 120021)) ^ not(effect(quit; on; off; 120022)) ^

not(effect(quit; on; off; 120023)) ^ not(effect(quit; on; off; 120024)) ^

effect(log pump A error; on; pump A error; 120025): (9.10)

Contention is resolved if quit and log pump A error are input at twenty seconds past
midday and the input to quit the system does not take effect at twenty-one seconds past
midday, twenty-two seconds past midday, twenty-three seconds past midday, twenty-four
seconds past midday and the monitoring system logs the fault at twenty-five seconds past
midday.

Fixed time-stamps also introduce a high degree of temporal determinism into a specifica-
tion. In order to fulfill the previous specification both users must provide concurrent input
at exactly twenty seconds past midday. If designers wished to represent means of avoiding
contention at twenty seconds before midday, at twenty seconds to one, at half past four or at
any other time, they would be forced to repeat previous clauses for each of these points.

9.3.1.2 Time Variables

The limitations of fixed time-stamps can be avoided by using time variables. For example,
fixed solution (9.9) might be re-expressed as follows:

variable solution(log contention(T) ^ effect(quit; on; on; T1)^

effect(log pump A error; on; pump A error; T1) ^ after(T; T1): (9.11)

Contention is resolved if user 1 and user 2 issue input at time T and the command to quit
the system is ineffective at some subsequent time, T1, when user 2’s fault is logged.

The time variables, T and T1, could be instantiated at a number of points during interaction

FORMAL METHODS IN CSCW 233

and the temporal ordering is made explicit by the predicate after. Unfortunately, the use of
such variables still imposes considerable burdens upon the interface designer. It is particularly
important that a clear semantics is maintained for predicates, such as after, which define an
ordering over variables. These can radically effect the properties of any specification. For
example, the following clause specifies that user 1’s input does take effect after the fault has
been logged:

circular solution (

log contention(T) ^ effect(quit; on; on; T1) ^

effect(log pump A error; on; pump A error; T1) ^

effect(quit; pump A error; off; T2) ^ after(T; T1)

^after(T1; T2) ^ after(T2; T): (9.12)

Contention is resolved if user 1 and user 2 issue input at time T and the command to quit
the system is ineffective at some subsequent time, T1, when user 2’s fault is logged but
the input to quit the system does take effect at time T2.

The previous clause illustrates some of the problems that can arise in large-scale specifications
of CSCW systems. In particular, time T2 occurs both after and before time T . This circular
model of time makes little sense. Unfortunately, there is a high risk of such considerable prob-
lems occurring if designers are forced to construct complex sequences in terms of the after
relation. Temporal ambiguities may easily occur in specifications that contain hundreds or
thousands of clauses, especially if they must be constructed and maintained by many different
development teams.

9.3.1.3 Temporal Logic

Temporal logic extends first-order logic by supporting the following operators: 3 (read as
“eventually”); (read as “next”); 2 (read as “always”) and U (read as “until”) [Man81].
This notation relieves the designer from the burdens of maintaining an explicit ordering in
terms of predicates such as after. The ordering is captured within the definition of temporal
operators. For example, 3 may be defined using a set of time-stamps T , jwjt denotes the
truth value of the formula w at time t. It is important to note, however, that designers can
simply introduce temporal operators into a specification. They are not forced to explicitly
represent the after sequences that are embedded within the definitions of temporal operators.
Nor are they obliged to explicitly deal with the underlying model represented in the following
definition:

j3(w)jt � 9t1 2 T [after(t; t1) ^ jwjt1] (9.13)

The 3 operator is defined such that any formula w is eventually true at time t if there exists
some later time, t1, when w is true.

Prior provides complete definitions for the various temporal operators mentioned above
[Pri67]. In contrast, our focus is upon the application of the notation. The following section,

234 JOHNSON

therefore, shows how temporal logic can be used to analyse solutions for the problem of
interference within our CSCW application.

9.3.1.4 Input Priorities Revisited

Contention can be resolved by associating priorities with commands. Scarce resources can be
allocated to input with a high priority, input with a low priority may be disregarded. In terms
of our oil production system, a command to switch off the fault monitoring application might
be assigned a relatively low priority. The systems should continue to log faults whenever
possible and input to disable the system might, therefore, be ignored if users continue to
report problems in their equipment. Unfortunately, this solution suffers from a number of
limitations. There is no guarantee of fairness, some users may be “frozen” out of interaction if
their commands always receive low priority. In particular, a user could not predict the success
or failure of a quit command unless they could determine the priority of concurrent input from
all other users. A designer might reduce this uncertainty by ensuring that low-priority input is
eventually effective:

priority solution (log contention^

effect(log pump A error; on; pump A error) ^

3 effect(quit; pump A error; off): (9.14)

Contention is reduced if input to log a fault takes effect in the present interval and eventually
the input to quit the system takes effect.

This approach can be used to develop sophisticated priority structures. For example, a com-
mand to close the system might be assigned a lower priority than input to log a fault in the
emergency deluge equipment for fire-fighting on the rig. This, in turn, might be assigned a
higher priority than the input to log a pump fault. The following clause formalizes this re-
quirement. It is clearly important to explicitly represent these priorities if critical input is not
to be delayed:

ranking solution(input(user 1; quit)^

input(user 2; log pump A error) ^

input(user 3; log deluge failure) ^

effect(log deluge failure; on; deluge failure) ^

3(effect(log pump A error; deluge failure; fire risk alert) ^

3 effect(quit; on; off)): (9.15)

Contention is reduced if three users issue input at the same time to close down the system,
to log a pump fault and to log a fault in the emergency deluge system. The input to log
the deluge fault takes effect immediately and eventually the pump failure is recorded. This
changes the state of the system into one in which there is a fire risk and eventually at some
point after this the input to close down the system will have the effect of turning the system
off, providing the state has returned to normal.

FORMAL METHODS IN CSCW 235

Unfortunately, postponing the effect of low-priority input can cause a number of problems
for the users of groupware applications. The previous clause does not specify when the 3
(read as “eventually”) clause will be true. Delays in system responses can lead to frustration
and error [Kuh89]. Unpredictable behavior is likely to occur when periods of quiescence allow
the system to process a backlog of low-priority input [Ell89]. Delayed commands might take
effect at inappropriate moments during an interaction. The presentation of a large amount of
contextual information is required before a user can resolve such instances of unpredictability.

9.3.1.5 Locking

Interference can occur even if input priority mechanisms are adopted. Low-priority input to
halt the system might take effect before another user has finished logging a fault. This inter-
ference can be avoided by assigning priorities to transactions rather than single commands.
For example, transaction locking restricts input from other users until an operation has been
terminated. Input priority, user priority or first-come first-served mechanisms provide a means
of determining the identity of the next user to “gain the floor”:

transaction lock (input(user 2; log pump A error)^

(not(input(user 1; I)) U input(user 2; end pump A error)): (9.16)

Contention is reduced through the imposition of a lock if user 1 cannot enter any input, I,
until user 2 has cleared the fault.

Unfortunately, single-entry transaction locking resolves contention by restricting multi-user
systems to sequential interaction. There are a number of reasons why such an approach is of-
ten unacceptable. Users may not relinquish control if transactions are not terminated. Oppor-
tunism and negotiation may provide more fruitful grounds for cooperation than prescription.
In contrast to transaction locking, data locking avoids contention by restricting the ability of
operators to make modifications to shared resources. For instance, user 1 might continue to
interact with the fault monitoring system even though user 2 is logging a fault on pump A.
Designers may only choose to prevent user 1 from also logging a fault on that component
while user 2 is accessing it:

logging lock (input(user 2; log pump A error)^

(not(input(user 1; log pump A error))U

input(user 2; end pump A error)): (9.17)

Contention is reduced if user 1 cannot log a fault until user 2 has finished logging their
fault.

It is important to notice that this solution has been expressed without reference to device
primitives or particular polling strategies. Later sections will describe tools which have been
developed to directly execute such abstract specifications. This provides a means of evaluating
the consequences of placing restrictive locks upon the group process. For example, this ap-
proach can prove unnecessarily restrictive if locks are placed upon entire systems. Interference
need not occur if users make concurrent updates to different processes. Alternatively, as we

236 JOHNSON

have seen, data locks may be imposed at the level of individual systems or sub-components.
This introduces considerable complexity into the design of an interface [Gre87]. For instance,
logging knock-on faults can involve the acquisition of a large number of locks. The process
by which a user requests and relinquishes a shared resource can impose a large overhead on
the times necessary to perform even simple operations.

9.4 FORMALIZING THE PRESENTATION OF CSCW SYSTEMS

The second way in which formal methods can be applied to support CSCW systems is in
display design. This poses significant challenges because the presentation of multi-user appli-
cations is qualitatively different from that of single-user systems. Some displays are shared
amongst the members of a group while others are not. For example, the task of monitoring
oil production will require different information from that of gas extraction. This, in turn, will
require different information from the task of fire prevention and detection. CSCW designers
must consider the composition of displays that support these different activities. This devel-
opment problem is complicated because the individual elements of a display will change over
time. It is critical that development teams have some means of representing and reasoning
about these common and private contexts if they are to provide adequate support for group
activities and individual tasks.

9.4.1 Unstructured Graphics

Unstructured graphical representations do not distinguish between the images of display com-
ponents, such as menus and icons. For instance, bitmaps represent the image of pixels as bits
in a data structure. Designers might use these representations to specify the images that are
presented to the multiple users of CSCW systems, such as the oil production application:

DeclareBitmap(logging display.bit, 42, 49, logging display.bits);
short on display.bits[] =
/* Abbreviated for the sake of brevity */
f

0x0000, 0x0000, 0x0000, 0x000f, 0xff00, 0x0000, 0x007f, 0xffc0,
0x0000, 0x00ff, 0xfff0, 0x0000, 0x00ff, 0xfff0, 0x0000, 0x00ff,
0x001f, 0x0000, 0x0340, 0x006f, 0x0000, 0x03b0, 0x0a97, 0x0000,
0x037d, 0x3fef, 0x0000, 0x03ee, 0x0a1b, 0x0000, 0x03d7, 0x3ff7,
0x0000, 0x03fd, 0x87ca, 0x0000, 0x03f7, 0x5616, 0x0000, 0x014b,
0x0000, 0x0000, 0x0000,

g;

It is extremely difficult to decompose data structures, such as the previous bitmap, into the
components of a complex image. This hinders the development of multi-user computer sys-
tems because, typically, only part of a screen is shared by all system operators. The common
parts of a display cannot easily be extracted from an unstructured representation.

9.4.2 Procedural Graphics

Procedural graphics systems construct pictures from sequences of instructions. Designers
might use these systems to generate interface components without describing the entire ap-
pearance of a display. The shared images of CSCW systems can be represented and reasoned

FORMAL METHODS IN CSCW 237

about in terms of the instructions necessary to create them. For instance, the following clauses
show how the (read as “next”) operator can be used to describe the instructions that are
necessary to draw part of a pump A error icon:

draw pump A error icon(

pen down ^(pen forward(10) ^

(pen rotate(90) ^(pen forward(20) ^

(pen rotate(90) ^(pen forward(10) ^ :::)))) (9.18)

The error icon for pump A is drawn if in the present interval the pen is lowered to the
paper and in the next interval the pen is moved forward by ten units and in the next again
interval the pen is rotated by ninety degrees and...

Procedural approaches offer only limited support for the prototyping of multi-user CSCW
systems. Designers would be forced to write many thousands of instructions in order to create
complex images. This burden is greatly increased because different sequences of instructions
must simultaneously be executed on a range of different devices in order to present displays to
a number of different users. If one instruction were omitted or placed out of sequence then the
final image might be corrupted. Szekely and Myers identify a further limitation of procedural
graphics systems [Sze88]. If users select part of a display, using a mouse or some cursor keys,
then there is no means of identifying the target of their selection using the instructions that
generated the image. Designers must, therefore, maintain additional data structures in order
to determine which images are selected by operator input. This is a considerable overhead for
prototype CSCW systems whose users may concurrently select many different parts of many
different images.

9.4.3 Structured Graphics

Logic can be used to represent the images presented by a CSCW system at an extremely high
level of abstraction. For instance, the following clause specifies that user 1 is presented with
a condensate display, user 2 is presented with a deluge display. Similar clauses might be
introduced to represent the images presented to user 3, user 4, user 5 etc:

display(user 1; condensate display): (9.19)

display(user 2; deluge display): (9.20)

The first clause states that user 1 is presented with the condensate display. The second
clause states that user 2 is presented with the deluge display.

Display abstractions can be decomposed into their component parts. For instance, the
condensate display presented to user 1 might show that the pneumatic valves, the cen-
trifuges and the non-return valves are all functioning correctly but that there is an er-
ror with pump A. This image is illustrated in Figure 9.6. The structure of the user 1’s
condensate display is represented by the following clauses:

238 JOHNSON

J-T Flash Drum

Condensate
Suction Vessel

A

B

Condensate
Condensate

675psi
635psi

670psi

635psi

A

Warning

Pump A Error
Deluge System

Pump A Error Icon Centrifuge A Pneumatic Valve B Non-return Valve A

Figure 9.6 The graphical decomposition of the condensate display

part(user 1; condensate display; centrifuge A): (9.21)

part(user 1; condensate display; pneumatic valve B): (9.22)

part(user 1; condensate display; pump A error icon): (9.23)

part(user 1; condensate display; non return valve A): (9.24)

The first clause states that the centrifuge A icon is part of the condensate display pre-
sented to user 1. The second clause states that the pneumatic valve B icon is part of the
condensate display presented to user 1. The third clause states that the pump A error
icon is part of the condensate display presented to user 1 and so on.

Figure 9.7 illustrates how the deluge display presented to user 2 can be decomposed in a
similar fashion. The structure of this image can be represented by the following clauses:

part(user 2; deluge display; pump A error icon): (9.25)

part(user 2; deluge display; inlet B capacity): (9.26)

part(user 2; deluge display; pump C icon): (9.27)

part(user 2; deluge display; protection cage C): (9.28)

The first clause states that the pump A error icon is part of the deluge display presented
touser 2. The second clause states that the inlet B capacity is part of the deluge display
presented to user 2. The third clause states that the pump C icon icon is part of the
deluge display presented to user 2 and so on.

FORMAL METHODS IN CSCW 239

Pump C IconPump A Error Icon

1,800 gpm 1,800 gpm4,000 gpm4,000 gpm

1,800 gpm

Utility Water
Header

Fire Water
Header

12-hrs Diesel

TYP
Diesel

Inlet capacity
(US gallons per minute)

Intake protection
cage

Figure 9.7 The graphical decomposition of the deluge display

Designers can use logic clauses to identify those images, such as pump A error icon,
which form the common context of operations performed by user 1 and user 2. This sup-
ports the detailed development of CSCW systems. For instance, designers might specify that
the deluge pumping equipment is closed if user 1 and user 2 are presented with an error for
pump A and both provide input to close off the pump. Such an agreement would be appropri-
ate because closing-off fire-safety equipment has important consequences for the oil and gas
extraction processes. The display requirement that they both see the error icon for pump A is
intended to ensure that both operators are presented with sufficient contextual information in
order for them to coordinate their response:

voting close pump A(

display(user 1; condensate display) ^

display(user 2; deluge display) ^

part(user 1; condensate display; pump A error icon) ^

part(user 2; deluge display; pump A error icon) ^

3(input(user 1; close pump A) ^

input(user 2; close pump A)): (9.29)

This states that a voting system is used to close pump A if user 1 is presented
with the condensate display and user 2 is presented with the deluge display and
pump A error icon is part of both displays and eventually both user 1 and user 2 pro-
vide input to close the pump.

240 JOHNSON

Such clauses support further stages in the development of CSCW systems. For instance, it
has not been specified that the deluge display presents detailed information about the cen-
trifuges that are used during gas extraction from the oil. It would not, therefore, be appropriate
to expect user 2 to resolve problems with these components without access to additional data.
Contention might occur if they did attempt to operate a centrifuge.

For example, user 1 might close it while user 1 tried to open it. The display abstractions
introduced in the previous paragraphs might be integrated with the temporal operators from
the first part of this chapter to specify solutions for such problems. Designers might require
that a lock is imposed to resolve contention if user 2 is not presented with information about
a particular centrifuge:

lock out centrifuge contention(

input(user 1; close centrifuge A) ^

display(user 2; deluge display) ^

not(part(user 2; deluge display; centrifuge A)) ^

not(input(user 2; I) U input(user 1; end centrifuge A error)): (9.30)

This states that a lock is imposed to prevent contention over centrifuge A if user 1
provides input to close it and user 1 is presented with the deluge display and the
centrifuge A icon is not part of that display and user 2 does not provide input until
user 1 has issued input to state that the error in the centrifuge is over.

We have argued that problems such as contention and deadlock make it necessary to con-
sider the “look and feel” of a potential interface during the early stages of CSCW systems
development. It is, therefore, important that designers can refine high-level clauses, such as
condensate display, into the primitive images which are presented to users. One means of
doing this is to describe images in terms of lines:

line(user 1; centrifuge A; 0:1; 0:2; 0:6;0:2): (9.31)

This states that the image of the centrifuge icon presented to user 1 includes a line from
coordinates (0.1,0.2) to (0.6, 0.2).

A limitation with this approach is that operator input is not usually directed towards lines
but towards areas of the screen. A user selecting an icon does not, necessarily, expect to select
a particular line of its image. In order to support such interaction, designers must exploit
more sophisticated graphical “building-blocks”. Figure 9.8 illustrates how the image of the
condensate display can be described in terms of a number of regions: a background region,
a text region and a centrifuge region. Regions can be further decomposed into sub-regions.
Each region has properties, such as size and position, attributes, such as font and pattern,
and a behavior, such as whether or not it is selectable. For instance, the centrifuge A icon
could be presented to user 1 as a region with a blank background and dimensions that occupy
one-twentieth of the screen:

FORMAL METHODS IN CSCW 241

A

Condensate

635psi

670psi

635psi

J-T Flash Drum

A Background RegionA Text Region A Graphical Region

A

B

Condensate
Suction Vessel

J-TFlashDrum

Figure 9.8 The region decomposition for part of the condensate display

dimension(user 1; centrifuge A; 0:05; 0:05): (9.32)

pattern(user 1; centrifuge A; blank): (9.33)

The first clause states that the image of the centrifuge A icon presented to user 1 has
dimension that occupy one twentieth of the screen. The second clause states that the image
of the centrifuge A icon presented to user 1 has a blank background.

These clauses can represent the ways in which CSCW displays must be tailored in order
to support group tasks. For instance, designers might require that user 2 can monitor the ef-
fects of user 1’s intervention on the centrifuge while performing other duties. Under such
circumstances, the centrifuge might be introduced into the deluge display. The dimensions
of the centrifuge icon could also be reduced in order to free display resources for the presen-
tation of user 2’s primary activities. Although both users must be presented with information
about the centrifuge, the size of this image is used to reflect the relative importance of the
component for each user’s task. The following clause illustrates how logic abstractions can
be used to represent and reason about CSCW systems which support semi-independent views
[Ell91] of application processes :

part(user 2; deluge display; centrifuge A): (9.34)

dimension(user 2; centrifuge A; 0:02; 0:02): (9.35)

The first clause states that the centrifuge A icon is part of the deluge display presented
to user 2. The second clause states that the image of the icon presented to user 2 has
dimension that occupy one-fiftieth of the screen.

242 JOHNSON

The choice of input media has a profound affect upon the usability of CSCW systems. For
instance, Galer and Yap have used prototypes to investigate the costs and benefits of different
input devices for the users of intensive care systems [Gal80]. Some operators suffered from
high error rates when using thumb wheels, mice were difficult to use in cluttered clinical en-
vironments. In order to evaluate the tradeoffs that exist between tracker-balls, mice, joysticks
and keyboards, the designers of CSCW systems must be able to represent a variety of input
devices.

9.4.4 Introducing Input Information

Input can be represented by introducingdevice drivers into formal specifications. For instance,
the following routine “blinks” the caret when a mouse is moved over a text region in an Apple
Macintosh [App86]:

CLR.L -SP ;event code for null event is 0
PEA 2(SP) ;pass null event
CLR.L -SP ;pass NIL dialogue pointer
CLR.L -SP ;pass NIL pointer
DialogueSelect ;invoke DialogueSelect
ADDQ.L #4,SP ;pop off result and null event

Burton et al show how designers might formalize similar code in order to specify single-
user graphical interfaces built from the Apple Macintosh Toolbox [Bur89]. Such descriptions
provide an appropriate level of detail for many stages in development. They are, however,
extremely device dependent. The complexity of accessing input at this level of detail might
dissuade designers from assessing the costs and benefits of a range of devices for the many
different users of CSCW systems. Like bitmaps, this approach provides a one-step refinement
between abstract, formal representations of graphical interfaces and device specific implemen-
tations. This would have important consequences for the development of embedded control
systems, such as our oil rig application. In these environments, CSCW applications must fre-
quently be developed to run on a range of existing hardware. It would not be acceptable to
rebuild a control room because its input devices could not be formalized in terms of their
device drivers.

Input from a range of physical devices, such as mice or tracker balls, can be represented by
generic events, such as on select and on move. Events can be introduced into formal specifi-
cations by associating them with graphical regions. For example, the following clause shows
how designers might specify that pump A is closed if user 1 and user 2 are presented with
an pump A error icon and both operators use a mouse to select this image. This clause can
also be used to describe control rooms in which the operators had access to tracker-balls or
cursor keys instead of mice. These devices could also generate on select events. Such device
independence helps to avoid premature commitment to particular hardware platforms. Imple-
mentation decisions can be postponed until late in the development cycle when the costs and
benefits of a range of different input media have been considered. This encourages designers
to identify those devices that are most appropriate to the particular tasks and environments of
CSCW groups:

FORMAL METHODS IN CSCW 243

event close pump A(

display(user 1; condensate display) ^

display(user 2; deluge display) ^

part(user 1; condensate display; pump A error icon) ^

part(user 2; deluge display; pump A error icon) ^

3(input(user 1; pump A error icon; on select) ^

(not(effect(on select; pump A error icon; pump A off)U

input(user 2; pump A error icon; on select)): (9.36)

This states that input events are used to close pump A if user 1 is presented with
the condensate display and user 2 is presented with the deluge display and the
pump A error icon is part of the fault and line displays and eventually user 1 issues
a select event for the icon but this is not effective until user 2 also issues a select event on
the icon.

We have shown that formal notations can be used to represent the proportion and location
of graphical images on a display. A limitation with this approach is that it does not consider
the operators’ physical and environmental surroundings. Specifying the size and position of
an image is of little benefit if users cannot easily view the devices that are used to present
the condensate and deluge displays. This is a weakness of almost all previous approaches to
interface design. Few existing techniques consider the layout of particular working environ-
ments.

9.5 WORKING ENVIRONMENTS

The European Community Directive on work with Display Screen Equipment and the United
Kingdom’s Health and Safety Regulations provide guidelines on the correct layout of work-
ing environments for computer operators. Screens should be parallel to overhead fluorescent
tubes, at right angles to windows etc. Unfortunately, many techniques in human–computer
interaction completely ignore these issues. They provide ample support for screen layout and
dialogue design but they provide no means of reasoning about the physical layout of work
environments. Conversely, the empirical techniques and CAD tools that have been devel-
oped to analyse different operator postures do not address the concerns that dominate human–
computer interaction [Mal89]. The lack of integration between user-interface design and en-
vironmental layout is not a serious problem in many contexts. Office workers can easily move
keyboards, screens and telephones into positions that support their everyday tasks. This lack
of integration is, however, a more serious problem for the development of safety-critical ap-
plications. The position of a display can determine whether operators will observe a warning
within a particular time period [Wic84]. The physical location of buttons, keyboards and mice
can affect the error rates for particular input sequences [Joh94b]. For example, the following
clause states that user 1 is responsible for observing and responding to the failure of a blow-
back valve. These devices ensure that material is not forced back up a line from which it is
being pumped:

244 JOHNSON

Battery rack

Air ductBattery
charger

125 VDC
SwitchgearFan Coil

Unit

Battery chargers
and transformers

Safety
office

Generator Control
Panels

Data loggerMain fire and
gas panel

Second fire
and gas panel

Main production
control panel

Local control
panel B

VDU

Local control
panel A

Local control
panel C

0.0 10.0

0.0

10.0

13.8kV
 B

oards

E
lectrical room

W
orktop

Instrum
ent store

E
lec. store

E
lectrical

M
aintenance

R
oom

Figure 9.9 Control room module for North Sea oil production

user 1 responsible for closing valve A(

display(user 1; condensate display) ^

display(user 2; deluge display) ^

part(user 1; condensate display; valve A error icon) ^

not(part(user 2; deluge display; valve A error icon)) ^

input(user 1; valve A error icon; on select): (9.37)

This states that users agree to close valve A if user 1 is presented with
the condensate display and user 2 is presented with the deluge display and
valve A error icon is part of the condensate and but not of the deluge display and user 1
provides input to close valve A.

Such dialogue requirements make implicit assumptions about the layout of a potential con-
trol room. Designers must ensure that user 1 can view the valve A error icon from their
normal working position. Figure 9.9 illustrates that this may be a non-trivial problem. For
instance, if the operator were routinely stationed behind the work surface at the bottom on
the figure then it would be difficult for them to view a warning presented on the local control
panels towards the top of the layout. Fortunately, logic abstractions can also be used to reason
about the physical organization of complex working environments.

FORMAL METHODS IN CSCW 245

9.6 REPRESENTING WORKSTATION LAYOUT

Designers can exploit logic to represent the allocation of displays to the control panels that
users must operate. For instance, clause (9.37) required that user 1 should be presented with
the condensate display. This could be presented through the local control panel next to the
switchgear shown in Figure 9.9 rather than through the main VDU next to the worktop:

present(user 1; condensate display; local panel A): (9.38)

location(local panel A; 6:0; 6:5): (9.39)

dimension(local panel A; 1:5; 0:9;1:1): (9.40)

The first clause states that the condensate display is presented to user 1 through local
control panel A. The remaining clauses state that the control panel is located at Cartesian
coordinates (6.0, 6.5) and is 1.5 meters in dimension along the X axis, 0.9 along the Y axis
and 1.1 meters along the Z axis; this corresponds to the height of the panel.

Designers can use these clauses to guide the detailed layout of a control system. By intro-
ducing positional information into logic clauses it is possible to represent the likely working
position of an operator performing a particular task. For instance, user 1’s normal activity
might be to coordinate the operation of the system from behind the worktop. This would
place the user at a position close to (6:0; 2:2). It would then be difficult for user 1 to respond
to warnings presented on local control panel A at the same time as monitoring a display on
the fire and gas panel:

divided attention(

location(user 1; 6:0; 2:2)^

location(local panel A; 6:0; 6:5)^

location(fire panel; 6:5; 1:5)^

present(user 1; Display 1; local panel A) ^

present(user 1; Display 2; fire panel) ^

part(user 1; Display 1; valve A error icon) ^

part(user 1; Display 2; communications error) ^

input(user 1; valve A error icon; on select) ^

input(user 1; self test communications; on select): (9.41)

This states that user 1 must divide their attention if they are at (6.0,2.2) and must monitor
two different displays, one presented by local panel A at (6.0,6.5) and the other presented
by the fire and gas console at (6.5,1.5). And that those displays contain warnings about a
communications error and a fault with valve A and user 1 must provide input to resolve
those warnings.

Logic can be used to represent potential solutions to such problems. For instance, the po-
sition of the fire and gas console might be moved so that it could more easily be observed
while user 1 was monitoring the local control panel. This can be represented by altering one

246 JOHNSON

+5 degrees

Horizontal plane

-10 degrees

Normal line of sight

-15 degrees

-30 degrees

Figure 9.10 The relaxed viewing angle

of the location clauses. Alternatively, the task of monitoring and responding to the communi-
cations error might be allocated to another user. These two potential solutions again illustrate
the close interaction between dialogue design and the layout of control rooms:

coordinated response (

part(user 1; Display 1; valve A error icon) ^

part(user 2; Display 2; communications error) ^

input(user 1; valve A error icon; on select) ^

input(user 2; self test communications; on select): (9.42)

This states that there is a coordinated response if user 1’s display contains a warning about
a fault with valve A and user 2’s display contains a warning about a communications
problem and user 1 must provide input to resolve the valve problem and user 2 must
resolve the communications error.

Such clauses illustrate the benefits of formal methods for the integration of interface design
and environmental layout. It is not clear how the individual images shown to many different
operators might be represented using the conventional sketches and two-dimensional plans of
control rooms, such as that shown in Figure 9.9.

9.7 USING ERGONOMIC GUIDELINES TO INFORM CSCW DESIGN

Research in the field of human factors and ergonomics has developed a mass of information
about suitable operator postures and working positions. For instance, Figure 9.10 illustrates
Grandjean’s [Gra88] guidelines for a relaxed viewing angle from an upright, seated posture.
If operators are required to monitor displays outside of the �10 to �15 degree cone for long
periods then static muscle overloading may occur. Until now, it has been difficult to envisage
how such information can be used to directly inform the development of CSCW systems. In
contrast, the previous clauses can be used to reason about the consequences of such figures for
interactive dialogues in particular working environments. For example, assuming that user 1
were at the worktop in the centre of the control room at (6.0,2.2,1.3) and that they were

FORMAL METHODS IN CSCW 247

observing a point on local control panel A, mentioned in clause 9.41, at (6.0,6.5, 1.4) then the
visual angle would be approximately 19 degrees below the horizontal. The panel would fall
outside of the line of sight for comfortable eye rotation. This is derived from the following
formula that relates the operator’s seated eye height and the distance of a target on a control
panel to the height of that target and the likely visual angle between the horizontal plane and
that target:

p
seated height2 + target distance2=sin 90 =

target height=sin visual angle (9.43)

Such formulae can be used to guide interface development. In particular, it can be used to
ensure that operators can actually monitor and use the multiple displays of CSCW systems.
Designers should not place routinely monitored information for user 1 on the local control
panel. The operator would be forced to assume an undesirable posture to observe the display.
This area might be used to present information for other operators who can more easily view
this display. Similarly, user 1 cannot be expected to observe high-priority error messages on
the local control panel. Operators frequently fail to detect warnings on the edge of their vi-
sion [Wic84]. The identification of such “high-priority” errors is an important stage during
the development of safety-critical interfaces. User 1’s observation problem with local control
panel A might be resolved by ensuring that such critical warnings are also presented closer
to their normal line of sight. Equation (9.43) can be used to validate user 1’s line of sight
between various positions in the control room and these additional sources of information.
These positions must, in turn, be checked to ensure that they do not obscure critical informa-
tion for user 2, user 3 etc. Once an optimal position has been identified, logic can be used
to represent the new position for the display:

resolve observation problem(

location(user 1; 6:0; 2:2)^

present(user 1; Display 1; local panel A) ^

part(user 1; Display 1; compressor failure) ^

present(user 1; Display 2; worktop panel) ^

part(user 1; Display 2; compressor failure): (9.44)

This states that a potential observation problem can be resolved if user 1 is located at
(6.0, 2.2) and they are allocated a display, Display 1, which includes a warning that a
compressor is failing and that display is presented on the local control panel and they are
allocated a display,Display 2, which also includes a warning that the compressor is failing
and that display is presented on the worktop panel.

Workstation layout not only affects the presentation of control information, it also has a pro-
found impact upon input requirements. For example, Grandjean uses Figure 9.11 to illustrate
the working distance from the elbow to the hand of an operator at table-top height [Gra88].
This applies to the fifth percentile of the male population. The inner arc represents the extent
of the grasp from a relaxed, seated position. This analysis can be used to inform dialogue
design. For example, in control systems it is important that certain input sequences are dif-

248 JOHNSON

100cm

160cm

55-65cm35-45cm25cm

50cm

Figure 9.11 The horizontal reach limit

ficult to issue. The valve isolation switches might, therefore, be placed beyond the 55–65cm
arc. Operators can make occasional stretches of 70–80cm without difficulty:

reach isolate valve A(

location(user 1; 6:0; 2:2)^

select(user 1; close valve A switch) ^

component(close valve A switch; worktop panel) ^

location(close valve A switch; 6:0; 3:0; 0:9): (9.45)

This states that the user must reach to close off valve A if they are at (2.0, 2.1) and they
provide input to isolate the valve by selecting a button on the worktop control panel at
(6.0,3.0,0.9).

The correct positioning of control panel components must reflect details of the operators’
tasks. It should be hard to issue input sequences that cannot easily be reversed. Conversely,
the input requirements that are implicit within dialogue designs must also take into account
the physical demands that devices place upon their users. Operators should not routinely be
expected to sustain postures that impose significant biomechanical strain.

9.8 PROTOTYPING

Mathematical specifications provide users with little idea of what it would be like to interact
with a graphical interface. Prototypes provide a far better impression of the “look and feel”
of a potential implementation. The experimental analysis of partial implementations can be
used to inform the refinement of detailed specifications towards full implementation. They can
be shown to members of concurrent design teams. They can be shown to operators and are
amenable to experimental analysis. Logic programming environments, such as that supported
by PROLOG, provide a convenient bridge between formal specifications and functioning pro-
totypes. This environment has a well understood semantics based on that of first-order logic.
This secton, therefore, provides a brief introduction to the design and implementation of the

FORMAL METHODS IN CSCW 249

Figure 9.12 A Prelog prototype

Prelog system. This application has been specifically developed to implement CSCW pro-
totypes. Prelog combines a temporal logic interpreter and a screen management system to
directly execute the clauses that have been presented in this chapter.

9.8.1 Presenting Graphical Structures

A number of research groups have developed executable versions of the temporal logic no-
tation that has been used in this chapter. For instance, the Tokio interpreter has been imple-
mented using the PROLOG programming environment [Aoy86]. Clauses that contain tempo-
ral operators are re-written and are asserted over an appropriate interval. In other words, the
Tokio interpreter maintains time-variables that are similar to those introduced in the earlier
sections of this chapter. Unfortunately, Tokio only provides limited input and output facilities.
The Prelog prototyping tool avoids this limitation by linking Tokio and Presenter [Too91].
Prelog uses the Presenter screen management system to provide facilities for manipulating
region structures and for setting, clearing and interrogating properties of regions. Low-level
implementation details, such as raster graphics operations, are isolated within the presentation
system. This is a significant benefit for the development of CSCW system. Designers are not
forced to consider low-level details for multiple presentation devices. Figure 9.12 shows a
display that was generated using Prelog. In order to produce such an image, Prelog constructs
a part hierarchy using clauses such as (9.21,9.22,9.23). The region properties, attributes and
behaviors of each part, represented by clauses such as (9.33), are then recorded in a tree. This
data structure is traversed. Information about each region is passed to Presenter. For designers,
the net effect of linking Tokio and Presenter is to provide the impression of a graphical output
channel.

9.8.2 Handling Device Input

Prelog must translate device primitives into input events. It is important that the complexity of
handling input from many concurrent users should not frustrate the design of CSCW systems.
Prelog reduces this complexity by isolating low-level device handling within Presenter. Cur-
rent implementations support on select, on move and on size to represent initial selection,
move and scaling events. The on select up, on move up and on size up events represent
terminating selection, move and scaling. Users may type input directly into editable regions.

250 JOHNSON

Interaction

Tokio running
under Prolog

Input events
and display
structures

Temporal logic
dialogue sequences

User 2 User NUser 1

Presenter
System System System

Presenter Presenter

Designers

InteractionInteraction

Figure 9.13 The distributed Prelog architecture

Such keyboard input is represented by an on CR event which is generated each time a car-
riage return is pressed. If necessary, designers can then specify that Prelog should read the
text which has been entered into an editable region.

It can be extremely computationally expensive to support fine-grained updates of shared ob-
jects in CSCW systems. Presenter provides means of reducing this cost; it implements Took’s
notion of surface interaction [Too91]. Some graphical operations, such as textual and geomet-
ric manipulations, have no “deep” semantic meaning for an application. They can, therefore,
be handled by Presenter without reference to the logic specification. For instance, designers
can specify that the image of the pump presented to user 1 changes under selection. Presenter
will then automatically highlight the region whenever user 1 selects it. The designer is only
forced to explicitly request this image update if it is to be presented to other users. Prelog also
provides efficiency features which ensure that certain input events from particular operators
can be discarded. For instance, on move and on move up might be ignored by safety-critical
CSCW systems in which users are prevented from altering the layout of their displays. All of
these enhancements are optional and can be explicitly represented in the clauses of logic
specifications.

Controlling event-based interfaces from within a logic programming environment raises
many practical and theoretical problems. In particular, it is unclear how asynchronous, con-
current input from many different operators can be supported without sacrificing Prelog’s
notion of execution as proof. If Prelog is interrupted with new input events, how should this
information be accommodated within an ongoing proof? For instance, if Prelog were forced
to suspend a proof to handle a move event on an inlet icon, it might have to ensure that
prior proof steps did not depend on previous information about the position of that object.
This would radically affect the nature of the programming environment provided by Prelog.
A large number of input events might stretch the resources of any implementation to an unac-
ceptable level. An obvious alternative is to make Prelog responsible for sampling input. The
designer is free to specify when Prelog should poll Presenter. One drawback to this approach

FORMAL METHODS IN CSCW 251

is that important events from one user can be stored until Prelog has finished handling less
important input from other users.

Tokio was intended to run on single-user, single-processor implementations. In contrast, our
implementation of Prelog uses UNIX sockets [Lef90] to support interaction between a number
of users communicating over local and wide area networks. Figure 9.13 illustrates the Prelog
architecture. In the current implementation of Prelog, graphics write(To client;Message)
is evaluated as true if a Message string is successfully sent to the client process running
on the user’s workstation. graphics read(From client;Message) is evaluated as true if
Message unifies with input sent from a client process. For example, event close pump A
(9.36) can be implemented by the following clause. The graphics read and graphics write
formats are used here to aid the exposition. Designers can re-name these clauses to increase
the tractability of an executable specification:

close pump A prototype (

graphics write(user 1; display(condensate display));

graphics write(user 2; display(deluge display));

graphics write(user 1; part(condensate display; pump A error icon));

graphics write(user 2; part(deluge display; pump A error icon));

3(graphics read(user 1; input(pump A error icon; on select);

(not(effect(on select; pump A error icon; pump A off)U

graphics read(user 2; input(pump A error icon; on select)): (9.46)

This states that there is a dialogue to close pump A if a message is written to user 1’s
client to ensure that they are presented with the condensate display and a message is
written to user 2’s client to ensure that they are presented with the deluge display and
messages are sent to ensure that the pump A error icon is part of the displays and even-
tually a select event for that icon is read from the user 1. This input is ineffective until a
selection is also read from user 2.

Prelog also supports the implementation of CSCW systems which provide multiple win-
dows on each workstation. A stub process is created for each window, graphical clauses are
easily parameterized by their intended destination; user 1 window 1.

9.8.3 Environmental Animation

Prelog offers significant advantages over traditional prototyping tools. Previous systems help
developers to quickly mock-up CSCW displays and animate dialogue sequences. There is a
danger, however, that such tools may produce dialogues which cannot easily be integrated
with their eventual working environment. Warnings may be obscured by other operators or
pieces of equipment. On-line help may be abandoned if users cannot easily read particular
displays. In contrast, the Prelog tool exploits location clauses such as those in (9.45) to build
up three-dimensional models of control rooms and offices. The same system can, therefore,
be used to prototype dialogues as well as view the potential layout of working environments.
These models can be shown to operators and to the members of concurrent design teams that
are working on control room planning and display development. The term “environmental

252 JOHNSON

Software
Engineers

Hardware
Engineers

Temporal specifications of
interactive dialogues and
models of working
environments.

3D Model &
user interface

Tokio running
under Prolog

Presenter

Designers

Human
Factors

Engineers
Users

3D Model &
user interface

Figure 9.14 The application of Prelog for environmental animation

animation” has been used to refer to our integration of prototyping techniques and three-
dimensional models. Figure 9.14 illustrates this aspect of the Prelog architecture. Further
work intends to explore the more general use of formal notations to reason about the physical
characteristics of working environments. For instance, logic can also be used to characterize
acoustic properties. Layout information might then be recruited to represent appropriate sound
levels within particular areas of a control room. Prelog might provide rudimentary simulations
for these presentation techniques:

timbre(pump A error alarm; bell): (9.47)

amplitude(pump A error alarm; 60dBA): (9.48)

pitch(pump A error alarm; 260Hz): (9.49)

This states that the pump A warning has the timbre of a bell, the amplitude of the warning
is 60dB and its pitch is 260Hz.

In many human–machine interfaces, changes in the characteristics of acoustic signals are
used to indicate changes in the underlying state of an application. For instance, a continuous
tone might change into a bell in order to indicate a failure in the deluge system. Temporal
logic offers one means of explicitly representing these dynamic properties [Joh91, Joh90].

9.9 CONCLUSION

This chapter has shown how mathematical specification techniques can support the design
of CSCW systems. In particular I have argued that temporal logic can be used to represent

FORMAL METHODS IN CSCW 253

Q: how to prevent contention
during pump errors

O: transaction_lock

O: priority_solution

C: prevents low
priority input from
taking effect during
failure.

C: ensures that low
priority commands
are eventually
effective.

Figure 9.15 Literate specification for transaction lock

critical requirements for sychronization and locking. This approach is justified because tem-
poral properties have a profound impact upon the nature of interaction in multi-user systems.
It has also been argued that graphical information and input events must be explicitly repre-
sented within abstract models of CSCW applications. I have also shown how the application
of formal methods can be extended to represent and reason about the physical dimensions of
working environments. This is often neglected within the development of CSCW systems and
represents an important extension to the application of formal methods. For CSCW systems,
the layout of an office, factory or control room will have a critical impact on the operation
and use of a human–computer interface. Finally, I have argued that prototyping tools must be
provided if non-formalists are to assess the products of mathematical specification techniques.
The Prelog system has been developed to address this concern. It can be used to directly derive
partial implementations from temporal logic clauses, such as those introduced in this chapter.
It can also be used to generate environmental animations, or 3-D models, of potential work-
station layouts. This enables designers to view potential displays within their intended context
of use.

Many questions remain to be addressed before formal methods can be widely applied to
support the development of multi-user systems. In particular, there are problems in scaling up
the approach to deal with very large-scale systems. Such applications raise a different set of
CSCW problems. Not only do they raise issues about synchronizing multi-user access to com-
puter resources, these design challenges also force designers to consider the synchronization
of multiple development teams. This is difficult because many members of these teams will
have no understanding of formal methods. In order to address this issue, we are developing lit-
erate specification techniques [Joh96a, Joh95b]. This approach provides clients and users with
access to both formal and semi-formal documentation. In particular, design rationale is used
to record the reasons why particular clauses were used during the development of a CSCW
specification. For example, Figure 9.15 presents the arguments for and against locking out the
user in the manner described by transaction lock (9.16) and priority solution (9.14). The
problem of reducing contention during pump failures can either be satisfied by transaction
locking or by the use of input priorities. These are labelled as alternative options, O. These
options are linked to criteria, C, which represent the reasons for and against a particular ap-
proach. In the case of transaction locking this is supported by the criteria that it prevents low
priority input from taking effect during the failure. Positive or supporting criteria are indicated
by solid lines. In contrast, it is not supported by the argument that low-priority commands will
eventually be effective. This is because they are literally locked-out of the system. The dotted
lines indicate negative or weakening criteria. The intention here is that the QOC argumenta-

254 JOHNSON

tion structures should enable designers to question the approaches that are embodied within
formal specifications. It should be possible for non-formalists to ask why a system is designed
the way it is.

The literate specification approach, described above, addresses a fundamental paradox in
the formal design of CSCW systems. In order to obtain precise notations for reasoning about
the complexity of multi-user communication, we may lose the ability to communicate within
and between multiple design teams. Not everyone can be expected to learn and understand
temporal logics. This re-iterates a key point for future work in this area. We will not be able
to develop interfaces that support groupwork unless we provide techniques that can be used
by groups of designers. This represents the greatest challenge to the continued application of
formal methods for CSCW systems.

REFERENCES

[App86] Rose, C. Inside The Apple Macintosh, Vol. I. Addison Wesley, Wokingham, UK, 1986.
[Aoy86] Aoyagi, T., Fujita, M. and Moto-Oka, T., Temporal logic programming language -Tokio-

programming in Tokio. In Wada, E. (Ed.), Proceedings of the 4th Annual Conference - Logic
Programming ’85, LNCS 221, pages 128–137. Springer-Verlag, Berlin, Germany, 1986.

[Bas90] Bastide, R. and Palanque, P., Petri net objects for the design, validation and prototyping
of user-driven interfaces. In Diaper, D., Gilmore, D., Cockton, G. and Shackel, B. (Eds.),
Human–Computer Interaction — INTERACT’90, pages 625–631. Elsevier Science Publica-
tions, North Holland, Netherlands, 1990.

[Bur89] Burton, C.T., Cook, S.J., Gikas, S., Rowson, J.R. and Sommerville, S.T., Specifying the Apple
Macintosh Toolbox Event Manager. Formal Aspects of Computing, 1:147–171, 1989.

[Cra93] Craigen, D., Gerhart, S. and Ralston, T., An international survey of industrial applications
of formal methods. Technical Report NISTGCR 93/626, U.S. Department of Commerce,
National Institute of Standards and Technology, Githersburg, USA, 1993.

[Cul90] Cullen, Proceedings of the Public Enquiry into the Piper Alpha Disaster. The Department of
Energy, London, UK, 1990.

[Dix97] Dix, A., Rodden, T. and Sommerville, I., Modelling versions in collaborative work. IEE
Proceedings in Software Engineering, 14(4):195–205, 1997.

[Ell89] Ellis, C.A. and Gibbs, S.J., Concurrency control in groupware systems. ACM SIGMOD
Record, 18(2):399–407, 1989.

[Ell91] Ellis, C.A., Gibbs, S.J. and Rein, G.L., Groupware: Some issues and experiences. Communi-
cations of the ACM, 34(1):35–58, January 1991.

[Gal80] Galer, I.A.R. and Yap, B.L., Ergonomics in intensive care: Applying human factors to the
design and evaluation of a patient monitoring system. Ergonomics, 23(8):763–779, 1980.

[Gra88] Grandjean, E., Fitting the Man to the Task: Occupational Ergonomics. Taylor & Francis,
London, UK, 1988.

[Gra95] Gray, P.D. and Johnson, C.W., Requirements for interface design notations. In Palanque,
P. and Bastide, R. (Eds.), Design, Specification and Verification of Interactive Systems ’95,
pages 113–133. Springer Verlag, Berlin, Germany, 1995.

[Gre87] Greif, I. and Sarin, S., Data sharing in group work. Communications of the ACM, 5(2):197–
211, 1987.

[Har95] Harrison, M.D., The role of verification. In Palanque, P. and Bastide, R. (Eds.), Design,
Specification and Verification of Interactive Systems ’95, pages 342–344. Springer Verlag,
Berlin, Germany, 1995.

[Hix93] Hix, D. and Hartson, H.R., Developing User Interfaces. John Wiley & Sons, London, 1993.
[Hod77] Hodges, W., Logic. Penguin Books, London, 1977.
[Joh90] Johnson, C.W. and Harrison, M.D., Using temporal logic to support the specification and

prototyping of interactive control systems. International Journal of Man–Machine Studies,
36:357–385, 1992.

FORMAL METHODS IN CSCW 255

[Joh91] Johnson, C.W., Applying temporal logic to support the specification and prototyping of con-
current multi-user interfaces. In Diaper, D. and Hammond, N. (Eds.), People And Computers
VI: Usability Now, pages 145–156. Cambridge University Press, Cambridge, UK, 1991.

[Joh92] Johnson, C.W., Specifying and prototyping dynamic human-computer interfaces for stochas-
tic applications. In Alty, J.L., Diaper, D. and Guest, S. (Eds.), People And Computers VIII,
pages 233–248. Cambridge University Press, Cambridge, UK, 1993.

[Joh94a] Johnson, C.W., McCarthy, J.C. and Wright, P.C., Using a formal language to support natural
language in accident reports. Ergonomics, 38(6):1265–1283, 1995.

[Joh94b] Johnson, C.W., Representing and reasoning about the impact of environmental layout upon
human computer interaction. Ergonomics, 39(3):512–530, 1996.

[Joh95a] Johnson, C.W., Using Z to support the design of interactive, safety-critical systems. IEE
Software Engineering Journal, 10(2):49–60, 1995.

[Joh95b] Johnson, C.W., Literate specification. Software Engineering Journal, 11(4):224–237, 1996.
[Joh96a] Johnson, C.W., Documenting the design of safety-critical user interfaces. Interacting With

Computers, 8(3):221–239, 1996.
[Joh96b] Johnson, C.W. and Gray, P.D., Error driven design. In Harrison, M.D. and Vanderdonk,

J. (Eds.), Design, Specification and Verification of Interactive Systems’96, Springer Verlag,
Berlin, Germany, 1996.

[Joh97] Johnson, C.W., The impact of time and place on the operation of mobile computing devices.
In People and Computers XII, pages 175–190. Springer Verlag, Berlin, Germany, 1997.

[Kan88] Kantowitz, B.H. and Casper, P.A., Human workload in aviation. In Wiener, E.L. and Nagel,
D.C. (Eds.), Human Factors In Aviation, pages 157–187. Academic Press, London, UK, 1988.

[Kra91] Kramer, B., Introducing the GRASPIN specification language SEGRAS. Journal of Systems
and Software, 15(1):17–31, 1991.

[Kuh89] Kuhmann, W., Stress inducing properties of system response times. Ergonomics, 32(3):271
– 280, 1989.

[Lef90] Leffler, S.J., McKusick, M.K., Karels, M.J. and Quarterman, J.S., The Design and Implemen-
tation of the 4.3BSD UNIX Operating System. Addison Wesley, Reading, USA, 1990.

[Mal89] Malone, T.B., MPTS methodology in the Navy: Enhanced HARDMAN. In Pettigrew, D.L.
(Ed.), Proceedings of the 33rd Annual Meeting of the Human Factors Society, pages 1044–
1048. Human Factors Society, Santa Monica, USA, 1989.

[Man81] Manna, Z. and Pnueli, A., Verification of concurrent programs: The temporal framework. In
Boyer, R.S. and Strother Moore, J. (Eds.), The Correctness Problem In Computer Science,
pages 215–273. Academic Press, London, UK, 1981.

[McC91] McCarthy, J.C., Miles, V. and Monk, A.F., An experimental study of common ground in
text-based communication. Proceedings of the CHI’91 Conference on Human Factors in
Computing Systems, pages 209–215. ACM, New York, USA, 1991.

[Pal95] Palanque, P. and Bastide, R., Formal specification and verification of CSCW using interactive
cooperative object formalism. In People and Computers X, pages 197–212. Springer Verlag,
Berlin, Germany, 1995.

[Pen90] Pendergast, M.O. and Vogel, D., Design and implementation of a P.C. based multi-user text
editor. In Gibbs, S. and Verrijn-Stuart, A.A. (Eds.), Multi-User Interfaces And Applications,
pages 195–206. Elsevier Science Publications, North Holland, Netherlands, 1990.

[Pri67] Prior, A., Past, Present, Future. Oxford University Press, Oxford, UK, 1967.
[Sze88] Szekely, P. and Myers, B., A user interface toolkit based on graphical objects and constraints.

ACM SIGPLAN Notices, 23(11):36–45, 1988.
[Too91] Took, R., Integrating inheritance and composition in an objective presentation model for

multiple media. In Post, F.H. and Barth, W. (Eds.), EUROGRAPHICS ’91, pages 291–303.
Elsevier Science Publications, North Holland, Netherlands, 1991.

[War89] Wardell, R.W., An ergonomics perspective on safety in the oilfield. In Pettigrew, D.L. (Ed.),
Proceedings of the 33rd Annual Meeting of the Human Factors Society, pages 999–1003.
Human Factors Society, Santa Monica, USA, 1989.

[Wic84] Wicken, C.D., Engineering Psychology And Human Performance. C.E. Merrill Publishing
Company, London, UK, 1984.

[Win87] Winograd, T. and Flores, F., Understanding Computers And Cognition. Addison-Wesley,
Reading, USA, 1987.

