
Computer
Supported
Co-operative Work

Edited by

Michel Beaudouin-Lafon
Université Paris-Sud, France

JOHN WILEY AND SONS
Chichester • New York • Weinheim • Brisbane • Singapore • Toronto

Copyright © 1999 by John Wiley & Sons Ltd,
Baffins Lane, Chihester
West Sussex PO19 1UD, England

National 01234 779777
International(+44) 1234 779777

e-mail (for orders and customer service enquiries): cs-books@wiley.co.uk

Visit our Home Page on http://www.wiley.co.uk
or

http://www.wiley.com

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, scanning or otherwise, except under the terms of the Copyright,
Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright
Licensing Agency, 90 Tottenham Court Road, London, W1P 9HE, UK, without the
permission in writing of the publisher.

Other Wiley editorial offices

John Wiley & Sons, Inc., 605 Third Avenue,
New York, NY 10158-0012, USA

WILEY-VCH Gmbh, Pappelallee 3,
D-69469 Weinheim, Germany

Jacaranda Wiley Ltd, 33 Park Road, Milton,
Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01,
Jin Xing Distripark, Singapore 129809

John Wiley & Sons (Canada) Ltd, 22 Worcester Road,
Rexdale, Ontario M9W 1L1, Canada

Library of Congress Cataloging-in-Publication Data

Beaudouin-Lafon, Michel.
Computer supported co-operative work / Michel Beaudouin-Lafon

p. c. — (Trends in software ; 7)
Includes bibliographical references and index.
ISBN 0-471-96736-X (alk. paper)
1. Teams in the workplace — Computer networks. I. Title
II. Series.
HD66.2.B4 1999
658.4'02 — dc21 98-42699

CIP

British Library Cataloguing in Publication Data

A catalogue record of this book is available from the British Library.

ISBN 0-471-96736-X

Produced from Postscript files supplied by the author.
Printed and bound in Great Britain by Biddles, Guildford, UK.
This book is printed on acid-free paper responsibly manufactured from sustainable
forestry, in which at least two trees are planted for each tree used in paper production.

Contents

Series Editor’s Preface ix

Preface xi

List of Authors xv

1 Designing Groupware Applications:
A Work-Centered Design Approach 1
K. Ehrlich

1.1 Introduction 1
1.2 Requirements 4
1.3 Design 14
1.4 Deployment and Adoption of the Application 18
1.5 Case Study: TeamRoom 20
1.6 Summary 23
Acknowledgements 24
References 24

2 Workflow Technology 29
C.A. Ellis

2.1 Overview 29
2.2 Workflow Concepts and Architecture 30
2.3 Historical Perspective and Related Work 36
2.4 Workflow Models and Modeling 38
2.5 Workflow Meta-Model 40
2.6 Example Systems 43
2.7 Research Directions and Issues 46
2.8 Summary 51
References 51

vi CONTENTS

3 Media Spaces: Environments for Informal
Multimedia Interaction 55
W.E. Mackay

3.1 Introduction 55
3.2 Early Media Spaces 57
3.3 RAVE: EuroPARC’s Media Space 58
3.4 Other Major Media Spaces 67
3.5 WAVE: A Detailed Case Study 71
3.6 Ethical Issues 77
3.7 Conclusion 79
Acknowledgements 79
References 79

4 Integration of Shared Workspace and
Interpersonal Space for Remote Collaboration 83
H. Ishii

4.1 Introduction 83
4.2 TeamWorkStation-1 and Seamless Shared Workspaces 86
4.3 TeamWorkStation-2 for N-ISDN 89
4.4 Seamless Integration of Interpersonal Space and Shared Workspace 92
4.5 Design of ClearBoard-1 93
4.6 Design of ClearBoard-2 95
4.7 Summary and Future Work 97
Acknowledgements 99
References 100

5 Group Editors 103
A. Prakash

5.1 Introduction 103
5.2 Examples of Group Editors 104
5.3 Group Editor Architecture 107
5.4 Concurrency Control 109
5.5 Undo in a Group Editor 117
5.6 Supporting Collaboration Awareness 123
5.7 Design of Document Structure 126
5.8 Other Design Issues 127
5.9 Future Work 131
References 131

6 Groupware Toolkits for Synchronous Work 135
S. Greenberg and M. Roseman

6.1 Introduction 135

CONTENTS vii

6.2 Run-Time Architectures 136
6.3 Programming Abstractions 144
6.4 Groupware Widgets 150
6.5 Session Management 158
6.6 Conclusion 161
Acknowledgements 164
References 164

7 Architectures for Collaborative Applications 169
P. Dewan

7.1 Introduction 169
7.2 Collaboration Model 170
7.3 Generic Architecture 172
7.4 Design Space 174
7.5 External Modules 185
7.6 Rules 187
7.7 Classifying Existing Systems 188
7.8 Conclusions and Future Work 189
Acknowledgements 191
References 191

8 Software Infrastructures 195
P. Dourish

8.1 Introduction 195
8.2 Infrastructure Elements in CSCW 196
8.3 Communication 199
8.4 Coordination 202
8.5 Storage 205
8.6 Infrastructure and Specialization 207
8.7 Summary 216
Acknowledgements 217
References 217

9 Expanding the Role of Formal Methods in CSCW 221
C. Johnson

9.1 Introduction 221
9.2 Starting From the Ground Up: The Application of Formal Methods to CSCW 228
9.3 Dialogue Sequences 230
9.4 Formalizing the Presentation of CSCW Systems 236
9.5 Working Environments 243
9.6 Representing Workstation Layout 245
9.7 Using Ergonomic Guidelines to Inform CSCW Design 246
9.8 Prototyping 248
9.9 Conclusion 252

viii CONTENTS

References 254

Index 257

Series Editor’s Preface

During 1990, the twentieth anniversary of Software Practice and Experience, two special
issues (one on UNIX Tools and the other on the X Window System) were published. Each
issue contained a set of refereed papers related to a single topic; the issues appeared a short
time (roughly nine months) after the authors were invited to submit them. The positive ex-
perience with the special issues resulted in Trends in Software, a fast turn-around serial that
devotes each issue to a specific topic in the software field. As with the special issues of SP&E,
each issue of Trends will be edited by an authority in the area.

By collecting together a comprehensive set of papers on a single topic, Trends makes it
easy for readers to find a definitive overview of a given topic. By ensuring timely publication,
Trends guarantees readers that the information presented captures the state of the art. The
collection of papers will be of practical value to software designers, researchers, practitioners
and users in that field.

Papers in each issue of Trends are solicited by a guest editor who is responsible for solicit-
ing them and ensuring that the selected papers span the topic. The guest editor then subjects
each paper to the rigorous peer review expected in any archival journal. As much as possible,
electronic communication (e.g. electronic mail) is used as the primary means of communi-
cation between the series editor, members of the editorial board, guest editor, authors, and
referees. A style document and macro package is available to reduce the turn-around time by
enabling authors to submit papers in camera-ready form. Papers are exchanged electronically
in an immediately printable format.

Trends will appear roughly twice a year. We now have issues in interactive data visualization
techniques and computer supported cooperative work. Topics to be covered in forthcoming
issues include other novel aspects of software.

The editorial board encourages readers to submit suggestions and comment. You may send
them via electronic mail to bala@research.att.com or by postal mail to the address given
below.

I would like to thank the editorial board as well as the staff at John Wiley for their help in
making each issue of Trends a reality.

Balachander Krishnamurthy
Room D-229

AT&T Labs–Research
180 Park Avenue

Florham Park NJ 07932
USA

Preface

Computer Supported Cooperative Work, or CSCW, is a rapidly growing multi-disciplinary
field. As personal workstations get more powerful and as networks get faster and wider, the
stage seems to be set for using computers not only to help accomplish our everyday, personal
tasks but also to help us communicate and work with others. Indeed, group activities occupy a
large amount of our time: meetings, telephone calls, mail (electronic or not), but also informal
encounters in corridors, coordination with secretaries, team workers or managers, etc. In fact,
work is so much group work that it is surprising to see how poorly computer systems support
group activities. For example, many documents (such as this book) are created by multiple
authors but yet no commercial tool currently allows a group of authors to create such shared
documents as easily as one can create a single-author document. We have all experienced
the nightmares of multiple copies being edited in parallel, format conversion, mail and file
transfers, etc.

CSCW is not recent. Back in the late 1960s, Doug Engelbart created the NLS/Augment
system that featured most of the functions that today’s systems are trying to implement
such as real-time shared editing of outlines, shared annotations of documents, and video-
conferencing. The field really emerged in the 1980s and has been growing since then, boosted
in the recent years by the explosion of the Internet and the World Wide Web. The Web itself is
not a very collaborative system: pages can be easily published but it is impossible (or very dif-
ficult) to share them, e.g. to know when someone is reading a particular page or when a page
has been modified. The range and complexity of the problems to solve to support cooperative
activities is rapidly overwhelming: data sharing, concurrency control, conflict management,
access control, performance, reliability, the list goes on.

A large part of this book is devoted to the exploration of these problems and the state of
the art of their solutions. In fact, CSCW is challenging most of the assumptions that were
explicitly or implicitly embodied in the design of our current computer systems. CSCW tools,
or groupware, are by nature distributed and interactive. To succeed in the marketplace, they
must be safe (authentication), interoperable (from network protocols to operating systems and
GUI platforms), fault-tolerant and robust (you don’t want to be slowed down or loose your
data if another participant in the session uses a slow connection or experiences a crash).

In addition to these technical difficulties, there is another, maybe harder, problem in imple-
menting groupware: people. For a medium to work, there must be an audience that accepts
using it. Usability issues have stressed the need to take the users into account when designing,
developing and evaluating an interactive software. For groupware, usability issues go beyond
the now well-understood (if not always well-applied) methods from psychology and design.
They involve social sciences to understand how people work together, how an organization
imposes and/or adapts to the work practices of its workers, etc. In many CSCW projects,

xii PREFACE

ethnographic studies have been conducted to better understand the nature of the problem and
the possible solutions. A large body of the research work in CSCW is conducted by social sci-
entists, often within multidisciplinary teams. Computer scientists often ignore or look down
upon this aspect of CSCW and almost always misunderstand it. User-centered design is es-
sential to ensure that computer scientists solve the right problems in the right way. Traditional
software works as soon as it “does the job”; Interactive software works better if it is easy to
use rather than if it has more functions; Groupware works only if it is compatible with the
work practices of its users.

Overview of the book

This book attempts to cover the broad field of CSCW and to give an overview of the history,
state of the art and research issues of this exciting field. It is divided into two parts: the first
part covers groupware tools while the second part covers tools for groupware.

The first chapter by Ehrlich focuses on a category of groupware for asynchronous group
work such as the well-known Lotus Notes. More importantly, it provides an in-depth analysis
and a set of recommendations to help design, develop and deploy groupware in an organiza-
tion. Ehrlich emphasizes that groupware is for group work and therefore all aspects of group
work must be well understood for the software to be accepted.

Chapter 2 by Ellis covers workflow systems. Since the 1960s, businesses have been con-
verting their manual or mechanical information systems into computerized systems. Workflow
systems go beyond traditional information systems by embodying a description of the work
processes of the organization. The system therefore can be proactive, e.g. by automatically
circulating documents or by reminding users of their duties when they are late. Ellis analyzes
the promises, realities and problems of this category of groupware.

Chapter 3 by Mackay describes media spaces, i.e. communication systems that combine
audio, video and computers to provide distant users with a means for social interaction and
informal communication. Unlike videoconferencing rooms which require reservations and
inevitably lead to formal meetings, media spaces attempt to broaden the bandwidth among
users in order to support “real-life” human communication. Mackay covers the underlying
design rationale of the existing systems and raises awareness on ethical and privacy issues of
groupware.

Chapter 4 by Ishii describes systems that allow small groups to work in a tightly-coupled
way at a distance, such as an instructor and a student or a group of designers. The chapter is
illustrated by a description of a series of prototypes developed by Ishii and his group. While
the prototypes are technically more and more complex, the chapter shows how the observation
of the type of group work that was to be supported leads from one prototype to the next.

Chapter 5 by Prakash covers shared editors, editors that can be used by several users simul-
taneously to edit, in real-time, a single document. It marks the division between the two parts
of the book: the concepts of shared editor are introduced and some examples are presented.
The chapter then goes into an in-depth description of the techniques used to implement shared
editors, focusing on issues such as managing the consistency between several copies of the
document being edited and implementing multi-user undo.

Chapter 6 by Greenberg and Roseman describes groupware toolkits. In the same spirit
as user interface toolkits, groupware toolkits provide programmers with predefined compo-
nents that help implement groupware tools. The chapter covers toolkits for real-time (or syn-
chronous) groupware, with components such as group widgets, awareness widgets, session

PREFACE xiii

managers, etc. Greenberg and Roseman use their own toolkit, GroupKit, to illustrate the de-
sign issues of such tools.

Chapter 7 by Dewan covers software architectures for CSCW. Since groupware applications
must interact, by definition, with several users, they are in general distributed over a network.
Dewan systematically examines the various ways in which an application can be decomposed
into modules, threads and processes and the many tradeoffs that the various solutions incur.
This leads to a set of measures for an architecture that help better understand this large design
space.

Chapter 8 by Dourish covers software infrastructures, i.e. the types of services that are
or could be provided by the operating system, network and other middleware to implement
groupware applications. Given the varying needs of groupware applications, Dourish presents
a particular approach, open implementation, as particularly promising since it combines flex-
ibility, performance and openness.

Chapter 9 by Johnson provides an original perspective on the role of formal methods in
CSCW, more particularly in the requirements phase of development. Johnson introduces sev-
eral formal notations and models and uses examples to show how they can be applied to
practical cases.

CSCW radically changes the status of the computer. Until now, the computer has been used
as a tool to solve problems. With CSCW, the computer/network is a medium: a means to
communicate with other human beings, a vector for information rather than a box that stores
and crunches data. If we look at the history of technology, new media have been much more
difficult to invent, create and operate than new tools. From this perspective, it is not surprising
that CSCW has not yet realized its full potential, even in the research community. I hope
this book will help readers to better understand the challenges and promises of CSCW and
encourage new developments both in research and in industry.

Michel Beaudouin-Lafon
Laboratoire de Recherche en Informatique

Bâtiment 490
Université de Paris-Sud.

91 405 Orsay Cedex FRANCE
mbl@lri.fr

List of Authors

Prasun Dewan
Department of Computer Science
University of North Carolina
Chapel Hill, NC 27599
USA
dewan@cs.unc.edu

Paul Dourish
Xerox PARC
3333 Coyote Hill Road
Palo Alto, CA 94304
USA
dourish@parc.xerox.com

Kate Ehrlich
Lotus Development Corp.
55 Cambridge Parkway
Cambridge MA 02142
USA
kate ehrlich@lotus.com

Clarence Ellis
Department of Computer Science
University of Colorado
Boulder, CO 90309-0430
USA
skip@cs.colorado.edu

Saul Greenberg
Department of Computer Science
University of Calgary
Calgary, Alta T2N 1N4
CANADA
saul@cpsc.ucalgary.ca

Hiroshi Ishii
MIT Media Laboratory
20 Ames Street
Cambridge, MA 02139
USA
ishii@media.mit.edu

Chris Johnson
Glasgow Interactive Systems Group
Department of Computer Science
University of Glasgow
Glasgow G12 8QQ
SCOTLAND
johnson@dcs.gla.ac.uk

Wendy E. Mackay
Department of Computer Science
Aarhus University
Aabogade 34
DK-8200 Aarhus N
DENMARK
mackay@daimi.aau.dk

Atul Prakash
Department of EECS
University of Michigan
Ann Arbor, MI 48109-2122
USA
aprakash@eecs.umich.edu

Mark Roseman
Department of Computer Science
University of Calgary
Calgary, Alta T2N 1N4
CANADA
roseman@cpsc.ucalgary.ca

1

Designing Groupware
Applications: A Work-Centered
Design Approach
KATE EHRLICH

Lotus Development Corp.

ABSTRACT

Group-ware is about group-work. It is about developing technologies that support the way
people communicate and collaborate to accomplish work goals in the context of personal,
managerial and organizational imperatives. In contrast to single user applications which
support peoples’ tasks, groupware supports peoples’ work. Tasks are often explicit, ob-
servable and concrete. Work is often tacit, invisible and amorphous. The challenge in de-
veloping a groupware application lies in understanding, explicating and then supporting the
invisible work. The chapter provides some insight into the process of developing group-
ware applications by first describing some new methodologies for generating requirements.
It then outlines several themes — communication, awareness, anonymity — which have
emerged as common across many groupware applications. The chapter also addresses the
technical and social issues that emerge when deploying a groupware application in an or-
ganization. Application deployment is one of the most challenging aspects of developing a
groupware application. The chapter concludes with a case study of an application designed
to support coordination and communication in distributed teams. The case study brings
together the topics of Methodology, Design and Deployment in a concrete setting.

1.1 INTRODUCTION

Group-ware is about group work. Group work is the work practice that evolves to get ordinary,
daily work done. Group work includes the informal ad hoc communication that happens be-
tween people in adjoining offices or people in different countries and time zones. Group work

Computer Supported Cooperative Work, Edited by Beaudouin-Lafon
c
 1999 John Wiley & Sons Ltd

2 EHRLICH

happens in a context of personal, managerial and organizational imperatives that encourage
people to share their work with others and reward them when they do.

The design of single-user applications translates users’ tasks and needs into a functional
description which directs the overall design and development of the application. When deliv-
ered, most single user applications can be used “right out of the box” — aside from time spent
learning the application. Groupware applications, designed to support group work, require a
different methodology to understand the tacit, invisible aspects of work practices. Translation
into cogent, explicit requirements is not straightforward but requires extensive ongoing col-
laboration between researchers and application developers to translate descriptions of group
work into application features. The functional requirements govern the technical development
of the application. But adoption of the application is just as likely to be determined by orga-
nizational and managerial preparedness as by the design and technical implementation of the
application itself.

This chapter draws on recent research and practical examples to examine groupware appli-
cations from three perspectives:

� methodologies for providing new product ideas or for extracting requirements from work
practices

� common themes that emerge in the design of many groupware applications
� technical and social challenges in deploying an application.

The chapter concludes with a case study of the design, development and deployment of an
application to support coordination in distributed teams.

1.1.1 Definitions and examples of groupware applications

Groupware, the applied side of CSCW (Computer Supported Cooperative Work), has been
described by Cameron et al. [Cam95] in the Forrester report as:

“ Technology that communicates and organizes unpredictable information, allowing dy-
namic groups to interact across time and space.”

And by Bob Johansen of the Institute for the Future as:

“a generic term for specialized computer aids that are designed for the use of collaborative
work groups. Typically, these groups are small, project-oriented teams that have important tasks
and tight deadlines. Groupware can involve software, hardware, services and/or group process
support.” [Joh88, page 1]

Groupware applications provide computer support for group work. At a general level, group
work includes written and spoken communication, meetings, shared information, and coor-
dinated work. Some group work occurs when people interact with each other at the same
time (synchronously). Face-to-face meetings are an example of people working together at
the same time and often in the same place. People can also work together at different times
(asynchronously). When people leave messages in electronic mail, the communication occurs
over a period of time.

DESIGNING GROUPWARE APPLICATIONS 3

1.1.1.1 Communication

Perhaps the most common type of group work is communication between individuals or
groups. Groupware applications to support synchronous communication includes videocon-
ferencing, shared screens/applications, MediaSpaces, Chat (see Chapters 3, 4 and 5 in this
book [Mac99, Ish99, Pra99]). These applications let people communicate with each other
even though one person(s) is located at a different place than the other person(s), by using
technology to link separate screens. For instance, when people communicate using videocon-
ferencing a camera pointed at one person’s face can relay that image and any sounds to the
screen of someone sitting at another computer. That other computer could be located down
the hall, or in another city or country. In this way people who cannot be physically in the same
place at the same time can still communicate with each other.

Applications to support asynchronous communication include electronic mail, perhaps the
most widely used groupware application. Electronic mail lets people leave messages for one
or more other person at any time to be read by that person at any time and in any place.

Other things can emerge from communication such as the development of virtual commu-
nities whose continued communication/participation is then further supported by technology.

1.1.1.2 Meetings

One of the most common work activities in most organizations are face-to-face meetings.
While it might seem that this is one place where there are no barriers of time or place, there
is still opportunity for applications to support work. Groupware applications to support meet-
ings include software that captures and organizes ideas for brainstorming, summarization and
reporting. This software is most often used in specially equipped rooms with computers em-
bedded in desks. People attending one of these meetings can enter ideas, comments, votes
into the computer at particular times during the meeting. The software might simply display
the written ideas, let someone, usually a meeting facilitator, group the ideas, or the software
might tally votes. All of which supports the work of the meeting in a way that goes beyond
what the people in the meeting could do on their own.

1.1.1.3 Information Sharing

When people work together, there is often a need not only to communicate with others but
to share information. Information is commonly shared by leaving an electronic document
in a database where it can be read by anyone with access to that database. This is different
from electronic mail where a document is sent to a particular person or sometimes a group of
people. Groupware applications include discussion databases, bulletin boards and electronic
news groups where documents and their responses are often grouped together under a single
heading or keyword making it easier to follow the thread of a discussion.

Applications for publishing documents have sometimes also been called groupware. How-
ever, this labeling is somewhat controversial. This chapter takes the position, that an appli-
cation can be considered groupware only when more than one person has the opportunity to
create documents or other responses. Applications that let one person publish documents to a
wide audience of readers are not good examples of groupware.

4 EHRLICH

1.1.1.4 Coordinating Work Processes

In many operational settings, people coordinate their work over time making sure that deci-
sions made by one person are acted upon before being passed on to the next person. Com-
monly referred to as workflow systems, these applications often embody features such as pri-
vacy control, sequencing, notification, and routing (see also Chapter 2 in this book [Ell99]).
Workflow systems may also include a decision support component as part of the overall pro-
cess. Workflow systems are often thought of in the context of formal approval processes or
large production settings. Systems designed to support coordination between people include
project management, tracking systems, shared calendars. As defined here, workflow could
also describe the kind of system used in medical settings where several people need to inter-
act with the same data in handling administration of patient records. While not necessarily
formally acknowledged as workflow or groupware, these kinds of applications meet the crite-
ria of having multiple people interacting with the same application and hence the need on the
part of the application developer to pay attention to issues of access, privacy and simultaneity
of use.

Forrester [Bro97] gives this description of a groupware application built by a computer
company to better manage projects:

“We are the professional services division of a major computer company. Time is our enemy.
The longer a project goes, the worse things are. We’re building a project management system
that puts the project plan on the Internet for feedback, updates, notation, and comments from all
team members, including customers. Before, one person managed the project with relatively
static plans, but with this program, project management becomes much more dynamic and
fluid.”

1.1.1.5 Groupware Solutions

In addition to applications designed to solve particular problems, there are also efforts such
as digital libraries, electronic commerce, knowledge management and distance learning, all
of which include some degree of groupware within a larger context. It is often the case that
the scale of these efforts requires a stronger “solution”-based approach in which technol-
ogy is embedded within technical and professional services such as training and management
consulting. These “solutions” are often distributed through consulting and other service orga-
nizations who are best suited to adapt the solution to the customers’ needs and to handle the
larger scale effort.

1.2 REQUIREMENTS

This chapter assumes a phased approach in the development of a new groupware application.
In broad terms, the first phase, called requirements, concerns the translation of the users’ needs
into a functional specification from which a detailed design can be made. The second phase,
called design, focuses on what gets built and how. The third phase, called deployment, attends
to the details of introducing and rolling out the application to the customer or user.

In gathering requirements for the development of a new groupware application, the focus
should be on understanding the invisible work and work practices [Nar98a, Suc95] as well
as the visible, and on understanding the physical and organizational context in which work

DESIGNING GROUPWARE APPLICATIONS 5

is done. That work context is increasingly nontraditional — homes, airports, train stations,
hotel rooms; anywhere where a laptop computer — or a fax or phone — can be carried and
attached to a wide area network such as the Internet. If members of a group frequently work
apart, both the technology and the culture of the group needs to accommodate a different style
of interaction and coordination, as O’Hara-Devereaux and Johansen [OHa94] emphasize:

“Global organizations cannot function without information technology. But the technology
itself is not the answer to the myriad problems of working across geographical and cultural
boundaries. The ultimate answers to these problems remain in the realm of human and organi-
zational relations.” [page 74]

It should be noted that the emphasis on groups, work, and work practices should not obscure
the need for some level of task analysis within the application design. Workflow applications
may have specific tasks embedded within them that are amenable to conventional task analysis
methods. Similarly, applications originally designed for single users may be appropriated by
the group. For example, spreadsheets, originally designed for individual use, were found to
be part of an overall group collaboration (e.g. [Nar93]), especially in sharing expertise and
generating alternative scenarios. Groupware applications also need to be deliberate about the
design of the user interface so that each person interacting with the application understands
how to use the application as well as understanding the meaning of the work that is being
supported by the technology. Designing for ease of use is as much a part of the design of
groupware as it is for single-user applications.

1.2.1 Work Practices

Before plunging into the methodological approaches toward collecting requirements, it is im-
portant to understand what is meant by work practices and how these might differ from what
is thought of as work processes or routine work.

Most groups engage in some degree of routine work that appears predictable, is often
thought to be tedious, may be time-consuming, and is often error-prone. Some organizations,
such as insurance companies, make a business out of such routine work by, for instance, pro-
cessing insurance claims. This would appear to be an area in which computer support could
reduce the amount of uninteresting work that people do, reduce error rates, provide accurate,
up-to-the-minute status information and save money. Because the work is routine, it should be
relatively straightforward to write down the sequence of steps that make up these workflows.

However, it turns out that even in simple cases, the work is never simply “routine” (e.g.
[Mul95]) even though the people doing it might describe it that way. When Suchman [Suc83]
studied accounting clerks, they described their jobs in a way that corresponded to the formal
procedures. However, when Suchman observed these clerks, it was clear that they relied on
informal, locally determined practices to get their work done. These practices were not written
down anywhere nor were they part of any explicit training that the clerks received. Rather
these practices were learned on the job.

If the application fails to support local work practices, people will either stop using the ap-
plication or develop workarounds so that they can continue to work in a way that has evolved
to be effective and efficient. People may also resist adoption if the application is perceived as
compromising core skills and competencies. The two examples below, from a rich literature
of work practice studies (e.g. [Pyc96, Sta94, Hug92, Hea91]), illuminate what can happen

6 EHRLICH

when systems are designed and delivered based on externally generated processes rather than
the actual work practices.

1.2.1.1 Printing

Bowers et al [Bow95] describe work done by a large printer with several offices around
Britain. The organization used both traditional print technology, such as hot metal presses and
offset lithography, as well as newer technologies, such as high-end photocopying and digi-
tal reprographics. From an outsider’s point of view, printing might seem to be a well-known
and somewhat routinized process that should be easily described in terms of the sequence of
tasks and movement of materials. As such, the work of printers might be considered amenable
to some level of automation through, for instance, a workflow application that would handle
some of the administrative work by which jobs are categorized by type and assigned codes,
customers, delivery dates and so forth. The application might further capture data about length
of time and type of materials, as well as control some of the more routine operations so that
the operator had more time to handle other parts of the job.

From the point of view of the people doing the work, however, the operations and their
sequence are anything but routinized. In fact, close inspection of the work reveals that the print
operators evolved numerous small but significant modifications to the normative sequence of
operations to ensure a smooth and efficient flow of work. These practices included: prioritizing
the work, anticipating the work, supporting each other’s work, knowing the idiosyncrasies
of the machines, identifying and allocating interruptible work. For instance, each print job,
which often involved multiple processes and different people, was accompanied by a “docket”
marking details of the job, such as materials required, cost code, and desired delivery date.
This docket would get transferred with the print job from operator to operator. Operators were
supposed to order these dockets in terms of delivery date and select the next print job with
the earliest date. However, in practice the operators would ensure a smooth flow of work by
sometimes juggling these jobs based on complexity of job, how long it would take and whether
there were other time-consuming processes later on, as well as factoring in jobs remaining
from the previous day. In fact, the digital reprographics technology used in the print industry
meant that simply following date order would not utilize the equipment efficiently, requiring,
for instance, frequent changes of paper type or size or long idle times following a short print
job if the operator was busy with another part of the job.

The operators were very familiar with the competing demands on the equipment and other
resources and had evolved practices which adapted the normative ordering to the situation
enabling them to conduct their work smoothly and efficiently. Moreover, these variations on
the explicit process were well understood by all the operators and the administrative staff and
constituted, as it were, their shared and distributed cognition of the work.

This group had a contractual obligation to install and use a workflow application designed
specifically for the print industry, although not necessarily for this particular group. The ap-
plication was designed to automate many of the routine administrative tasks while also main-
taining a record of time taken on a job, materials used etc. Such information was useful in
preparing reports and maintaining stock control. By contrast with the efficient smooth flow of
work that had evolved in practice, the imposition of the workflow application disrupted the
smooth flow of work by requiring that all print jobs be handled only in a normative fashion.
For instance, the application required that no job could be started until an order form had been
submitted. While this is the correct procedure, in practice, the operators would often jump the

DESIGNING GROUPWARE APPLICATIONS 7

gun and begin the work in order to utilize the equipment effectively. The method of recording
jobs and time failed to take into account that an operator could be doing multiple jobs at the
same time. Using the system generally demanded extra time by everyone.

Because the operators had a contractual obligation to use the application, ignoring it and
returning to the familiar method of working was not an option. Instead, they responded to the
system by either developing work arounds, or, in extreme cases, reorganizing the work itself
to adapt the work to the system. In either case, the overall work was done less efficiently.

As Bowers et al [Bow95] expressed:

“Workflow from within characterises the methods used on the shopfloor which emphasise
the local and internal accomplishment of the ordering of work. Workers juggle their in-trays,
jump the gun, glance across the shopfloor, listen to the sounds coming from machines, re-
distribute the work in the here and now so that what to do next can be resolved. ... In contrast,
workflow from without seeks to order the work through methods other than those which the
work itself provides.”

When technology makes things worse, not better, there are various approaches to the re-
design: a) features in the application should have more flexible mappings between processes
and operators; b) redesign the application with greater emphasis on awareness and mutual
monitoring; c) acknowledge real management practices and pressures to adopt technology
and adapt some of the practices.

1.2.1.2 Trouble Ticketing System

A similar example of a well intentioned groupware application failing to embody the actual
work practices comes from Sachs [Sac95]. She describes a system intended to improve the
efficiency of assigning work to telephone company workers who are called in when there is a
problem with a phone line. The system acts as a general dispatcher routing job tickets to the
office nearest to the person to whom the work has been assigned. The job ticket gets recorded
and is available for the worker to pick up. When one job is finished the worker picks up the
next ticket in the stack. This dispatch function was one part of a larger system which also
handled scheduling, work routing and record keeping.

While this method would seem to make sense and help increase the efficiency of getting
information to the workers in a timely fashion, in practice it failed to acknowledge critically
important information. When a linesman picked up a ticket he/she would spend some time
talking with the coworker. During the conversation, the linesman would pick up incidental in-
formation such as useful phone numbers, prior history as well as a more detailed explanation,
of the actual problem. These valuable “invisible” transactions were getting lost by the appli-
cation. Where some level of diagnosis is involved, it helps if the person fixing the problem
can converse with the person who detected it (see also [Ehr94, Ehr98]). What happened with
the TTS system was that people reverted to their old habits and used the system after the fact
to encode what happened rather than, as intended, to direct their work.

“While TTS was designed to make job performance more efficient, it has created the op-
posite effect: discouraging the training of new hands, breaking up the community of practice
by eliminating troubleshooting conversations, and extending the time spent on a single job by
segmenting coherent troubleshooting efforts into unconnected ticket-based tasks.” [page 41]

8 EHRLICH

1.2.2 Methodologies

Having emphasized the importance of studying groups at work, the question arises, what is
the best method to use to study work practices and group behavior. The work is largely tacit,
invisible and unarticulated, distributed across time and place and hence hard to observe, and
involves multiple people.

This section outlines three methodologies commonly used to understand work practices
and group behavior: Ethnography, Participatory Design, Action Research. Even a deep un-
derstanding of work practices does not automatically result in requirements for applications
to support those practices. There is an additional and explicit step required to translate the
results of empirical research into ideas for new applications. This step is explored in a dis-
cussion of “Applied Ethnography” which describes how empirical results might be used to
a) identify new product opportunities; b) evaluate existing technologies; c) provide input to
design specifications.

It should be noted that groupware applications are frequently developed in direct consulta-
tion with the user. In cases where the application is built by a consulting group or an internal
IS department, the close relationship with the customer often means that the customer’s prob-
lem is known ahead of time. In these cases, the challenge for the application developers and
designers is to elicit requirements from the customer that get at the root of what the problem
really is, rather than what the customer says it is. Methods such as focus groups (e.g. [Hol93]),
brainstorming and scenarios (e.g. [Car95]) may be employed, along with an iterative develop-
ment process using rapid prototyping techniques to elicit these requirements.

When a particular customer has not been identified ahead of time, as is the case with re-
search projects and “shrink-wrapped” commercial applications that are not designed for a
particular customer, then methods derived from research may be more appropriate. These
methods can, of course, also be used in consulting and other settings. Three methods are de-
scribed here which have been used by researchers and practitioners of CSCW and groupware.

1.2.2.1 Ethnography

Perhaps the most common methodology used in CSCW and groupware derives from ethnog-
raphy as it was developed in anthropology, building on the recognition that workplaces are
types of specialized cultures (see especially [Blo93a, Jor96]).

“As practiced by most ethnographers, developing an understanding of human behavior re-
quires a period of field work where the ethnographer becomes immersed in the activities of the
people studied. Typically, field work involves some combination of observation, informal inter-
viewing, and participation in the ongoing events of the community. Through extensive contact
with the people studied, ethnographers develop a descriptive understanding of the observed
behaviors.” [Blo93a, page 124]

By focusing on observation and the study of people at work in their normal work setting,
ethnographic methods can uncover and articulate the tacit, invisible work practices.

“ The ethnographic method, through participant observation, pays attention to how actors
construct their understandings with others through a set of shared practices.” [Ban96, page 14]

Asking people directly about their work won’t reveal what is going on because even those
who spend time reflecting on their own work — and they are in a minority — are too engaged

DESIGNING GROUPWARE APPLICATIONS 9

in the work to be able to step back and explain the minutiae of what they do. However, some
researchers have developed video-based observational and analysis methods in part to elicit
post-hoc reflections from the users (e.g. [Jor95]).

Yet, as we saw in the examples from the print industry and the phone company, developers
must pay attention to the minutiae of work practices in order to design and build an application
that will be accepted, adopted and adapted by users to their work.

“ The purpose of ethnography is to carry out the detailed observations of activities within
their natural setting. The aim is to provide details of the routine practices through which work
is accomplished, identifying the contingencies that can arise, how they are overcome and ac-
commodated, how divisions of labor are actually achieved, how technology can hinder as well
as support activities, and so on.” [Bly97b, page 40]

1.2.2.2 Participatory Design

A complementary method is one in which the users and other stakeholders of the software
are involved in the design from a very early stage and throughout the design and development
process. Often referred to as Participatory Design ([Sch93, Mul93]), this approach emerged
from work by labor unions and others in Scandinavia acting as advocates for workers and
for workplace democracy (see [Gre91] for review of work). A Participatory Design approach
privileges the users in design decisions.

“The focus of participatory design (PD) is not only the improvement of the information
system, but also the empowerment of workers so they can co-determine the development of the
information system and of their workplace.” [Cle93, page 29]

1.2.2.3 Action Research

There are a number of methods from social psychology and related social sciences which
seek to understand groups and group behavior (see especially, [McG84]). Of these, Action
Research is distinguished for its emphasis not only on groups — especially teams — but for
its desire to apply the results of the research to interventions that are designed to improve team
performance (e.g. [Arg78, Arg82]).

A premise of Action Research is that organizations learn — and hence improve — by
reflecting and reexamining the premises under which they are operating:

“ The ultimate purpose of action science is to produce valid generalizations about how
individuals and social systems, whether groups, intergroups, or organizations can (through
their social agents) design and implement their intentions in everyday life. The generalization
should lead the users to understand reality and to construct and take action within it.” [Arg82,
page 469]

Action Research resembles ethnographic methods only in so far as both rely on observation
and qualitative rather than quantitative descriptions. They diverge, in how the empirical results
are used. Ethnographers prefer to take a neutral position on imposing any value judgment on
what they observe; action researchers have it as a goal to change, for the better, the team’s
behavior and performance.

Historically, practitioners of Action Research have eschewed technology, preferring direct
personal interventions to achieve organizational change. However, there is no a priori reason

10 EHRLICH

why the understanding and insights from Action Research methods could not be applied to
the design of technologies which reflect organizational practices. Indeed it is not uncommon
for people engaged in adapting, advising on or building groupware applications to describe
their work as Action Research. Action Research and Participatory Design differ in whether the
application should support or challenge the current status quo. Participatory Design privileges
current users and current practices and seeks, by and large, to design applications to support
and maintain those practices. Action Research enters into a study of a team with a belief in
the value of bringing in interventions in order to assess patterns of activity.

Some potential points of synergy between these methodologies can be found in Snyder
[Sny98] who combines theories of organizational learning with ethnographic research to yield
insights and potential new interventions to communities of practice. Orlikowski and Hofman
[Orl97] discuss strategies for introducing technology into organizations.

1.2.3 Applied Ethnography

There has, unfortunately, often been a disconnect between those who study work practices
and those who develop groupware systems. On the one hand, research ethnographers have
generally shied away from translating their empirical results into specific design recommen-
dations lest their descriptive findings be misconstrued as being too prescriptive. On the other
hand, developers have not delved into the details of the findings to extricate the implications
for their particular application.

The gap between empirical results and application is due in part to the difficulty in trans-
lating from the specificity of the work environment being studied to the general and often un-
known constraints and requirements of the application environment. Plowman et al. [Plo95]
argue that the lack of translation from ethnographic studies to application design arises in
part because the people who do the workplace research by and large do not also develop the
applications. This, they argue, means that someone has to translate the results from the em-
pirical to the technical domain — a problem compounded by the inherently descriptive nature
of ethnographic findings. Some (e.g. [Rog97]) have taken the translation task to heart and ar-
rived at various techniques such as creating a set of guiding questions, use of video clips and
photos, highlighting breakdowns in the current process to convey the results of ethnographic
studies to the development team. Others (e.g. [Ben92]) acknowledge the philosophical differ-
ences between ethnographers and system developers. The ethnographers are able to influence
the design by working closely with the development team and showing a willingness to be
flexible.

When properly applied, insights and results of ethnographic studies can: a) identify new
product opportunities, b) evaluate the use of existing technologies, and c) provide input to
design specifications [Bly97b]. Examples of this “applied ethnography” can be found in the
proceedings of conferences such as the biannual CSCW and European ECSCW conferences.

1.2.3.1 Identify New Product Opportunities

Ideas for new, innovative applications won’t come exclusively from ethnographic studies (see
[Bro91] for extensive discussion on the source of ideas for innovative applications). However,
ethnographic studies, because they focus so closely on the actual work being done, are well
suited to generate insights into potential new software applications. When the result of an

DESIGNING GROUPWARE APPLICATIONS 11

ethnographic study is used to identify new product opportunities, the group being studied are
often different than the group targeted by the application. For instance:

1. In a study of a customer support organization, Ehrlich and Cash [Ehr94] observed that
support analysts routinely shared references to previous cases and to printed or on-line
material. Most of these references were shared as part of the normal dialog about a case.
These and other observations of how people share recommendations led to the development
of a collaborative filtering system for semi-automated personalized recommendations to
on-line documents [Mal95]. Using the application, a person who finds a document that
he/she believes will be of interest to a colleague can forward an e-mail link to the document
along with a personal recommendation.

2. Nardi et al [Nar98b] report on the design of Apple Data Detectors, which are intelligent
agents that analyze structured information and perform the appropriate operations. For
instance, a user finding a meeting announcement could instruct the Detector to automat-
ically add the announcement to a calendar. The development of this product emerged in
part from observations made by Barreau and Nardi [Bar95] who, in a study of how peo-
ple organize their desktops, found that users often complained of not being able to act on
structured information found in common documents. The development of the product was
also informed by a detailed ethnographic study of reference librarians [Nar96] who acted
as agents on behalf of users looking for information. The results of that study translated
into a design goal of having the software agent be unobtrusive and able to infer user needs.

1.2.3.2 Evaluation of Existing Technology

A variety of field methods can be used to evaluate how well existing applications are being
incorporated into the work practice. If the application is not well suited to the setting, as we
saw in the earlier example of the print shop, the failure will be readily apparent. Conversely,
when technology has been successfully incorporated into the work practices, the application
designer can consider extending the application or applying the application to other settings,
but not without considering the consequences of transfer.

In a recent ethnographic study of nurse reviewers who worked on disability and workers’
compensation cases, Ehrlich and Cash [Ehr97] found that an administrative application with
an embedded decision support component was well integrated into the nurse reviewers’ work
practice. They used the application to estimate the length of time that an injured worker should
be away from work. The successful use by the nurse reviewers led to speculation that the appli-
cation could be successfully deployed by physicians and physician assistants who were treating
the patients. Although the physicians and nurse reviewers are linked in a type of extended enter-
prise, they nevertheless acted independently. The decisions made by the nurse reviewers were
informed by their professional judgment and by their evolved work practices. Ehrlich and Cash
argue that reallocating tasks to another part of an enterprise requires re-analysis of the overall
context.

Lab rather than field methods can also be a useful way of evaluating applications, especially
when the goal is to identify particular effects. For instance:

Mark et al [Mar95] studied the effect of a hypermedia system, Dolphin, on the form, content
and linkage amongst ideas created in a face-to-face meeting. Participants in the meeting were
engaged in problem-solving exercises. Mark et al found that the people who used the applica-
tion would group their ideas into networks rather than hierarchical structures and provide more

12 EHRLICH

elaboration for their ideas. Those people not using the application generated less elaborated
ideas. Thus, the technology had a qualitative effect on problem-solving behavior of the people
in the meeting.

1.2.3.3 Input to Design Specifications

New applications often follow a process in which an initial concept — generated from mar-
keting requirements or from the vision of a small group of people — is modified and elabo-
rated into a richer functional specification. Ethnography and other field methods, when used
to study the intended user population, can provide input to these design requirements. The
examples below provide a diverse set of cases where ethnography had a direct influence on
design directions.

1. In a study of air traffic controllers Bentley et al [Ben92] and Hughes et al [Hug92] found
that seemingly routine work was coordinated through a sophisticated use of flight “strips”.
These pieces of paper carry static information about expected and current flights along
with instructions to the aircraft being controlled by the center. However, the controllers had
evolved a practice of manually organizing the strips on a visible flight progress board. The
physical ordering of the strips provided implicit, tacit cues to help the controllers dynam-
ically coordinate and allocate their work. Based on these observations the ethnographers
could direct the design of an automated system for controllers away from an automatic
assignment of strips and toward maintaining elements of the manual method. The study
highlights one of the critical roles of ethnography which is to articulate and demonstrate
to developers that “manual intervention and manipulation of information may be essential
implicit methods of communication and cooperation”.

2. Blomberg et al [Blo93b] offer brief descriptions of several studies done under the rubric
of work-oriented design in which attention to the details of work is used to help guide the
design of new applications. For instance, they studied the use of color and highlighting to
distinguish the text annotations of different people on order forms as part of the coordi-
nation of activity across organizational boundaries. “By providing developers with visual
representations of how the work of processing orders is supported by annotations, and by
viewing videotapes of the people engaged in the work, we are exploring with develop-
ers and work practitioners how computationally active marks on paper might support this
work.”

3. In a different arena, Kukla et al [Kuk92] worked with Monsanto and Fisher Controls Inc.
“to investigate and apply modern information technology” to Monsanto’s integrated nylon
facility in Pensacola, Florida. The goal was to optimize the use of raw materials and en-
ergy through the facility. An ethnographic approach, comprising interviews, observations
and detailed information on one sector of the plant was used to “construct models of events,
conversations and processes within that area of the plant. These models were to be used
as a basis for developing software tools for use within the plant.” At the beginning, work
was characterized as routine and repetitious. But based on ethnography, a number of less
visible aspects of work were uncovered. These included: the ability of people working in
the plant to do ad-hoc juxtaposition of data screens (such as compare live process data to
histograms or maintenance records); and the importance of manual, not automated, collec-
tion of data (e.g. by sensors of machines) by people to get the richness of the environment
(e.g. noises, smells, comments by people working near and with machines). These and

DESIGNING GROUPWARE APPLICATIONS 13

other findings were translated into the design and development of specialized software for
the process industry, linking realtime process data with desktop applications. The product,
DEC@aGlance, was marketed in 1992.

4. Bly [Bly88] and Tang [Tan91] studied teams of people, working at distance, who need
to work together to create drawings, designs and engage in general brainstorming. Ethno-
graphic studies of people working together as well as people working apart led to many
observations about such things as the use of gestures and marks to illustrate ideas, how
control is passed from one person to another and how drawing and talking are combined.
These observations led to the development of a prototype (e.g. [Min91]) for use in a re-
search setting. That prototype subsequently influenced the development of products for
synchronous shared collaboration from Sun Microsystems (e.g. ShowMe) and Xerox (e.g.
LiveBoard).

5. Blythin et al [Bly97b] describe an ethnographic study at a bank of a service center which
processed routine administrative details of accounts. Based on studying this group over
time, the researchers uncovered limitations and problems imposed by the physical and or-
ganizational setting which impeded the effective and smooth flow of work. For instance,
there was a physical separation between some supervisors and their teams which reduced
the opportunity for informal awareness of the progress of work. Based on these and other
findings, the researchers made recommendations for changes in management practices
and processes, to provide better review and oversight and changes in (physical and func-
tional) office assignments. These changes helped increase the supervisor’s awareness of
the group’s work.

6. Katzenberg and Piela [Kat93b] used work language analysis combined with ethnography to
study and verify “work language” in the form of names that different groups of people use
to label computer systems, such as “compile, instantiate, create, build”. The results of the
ethnographic study were a set of guidelines for the continued development of a technology
used in engineering and economic forecasting to analyze design alternatives.

Being able to use the results of ethnographic studies means that researchers and practition-
ers must be open to question their initial assumptions in the face of user data. For instance,
in a field study of a distributed team, Bellotti and Bly [Bel96] observed that members of the
team were rarely at their desks but instead could be found in the hallways or working in labs.
Although Bellotti and Bly went to the site to gather requirements for a computer-based ap-
plication to support distance collaboration, it was apparent that such an application would
not be used if it was only available from the computer. Instead, the researchers were able to
recommend alternative solutions based on mobile computing devices.

1.2.3.4 Working Together

These examples also draw our attention to the most important part of the design process,
which is the collaboration between the ethnographers and the application designers. The re-
sults of ethnographic studies do not stand on their own but must be interpreted by both the
ethnographer and the application designer. Just handing a report of the ethnography to the de-
signers is not sufficient. The two groups must work together as a team when the data are being
collected and analyzed. It is also crucial that there be reciprocal appreciation and respect of
others’ viewpoints. The need to overcome different world views, cultures and perspectives is
a recurring theme in these studies.

14 EHRLICH

An especially good example of a successful collaboration comes from a study by Linde,
Pea and others at IRL (Institute for Research on Learning) for the design of an interactive
multimedia communication device [Gog96, All93, deV91]. In a close examination of actual
work sites, a multidisciplinary team of researchers representing application developers and
ethnographers investigated the learning and work practices that emerged as new communica-
tion and computational technologies were integrated into ongoing activities. The design and
development process was highly iterative. Outcomes of the studies would get translated into
mock-ups which would be tested with users, modified and re-tested.

In one phase of this study, the ethnographers were videotaping a small group of graphic
designers at work [Lin91]. The graphic designers organized their ideas using folders. But
what the ethnographers observed was that during group meetings the folders were placed on
the table in a particular way. The placement — close to the owner or toward the middle —
was a form of non-verbal communication used to signal permission for others to talk. The
ethnographers were able to point out this observation to the application designers who would
not otherwise have been aware of the importance of the folders and their placement. Based on
the ethnographers’ analysis and their own observation, the application designers realized that
the design of the software would need to include not just the ability to share folders but those
folders would need to be marked as read only, private or open. This is a small example that
was repeated many times in the course of the collaboration between the ethnographers and the
application designers.

1.3 DESIGN

Part of the appeal of groupware lies in the promise of being able to eradicate barriers
of time and place. Using technology, colleagues should be able to collaborate on projects
whether their offices are next to each other or in separate countries, whether they work at
the same time or different times of the day. Applications that help bridge barriers of time
and place include videoconferencing, shared screens, media spaces, electronic mail, shared
files/databases, shared authoring, and group calendaring systems. However, subtle social pro-
tocols influence the willingness of participants to communicate with others, the candor of
their communication, the richness of information they are willing to impart, and the degree of
their engagement in the process. If technology is going to mediate communication especially
for people who lack opportunities for face-to-face meetings, it must support rather than ignore
these protocols. Getting inside this notion of group work, a few themes emerge:

� communication is generally ad hoc, informal and unplanned
� there is a need to be aware of others for communication and in coordinating work
� issues of sharing often hinge on subtle notions of anonymity.

1.3.1 Informal Communication

Research on synchronous, informal communication emphasizes its importance and prevalence
in most workplace settings [Kra90, Whi94]. These studies suggest that formal communica-
tion is used to coordinate routine tasks whereas brief, informal communication such as spon-
taneous hallway conversations can help to establish trust, promote social relationships and
provide background information about the work environment. Moreover, these spontaneous

DESIGNING GROUPWARE APPLICATIONS 15

conversations are more likely to occur amongst people who are physically located close to
each other; as many as 91% of all conversations recorded in a particular study occurred among
people on the same floor [Kra90].

One type of video-based system, known as MediaSpaces, has been developed to provide
visual access and opportunity for conversation to people who are not located in the same
place [Fis90, Man91, Dou92, Bly93, Fis93] (see also Chapter 3 in this book [Mac99]). These
systems provide continuous visual access between sites through large video screens, often
placed in public areas such as hallways or informal meeting places. However, despite their
careful design, these systems cannot substitute for unmediated face-to-face conversations.

1.3.2 Awareness

Awareness, of the location and activity of other people, is a critical mechanism for regu-
lating and coordinating our behavior with others. We use cues in the physical environment
such as a colleagues’ open door, the placement of a work-related document [Hug92] or the
level of participation in an on-line discussion, to make decisions about whether to initiate
a conversation, begin the next sequence of work or anticipate a meeting. The same social
protocols still operate when the work is mediated through computer technology. Groupware
applications designed to support coordinated work need to find new ways to represent what
were physical cues, so that even when online, people can be aware of the activity of their
colleagues. Awareness of others usually takes place when there is on-going or anticipated,
direct, synchronous communication between people. But there is also a need to be aware of
a general level of involvement and participation of a group over time. Both synchronous and
asynchronous awareness are explored below.

1.3.2.1 Synchronous Awareness

The Montage desktop videoconferencing system (e.g. [Tan94a, Tan94b]) supports the kind of
momentary, reciprocal glances that occur when one person peeks into another’s office to see
if that person can be interrupted. In Montage the person initiating the conversation selects the
name of the person to be contacted, which causes the recipient to receive an auditory signal
that a call is about to commence, followed by a gradual fade-in small video image of the caller.
Either person can acknowledge the glance by pressing a button to open an audio channel
followed by a 2-way audio-video connection. This mediated interruption can get translated
into a more extended interaction supported by the full desktop videoconferencing system
by pressing the Visit button. If the caller sees from the glance that the other person is not
available, the caller can browse the person’s calendar, send a short note or send an e-mail
message. As in office-based social conventions, Montage users can set their system to display
different levels of interruptibility. These range from “locked” which means no interruptions,
to “out of the office” and “other”, which lets the caller leave a message, to “do not disturb”
which still lets the caller glance in to negotiate an interruption, to “available”.

There are numerous other studies of awareness including those on awareness as a mecha-
nism to support coordination (e.g. [Dou92]) and social awareness (e.g. [Tol96]). Products to
support awareness include “buddy lists” (e.g. [Mic97]) which signal when someone from the
list is on line and hence potentially available for an online “chat”.

16 EHRLICH

1.3.2.2 Asynchronous Awareness

We also develop awareness of the general work patterns of our colleagues based on cues left
in public or semi-public places. If I want to schedule a meeting with my manager, I might ask
his assistant about his availability or I might check online sources such as group calendars,
e-mail or online discussions to pick up cues about up-coming meetings, trips and so forth. In
the case of group calendars, availability of people’s schedules is both a strength for scheduling
meetings, and a source of noncompliance for those people who feel exposed (e.g. [Gru95]).

1.3.3 Anonymity

In face-to-face communication, whether direct or mediated by computer technology, the con-
tributors to the conversation are known and visible or audible. However, when there is no
visual component to the communication, as in the case of electronic mail and asynchronous
communication in general, the technology can hide the identity of the sender or the recipient
of the message. This feature has interesting and often unexpected affects on the communi-
cation. For instance, people are much more likely to engage in antisocial behavior, such as
“flaming” in electronic mail, where the sender’s identity may be hidden by an obscure e-mail
address and where the usual social protocols to discourage such behavior are absent. Sproull
and Kiesler [Spr93] argue that social norms are not well established in computer mediated
communication in part because social cues, which are normally present in the physical envi-
ronment, are absent. For example, the physical appearance and dress code of someone we are
about to meet clues us in to the level of formality expected.

On the other hand anonymity can have positive effects. Several researchers have observed
that anonymity can reduce effects of power, status and attractiveness (e.g. [Zub88, Tur95])
enabling people who might not have participated in social engagements due to lower status
or power to do so when they are anonymous. Similarly, Sproull and Kiesler [Spr93] report
that junior members of an organization are much more likely to communicate with senior
managers or executives using electronic mail than in a face-to-face meeting. As a classic
cartoon in the New Yorker put it: “On the internet no-one knows you are a dog”.

Similar effects of anonymity on people’s social behavior in computer mediated settings
have been observed with computer supported meetings (e.g. [Nun91]). Computer supported
meetings typically take place in rooms which have been specially configured with computers
embedded into desks or tables [Man89]. The software running on these computers support
activities such as brainstorming by letting people freely enter their ideas. The software can
then display the individual ideas or some aggregated version of those ideas on the individual
terminals or on a large screen visible to all participants. These meetings are generally con-
trolled by a trained facilitator who provides some degree of software support and training as
well as handling the dynamics of the meeting itself.

The software portion of these systems can be easily configured to control when ideas get
shared amongst the group and whether the ideas are marked with the name of the person who
contributed them. Nunamaker and his colleagues have observed that in these kinds of settings,
anonymity reduces the pressure to conform and reduces apprehension related to evaluation by
one’s peers. This, in turn, may encourage a more open, honest and freewheeling discussion.
On the other hand, anonymity can increase “free riding”. If nobody’s comments are attributed,
there is no way of checking that everyone in the meeting is actually participating.

DESIGNING GROUPWARE APPLICATIONS 17

1.3.4 Application of Design Themes

Themes such as informal communication, awareness and anonymity rightly belong to the
category we have described as group work in that these features are not readily apparent from
a task focused view. Yet, the presence of these features in an application can materially affect
how the application is used and whether it is used. The inclusion of these and other themes
into the design of the application depends in part on the type of application. Using the division
of applications laid out in the introduction, those that focus primarily on communication such
as e-mail, videoconferencing, media spaces and chat, may be designed around themes of
informal communication and awareness. Applications designed to support meetings, on the
other hand, need to pay attention to whether issues such as anonymity are needed in the
design. In the case of applications that support information sharing, one of the main barriers
to acceptance is the readiness of the organization in which the application is to be deployed.
This topic will be addressed in Section 1.4.

1.3.5 Customization

We may think of groupware applications such as those that support communication, meetings
and information sharing as general-purpose applications ready to be used by a wide range of
users for a variety of purposes. This is true of individual “productivity applications” which
are designed to be used out of the box with little or no customization. However, groupware
applications are rarely ready to use “out of the box” but require some degree of customiza-
tion. How much work is required depends in part on the type of application, whether it was
developed for a particular customer and how the application is architected.

It is fair to say that while customization is not exclusive to groupware applications, in
practice there are sufficient differences in work, culture and context from one customer to
another that most groupware applications require some degree of customization. This is an
important topic which has received little public discussion and hence is only covered briefly
here and based largely on personal observations.

1. Content-based customization. This is a case where the application is merely a shell and
doesn’t really become useful until someone begins putting content in. Prime examples
are discussion databases, news groups, e-mail etc. Examples from outside the realm of
communication software include applications for distance learning where the instructor
needs to add course material before the software is useful for the students. In all these
examples, the “customization” is done by one or more end-users by supplying content. No
specialized technical skill is required.

2. Setting external parameters. This is also end-user customization but is more intentional.
Examples include TeamRoom (see description in Section 1.5) which is an application
to support distributed team work through shared documents, etc. TeamRoom defines at-
tributes such as document category and communication type whose values get set by the
team. In this way, the team gets to customize the application to suit the way they intend to
use it. A research group, for instance, may want to define categories for documents to rep-
resent different research projects while a product group may want to define documents in
terms of product families. This is still end-user customization but this time it may involve
an outside facilitator to guide the thinking of the group around the goals of the project, the
group norms and expectations for the level of participation.

3. Setting internal parameters. This is where some degree of system administration or macro

18 EHRLICH

level programming comes in. For instance, in an internally developed system to support
on-line reviewing of papers submitted to conferences, the level of customization from one
conference to the next ranged from inputting a new set of reviewer names to rewriting parts
of the interface to recoding the rules that govern who sees which papers and at what stage
of the reviewing process. Many of these changes reflected differences in the reviewing
process from one conference to another.

4. Totally customized solutions. Applications that match the particulars of an organization’s
work practices, processes and culture often require that a customized application be built
either by someone within the organization or by engaging external consultants.

Some issues of customization are addressed by the available development tools and envi-
ronments which may provide the pieces out of which the customization is done. One example
is the use of templates out of which new solutions can be fashioned. In an article on the
use of templates for building business applications, Hofman and Rockart [Hof94] provide an
example of a template developed by John Wiley, the publisher, to support internal business
processes that allowed for customization by each business unit. This approach allowed them
to share best practices, both applications as well as knowledge, aggregate data centrally, and
“tailor the business process and system to local needs.”

1.4 DEPLOYMENT AND ADOPTION OF THE APPLICATION

In addition to the challenges of building a good groupware application, there are significant
challenges facing a developer who is trying to get the application adopted by an organization.
Unlike single-user applications which can often be purchased by an individual, groupware
applications are, be definition, for groups of people. Hence, enough copies of the application
need to be purchased and installed at about the same time for the application to be avail-
able to more than one person. Moreover, groupware applications often require a sophisticated
technology infrastructure which may in turn require skilled technical staff for the system’s
administration. In addition to the financial cost of purchasing, installing and maintaining a
groupware application, there are also organizational implications of deploying the applica-
tion. These implications vary with the type of application. For instance, deploying a video-
conferencing system may require very little preparatory work within the group, assuming the
application itself has been well designed and the infrastructure is in place. On the other hand,
an application that depends on a high level of information sharing presumes an organization
in which information sharing is already well established and rewarded. This section explores
a few of the organizational and cultural barriers to successful deployment and adoption.

1.4.1 Organizational Preparedness

Technology can be introduced into organizations through a mandate imposed by senior man-
agement. This method has the advantage of ensuring continued financial and technical support
through deployment and in helping disperse the technology through the organization to reach
a critical mass of users (e.g. [Mar90]). However, this method of adoption can leave end-users
feeling that a decision was forced on them. For instance, Orlikowski [Orl92] reports on the
adoption by a large consulting company of groupware to support information sharing. Not
only was the culture of the group one in which information sharing was not rewarded, but the

DESIGNING GROUPWARE APPLICATIONS 19

technology was introduced to the group without sufficient explanation or training, thus giving
these end-users no real understanding or motivation for wanting to expend the extra effort to
learn and use the technology. As a result, the technology was poorly adopted and only gained
in acceptance over time and with considerable investment and push on the part of senior man-
agement, who retained strong conviction in the benefits of the technology. An interesting side
note is that the same technology was adopted more or less spontaneously by other groups in
the same company where there had been no mandate by management.

Technology can also be introduced into an organization by someone within the organization
seeing the potential of the technology. This method has the advantage of getting end-users in-
volved early on. But it has the disadvantage of needing to get buy-in from senior management
for continued support.

In a recent study, Grudin and Palen [Gru95] examined the adoption of shared calendar
applications in two large organizations. They observed widely dispersed use of the application
despite no clear mandate from senior management. They argued that

“ The features ... may attract a critical mass of users, after which technology-abetted social
pressure by peers and others extends use” [page 277]

In at least one organization, the adoption was slow when the application was first intro-
duced. Over time, what developed was a more consistent infrastructure that gave wider access
to the application, improved functionality and ease of use and peer pressure. Once a critical
mass of people begin using the application, there is strong peer pressure to bring others in line.
Calendaring is an example of a groupware application that requires near universal adoption to
be successful. Once someone uses the tool to schedule meetings with some colleagues, they
will want to be able to use the tool to schedule meetings with other colleagues, and will apply
pressure to those colleagues not yet using the application to begin to do so.

1.4.2 Incentives and Motivation

In a work setting, most people are persuaded to adopt a new technology by arguments that
make it clear how that technology will improve their work. Such arguments may focus on
the technology as enabling the person to do something that was previously very difficult or
cumbersome to do. For instance, on-line discussions make it easier to share information with
a number of colleagues simultaneously than it is to attend face-to-face meetings. This is es-
pecially true if colleagues are not all located in the same place or if it is hard to schedule a
time when everyone can attend a meeting. New technology in general, especially groupware,
will get adopted more easily if it fills a need rather than simply replaces an existing well
understood, working process. For instance, videoconferencing technologies got a major push
during a recent oil crisis when it got harder and more expensive for people to travel. The need
to communicate and collaborate with colleagues didn’t go away, but reaching those people
got harder.

Convincing end-users of the benefit of any new technology is challenging — especially so
for groupware applications for which there may be no visible examples of use. For example,
several years ago, Wang introduced a multimedia communication system which bundled to-
gether image capture, voice recording, electronic mail, pen annotation and high-resolution
graphics [Fra91]. The system was intended to be used to annotate and route documents
through an organization. However, when the system was introduced into client sites it failed,

20 EHRLICH

in part because neither end-users nor management were ready to risk new unproven methods
of working despite being told of the benefits of the system.

1.4.3 Critical Mass

Groupware applications are principally designed to benefit and reward the group rather than
the individual. But most people are not altruistic. They want some personal benefit from using
the application. Getting enough early adopters to use a new system is especially challenging
for applications which rely on a large number of people to be effective. Many collaborative
filtering systems recommend selections (e.g. of video, music, Net News) based on a statisti-
cal aggregate of individual ratings (e.g. [Hil95, Sha95, Res94, Gol92]). When the database
has been seeded with enough ratings, users can query it to learn which selections are recom-
mended. But where is the incentive for the early adopters to add their ratings? Resnick et al
[Res94] argue that some people are altruistic, while others may be motivated by external re-
wards such as money to be an early adopter. Reaching a critical mass also proved to be the key
factor in a study which systematically compared adoption rates of two similar video telephone
systems [Kra94].

The potential asymmetry between those who contribute and those who get the benefit has
been underscored by Grudin [Gru90]. He points out that with group-enabled systems such
as group calendars and shared project management applications, the beneficiary is often the
person scheduling meetings or managing the project, rather than the people contributing the
information about their schedules or time.

1.5 CASE STUDY: TEAMROOM

To illustrate many of the points in this chapter, this section presents a brief case study of the
design, development and deployment of a particular groupware application. The application,
called TeamRoom, was initially developed for use by internal task forces at Lotus [Col96] to
support discussion and coordination. It was then made available to outside customers as part of
a consulting engagement, and is now sold as one of the family of Lotus/Domino applications.

1.5.1 Teams

Before building an application to support discussion and coordinating by members of a team,
it is important to understand how teams work. At a very general level, teams of people work
collectively and collaboratively to:

� make decisions
� share information
� coordinate actions.

Teams will be high performing, to the degree that they engage in these activities in a de-
liberate and persuasive manner to produce something of value to the organization such as a
tangible product, a process or a service. There is a large amount written about teams and team
performance, which will not be addressed here. As Katzenbach and Smith [Kat93a] expressed
recently:

DESIGNING GROUPWARE APPLICATIONS 21

“ Real teams are deeply committed to their purpose, goals, and approach. High-performance
team members are also very committed to one another.” [page 9]

However, there is increased pressure on teams to deliver more value in less time with few
resources. Moreover, teams are often ad hoc (e.g. [Fin90]); formed “just in time” to solve a
particular problem and then disbanded. And, members of the team may be dispersed through-
out the organization as well as separately located due to travel or residence. Team members
often come from different cultures in terms of professional training, background, tenure with
the company, or nationality.

Technology cannot eliminate these barriers on time and place. However, in conjunction with
judicious training, technology can help make the team, once formed, more effective and effi-
cient. People working together need: shared context, shared language and shared objectives.
They also need a “workplace” in which the majority of work will get done and where shared
discussions as well as private conversations can take place. It is not the place of technology
to help create the team, but rather, to support the team once it has formed. (An important and
debatable question is whether the application is only as effective as the team or whether a well
designed application can overcome limitations in the group dynamics.)

1.5.2 Requirements

TeamRoom was developed in response to a request from one of the senior vice-presidents at
Lotus for an application that could support the work of internal task forces. Although all the
people on a task force worked for the same company, they came from different parts of the
organization and also traveled frequently. This meant that face-to-face meetings occurred only
occasionally, necessitating the need to have a place to post documents, have discussions, plan
meetings and share ideas. The development team was composed of people from development,
design, internal information systems, Human Resources/Organizational Development, as well
as the main customer and a representative group of users. Detailed user requirements and
functional specifications were arrived at through discussions within this team and by exposing
early prototypes to the users.

1.5.3 Design Features

Instead of having team members go to one application to retrieve shared documents, another
for group e-mail and a third application for coordination, TeamRoom provides a single “place”
for these activities by integrating all three functions in a single application.

TeamRoom builds on the Lotus Notes model of a threaded discussion database where mes-
sages can be posted and read by anyone who has access to the database. Documents can
be entered to start a topic or as a response to an existing topic. In TeamRoom documents are
keyed by communication type as well as by category. Common communication types include:
discussion, action request, meeting announcement and reference document, and are used to
signal the intent and type of communication. For instance, a discussion document signals that
the author wants other people to respond, whereas a reference document may require little or
no further discussion. These different document types reinforce and simplify communication.
Documents can be viewed by topic, communication type and author as well as by date, so that
a user can quickly see which documents have been added recently.

One of the distinguishingcharacteristics of TeamRoom is its embodiment in the software of

22 EHRLICH

the communication norms of a group. The translation of norms to features is handled through
the process of having the group define its goals, mission, categories and communication types,
and the mechanism of having these instantiated in the software by completing information
about the team on a “Mission Page”. This information includes: categories, communication
types, participants and events. Once entered, this information becomes available to the team
in the form of keyword lists, which a user selects when composing a document, and visible
categories, which users see when viewing documents. Documents can also be automatically
archived, which reduces the problem of information overload. The Mission Page is the place
where the team records details of their processes and norms; such things as when to post
documents to particular people rather than have the document default to be seen by everyone;
and the meaning and intent of the different communication types and categories. Teams who
have spent time filling out the mission page have found the information there to be invaluable
as a source of group memory and an excellent vehicle for new members to get oriented.
TeamRoom, especially the Mission Page, becomes a work space for group memory.

1.5.3.1 Relation to Design Themes

Section 1.3 identified three main group work themes: informal communication, awareness of
others, and anonymity. Many of these themes can be seen in TeamRoom.

TeamRoom differs from both e-mail and discussion databases in that it is a place where
all work — not just discussions — gets posted. Making each person’s work visible to the
rest of the team contributes to an awareness of other people’s level of contribution and the
current status of their work. By looking across the different categories, it is easy to see which
documents are still in process and which are completed. An index view also shows the number
of documents per author or communication type. An author view shows documents by type,
which provides a view into whether a person is mostly commenting on other people’s work or
contributing their own.

TeamRoom supports informal communication by supporting loosely structured discussions.
But it doesn’t really support ad hoc informal communication since it is designed for teams that
are not co-located (see Section 1.5.4 below).

TeamRoom does not let people participate anonymously, but it does support private, as
well as public discussions, and personal as well as shared workspaces. When a document is
posted in TeamRoom, the author is required to specify only the communication type and the
document type. The author can optionally mark a document as private to be seen only by
people who the author lists in the To: field. The To: field is also used to designate people who
need to pay particular attention to a document, even if that document can be seen by the rest of
the team. TeamRoom constructs personal workspaces for each member of the team, based on
documents for which the person is listed in the To: or cc: field or documents that the member
has authored. In this way, TeamRoom supports personalized as well as shared views.

1.5.3.2 Relation to Deployment

When it comes time to deploy the groupware application, organizational preparedness, incen-
tive and motivation, and critical mass are some of the factors which influence the ultimate
adoption of the application.

TeamRoom addresses issues of organizational preparedness by accompanying the introduc-
tion of the technology with a facilitated meeting during which the members of the team go

DESIGNING GROUPWARE APPLICATIONS 23

through the exercise of deciding on their mission, communication and work styles as a team.
In this way, all members of the team can participate in setting the goals. The mission and the
technology can be seen as being in service of the core work of the team.

One of the ways in which TeamRoom addresses the problem of critical mass — that is
making sure that there is enough activity to promote more activity — is by having a facilitator
as one of the designated roles in the TeamRoom. This person, who is also a team member,
monitors traffic in the TeamRoom and encourages participation if the discussion and postings
are becoming reduced.

1.5.4 Lessons Learned

TeamRoom has been deployed in a wide range of companies and settings. Based on infor-
mal feedback there are several themes that emerge that are critical success factors: 1) strong
leadership; 2) a distributed team who need TeamRoom to overcome barriers of time and place
and for whom face-to-face meetings are often scheduled, rather than ad hoc; 3) a well defined
team. Below are examples where these factors were absent.

Strong leadership. Strong leadership is needed, especially early on, to get people to submit
postings. For some teams, collaboration and sharing was a new way of working and if the
team leader didn’t demonstrate and lead by example, the team generally did not take to it.
This was lacking at one company where it seems the team leader set the tone/behavior for
the group. In a few cases, the workers still took to the tool, seeing its value and needing the
communication that it provided.

Geographically distributed team. TeamRoom is a good alternative to voice or videoconfer-
ences for teams whose members are far apart. Especially for complex projects, TeamRoom
becomes an information repository to facilitate analysis. However, there can sometimes be
delays in replicating TeamRoom to the different sites for these distributed teams. On the other
hand, when team members were co-located, TeamRoom was just another thing to have to
worry about and it wasn’t used.

Well defined team. A well defined team has a common mission and a shared context, lan-
guage and objectives. Team membership is limited and definable. Well defined teams are not
about longevity; a team could be just forming or be together for a long time. One team that
used TeamRoom that wasn’t really a team, but just a department, failed in their use because
there was no real team mission, team norms, or team deliverables. In this case, TeamRoom
served as a place to communicate meeting agendas and some marketing announcements.
TeamRoom is a mirror on the team. If the team is chaotic, then so it will appear in Team-
Room and people’s experience with the tool will be frustrating. A well-organized team takes
a lot of work.

1.6 SUMMARY

This chapter takes the position that whereas single-user applications are about tasks, group-
ware applications are about work. Tasks are generally explicit, observable, concrete. Work is
generally tacit, invisible and amorphous. Work is about people, habits and culture.

Generating a product concept and design specifications for a groupware application de-
mands a methodology that can capture these invisible work practices. The methods, derived
from social and management sciences, that are most commonly used in groupware or CSCW

24 EHRLICH

(Computer Supported Cooperative Work) are often descriptive rather than prescriptive, leav-
ing it up to the design team to fashion requirements, functions and architecture themselves. A
multidisciplinary team is essential for the design and development of groupware applications.

Getting inside the notion of group “work”, a few themes emerge: communication is gener-
ally ad hoc, informal and unplanned. There is a need to be aware of others for communication
and in coordinating work. Issues of sharing hinge on subtle notions of anonymity, which play
out in different ways.

Finally, deploying a groupware application is perhaps the most difficult step in process.
First, the application itself will need some level of customization to fit in each customer’s
work context. Second, groupware applications are rarely ready to go “out of the box” but
need to be accompanied by some measure of training in organizational behavior to ensure a
fit between the tool and organizational processes. Factors such as motivation, incentives and
critical mass are potential show-stoppers when it comes to rolling out the application to the
entire group.

The notion of work and translating it into an application is put into perspective by describing
a Lotus Notes application that was designed to provide a “place” on line to support discussion
and coordination of work amongst members of a distributed team.

Groupware and CSCW are still in their infancy compared with more established practices
in the development of single-user applications. Yet, technological developments such as the
World Wide Web seem to lead to more need for groupware applications where people spread
across the globe, across the country, or just across the street can use technology to coordinate
their work and communication with each other.

ACKNOWLEDGEMENTS

There are many people who have contributed to this chapter through discussions, especially
those enlightening me on various methodological issues. For their time and patience in talk-
ing with me about methodology, I extend my appreciation to: Barbara Katzenberg, Charlotte
Linde, Bonnie Nardi, Roy Pea, and Lee Sproull. My colleagues at Lotus Institute, especially
Barbara Kivowitz, Linda Carotenuto, and Nicol Rupolo helped me understand many of the nu-
ances and tacit features of TeamRoom. I extend a special thanks to my colleague Debra Cash
with whom I have had many engaging and heated conversations and who took the time to read
and comment on several drafts of this chapter. Thanks are due to Paul Cole, Sal Mazzotta and
especially an anonymous reviewer who read and commented on an earlier version.

REFERENCES

[All93] Allen, C., The reciprocal evolution of technology, work practice and basic research. In
D. Schuler and A. Namioka (Eds.) Participatory Design: Perspectives on System Design.
Lawrence Erlbaum Associates, Hillsdale, NJ, 1993.

[Arg82] Argyris, C., Reasoning, Learning and Action: Individual and Organizational. Jossey-Bass,
San Francisco, 1982.

[Arg78] Argyris, C. and Schon, D., Organizational Learning. Addison-Wesley, Boston, 1978.
[Ban96] Bannon, L. Ethnography and design. In D. Shapiro, M. Tauber, and R. Traunmuller (Eds.),

The Design of Computer Supported Cooperative Work and Groupware Systems, pages 13–16.
Elsevier Science, Amsterdam, 1996.

DESIGNING GROUPWARE APPLICATIONS 25

[Bar95] Barreau, D. and Nardi, B., Finding and reminding: File organization from the desktop.
SIGCHI Bulletin, July 1995.

[Bel96] Bellotti, V. and Bly, S., Walking away from the desktop computer. Distributed collabora-
tion and mobility in a product design team. In Proceedings of the Conference on Computer
Supported Work, CSCW ’96 (Boston, MA), pages 209–219. ACM Press, New York, 1996.

[Ben92] Bentley, R., Hughes, J.A., Randall, D., Rodden, T., Sawyer, P., Shapiro, D. and Sommerville,
I., Ethnographically-informed systems designs for air traffic control. In Proceedings of the
Conference on Computer Supported Work, CSCW ’92 (Toronto, Canada), pages 123–129.
ACM Press, New York, 1992.

[Blo93a] Blomberg, J., Giacomi, J., Mosher, A and Swenton-Wall, P., Ethnographic field methods
and their relation to design. In D. Schuler and A. Namioka (Eds.), Participatory Design:
Perspectives on System Design, pages 123–154. Lawrence Erlbaum Associates, Hillsdale,
NJ, 1993.

[Blo93b] Blomberg, J., McLaughlin, D. and Suchman, L., Work-oriented design at Xerox. Communi-
cations of the ACM, 36(4):91, June 1993.

[Bly88] Bly, S., A use of drawing surfaces in different collaborative settings. In Proceedings of the
Conference on Computer Supported Work, CSCW ’88, pages 250–256. ACM Press, New
York, 1988.

[Bly93] Bly, S., Harrison, S., and Irwin, S., Media spaces: Bringing people together in a video, audio
and computing environment. Communications of the ACM, 36(1):28–45, January 1993.

[Bly97a] Bly, S., Field work: Is it product work? interactions, pages 25–30, January+February 1997.
[Bly97b] Blythin, S., Rouncefield, M, and Hughes, J.A., Ethnography in the commercial world. inter-

actions, pages 38–47, May+June 1997.
[Bow95] Bowers, J., Button, G., and Sharrock, W., Workflow from within and without: Technology and

cooperative work on the print industry shopfloor. In H. Marmolin, Y. Sundblad, K. Schmidt
(Eds.), Proceedings of the Fourth European Conference on Computer-Supported Cooperative
Work, ECSCW ’95 (Stockholm, Sweden), pages 51–66. Kluwer Academic, Dordrecht, 1995.

[Bro91] Brown, J.S., Research that reinvents the corporation. Harvard Business Review, page 330,
January-February 1991.

[Bro97] Brown, E.G., Dolberg, S. Boehm, E.W. and Massey, C., Beyond groupware. ForresterReport:
Software Strategies, 8(4), July 1997.

[Cam95] Cameron, B., DePalma, D.A., O’Herron, R. and Smith, N., Where does groupware fit? The
Forrester Report: Software Strategies, 6(3), June 1995.

[Car95] Carroll, J.M., Introduction: The scenario perspective on system development. In J.M. Carroll
(Ed.), Scenario-Based Design: Envisioning Work and Technology in System Development.
John Wiley and Sons, New York, 1995.

[Col96] Cole, P. and Johnson, E.C., Lotus development: TeamRoom - A collaborative workspace for
cross-functional teams. In P. Lloyd and R. Whitehead (Eds.), Transforming Organizations
Through Groupware: Lotus Notes in Action.. Springer-Verlag, New York, 1996.

[Cle93] Clement, A and Van den Besselaar, P., A retrospective look at PD projects. Communications
of the ACM, 36(6):29–37, June 1993.

[deV91] de Vet, J. and Allen, C., Picasso System Design Rationale. IRL Technical Report, November
1991.

[Dou92] Dourish, P and Bly, S., Portholes: Supporting awareness in a distributed work group. In
Proceedings of Human Factors in Computing Systems, CHI ’92 (Monterey, CA), pages 541–
547. ACM Press, New York, 1992.

[Ehr94] Ehrlich, K and Cash, D., Turning information into knowledge: Information finding as a col-
laborative activity. In Proceedings of the Conference on Digital Libraries (College Station,
TX), pages 119–125, 1994.

[Ehr97] Ehrlich, K and Cash, D., Communication and Coordination in WorkersCompensation Cases:
Implications for Extended Enterprises. Internal Report, 1997.

[Ehr98] Ehrlich, K. and Cash, D., The invisible world of intermediaries: A cautionary tale. Computer
Supported Cooperative Work: An International Journal., In Press.

[Ell99] Ellis, C.A., Workflow technology. In Beaudouin-Lafon, M. (Ed.), Computer Supported Co-
operative Work, Trends in Software Series 7:29–54. John Wiley & Sons, Chichester, 1999.

26 EHRLICH

[Fin90] Finholt, T., Sproull, L., and Kiesler, S., Communication and performance in ad hoc task
groups. In J. Galegher, R.E. Kraut, C. Egido (Eds.), Intellectual Teamwork: Social and Tech-
nological Foundations of Cooperative Work, pages 291–326. Lawrence Erlbaum, Hillsdale,
NJ, 1990.

[Fis90] Fish, R., Kraut, R.E., and Chalfonte, B., The videowindow system in informal communi-
cation. In Proceedings of the Conference on Computer Supported Work, CSCW ’90 (Los
Angeles, CA), pages 1–12. ACM Press, New York, 1990.

[Fis93] Fish, R., Kraut, R.E., Root, R., and Rice, R., Video as a technology for for informal commu-
nication. Communications of the ACM, 36(1):48-61, January 1993.

[Fra91] Francik, E., Rudman, S.E., Cooper, D., Levine, S., Putting innovation to work: Adoption
strategies for multimedia communication systems. Communications of the ACM, 34(12):53-
63, December 1991.

[Gog96] Joseph Goguen, J and Charlotte Linde, C., Techniques for requirements elicitation. In R.
Thayer and M. Dorman (Eds.), Software Requirements Engineering, Second Edition. IEEE
Computer Society, 1996.

[Gol92] Goldberg, D., Oki, B., Nichols, D., Terry, D.B., Using collaborative filtering to weave an
information tapestry. Communications of the ACM, 35(12):61-70, December 1992.

[Gre91] Greenbaum, J and Kyng, M. (Eds.), Design at Work: Cooperative Design of Computer Sys-
tems. Lawrence Erlbaum, Hillsdale, NJ, 1991.

[Gru90] Grudin, J., Groupware and cooperative work: Problems and prospects. In B. Laurel (Ed.),
The Art of Human Computer Interface Design. Addison-Wesley, Reading, MA, 1990.

[Gru95] Grudin, J., and Palen, L., Why groupware succeeds: Discretion or mandate? In Proceedings
of the Fourth European Conference on Computer-Supported Cooperative Work, ECSCW ’95
(Stockholm, Sweden), pages 263–278. Kluwer Academic, Dordrecht, 1995.

[Hea91] Heath, C. and Luff, P., Collaborative activity and technological design: Task coordination in
London Underground control rooms. In Proceedings of the Second European Conference on
Computer Supported Cooperative Work, ECSCW ’91. Kluwer Academic Publishers, Amster-
dam, 1991.

[Hil95] Hill, W. Stead, L., Rosenstein, M., and Furnas, G., Recommending and evaluating choices in
a virtual community of use. In Proceedings of Human Factors in Computing Systems, CHI
’95, (Denver, CO), pages 194–201. ACM Press, New York, 1995.

[Hof94] Hofman, J.D. and Rockart, J.F., Application templates: Faster, better and cheaper systems.
Sloan Management Review/Fall, pages 49–60, 1994.

[Hol93] Holtzblatt, K. and Beyer, H., Making customer-centered design work for teams. Communi-
cations of the ACM, 36(10):93–103, October 1993.

[Hug92] Hughes, J.A., Randall, D., and Shapiro, D., Faltering from ethnography to design. In Pro-
ceedings of the Conference on Computer Supported Cooperative Work, CSCW’92, (Toronto,
Canada), pages 115–122. ACM Press, New York, 1992.

[Ish99] Ishii, H., Integration of shared workspace and interpersonal space for remote collaboration.
In Beaudouin-Lafon, M. (Ed.), Computer Supported Cooperative Work, Trends in Software
Series 7:83–102. John Wiley & Sons, Chichester, 1999.

[Joh88] Johansen, R., Groupware: Computer Support for Business Teams. The Free Press, New York,
1988.

[Jor95] Jordan, B. and Henderson, A., Interaction analysis: Foundations and practice. J. Learn. Sci.,
4(1):39-102, 1995.

[Jor96] Jordan, B., Ethnographic workplace studies and CSCW. In D. Shapiro, M. Tauber, and R.
Traunmuller (Eds.), The Design of Computer Supported Cooperative Work and Groupware
Systems, pages 17–42. Amsterdam: Elsevier Science, Amsterdam, 1996.

[Kat93a] Katzenbach, J. R. and Smith, D. K., The Wisdom of Teams: Creating the High-Performance
Organization. Harvard Business School Press, Boston, MA, 1993.

[Kat93b] Katzenberg, B. and Piela, P., Work language analysis and the naming problem. Communica-
tions of the ACM, 36(4):86–92, April 1993.

[Kra90] Kraut, R.E., Fish, R.S., Rot, R.W., and Chalfonte, B.L., Informal communication in orga-
nizations: Form, function and technology. Reprinted in R.M. Baecker (Ed.), Readings in
Groupware and Computer-SupportedCooperative Work, pages 287–314. Morgan Kaufmann,
1990.

DESIGNING GROUPWARE APPLICATIONS 27

[Kra94] Kraut, R.E., Cool, C., Rice, R.E., and Fish, R.S., Life and death of new technology: Task, util-
ity and social influences on the use of a communication medium. In R. Furuta and C. Neuwirth
(Eds.), Proceedings of Conference on Computer Supported Cooperative Work, CSCW ’94
(Chapel Hill, North Carolina), pages 13–21. ACM Press, New York, 1994.

[Kuk92] Kukla, C., Clemens, E.A., Morse, R.S. and Cash, D., Designing effective systems: A tool
approach. In Paul Adler and Terry Winograd, (Eds.), Usability: Turning Technologies into
Tools, pages 41–65. Oxford University Press, New York, 1992.

[Lin91] Linde, C., What’s next?: The social and technological management of meetings. Pragmatics
1(3), 1991.

[Mac99] Mackay, W.E., Media spaces: Environments for informal multimedia interaction In
Beaudouin-Lafon, M. (Ed.), Computer Supported Cooperative Work, Trends in Software Se-
ries 7:55–82. John Wiley & Sons, Chichester, 1999.

[Mal95] Maltz, D. and Ehrlich, K., Pointing the Way: Active Collaborative Filtering. In Proceedings
of Human Factors in Computing Systems, CHI’95 (Denver, CO), pages 202–209. ACM Press,
New York, 1995.

[Man89] Mantei, M., Observations of executives using a computerized supported meeting environ-
ment. Reprinted in R.M. Baecker (Ed.), Readings in Groupware and Computer-Supported
Cooperative Work, pages 695–708. Morgan Kaufmann, 1989.

[Man91] Mantei, M.M., Baecker, R.M., Sellen, A.J., Buxton, W.A.S. Milligan, T., and Wellman, B.,
Experiences in the use of a media space. In Proceedings of Human Factors in Computing
Systems, CHI ’91 (New Orleans, LA), pages 203–208. ACM Press, New York, 1991.

[Mar95] Mark, G., Haake, J.M., Streitz, N.A., The use of hypermedia in group problem solving:
An evaluation of the DOLPHIN electronic meeting room environment. In Proceedings of
the Fourth European Conference on Computer-Supported Cooperative Work, ECSCW ’95
(Stockholm, Sweden), pages 197–213. Kluwer Academic, Dordrecht, 1995.

[Mar90] Markus, M.L. and Connolly, T., Why CSCW applications fail: Problems in the adoption of in-
terdependent work tools. In Proceedings of Conference on Computer Supported Cooperative
Work, CSCW ’90, pages 371–380. ACM Press, New York, 1990.

[McG84] McGrath, J.E., Groups: Interaction and Performance. Prentice-Hall, 1984.
[Mic97] Michalski, J., Conversation on the Net. Release 1.0 newsletter, January 1997.
[Min91] Minneman, S.L. and Bly, S., Managing à trois: A study of multi-user drawing tool in dis-

tributed design work. In Proceedings of Human Factors in Computing Systems, CHI ’91
(New Orleans, LA), pages 217–224. ACM Press, New York, 1991.

[Mul93] Muller, M.J. and Kuhn, S. (Eds), Special Issue on Participatory Design. Communications of
the ACM, 36(6), June 1993.

[Mul95] Muller, M.J., Carr, R., Ashworth, C., Diekmann, B., Wharton, C., Eickstaedt, C., and Clonts,
J., Telephone operators as knowledge workers: Consultants who meet customer needs. In
Proceedings of Human Factors in Computing Systems, CHI ’95 (Denver, CO), pages 130–
137. ACM Press, New York, 1995.

[Nar93] Nardi, B., A Small Matter of Programming: Perspectiveson End User Computing. MIT Press,
Cambridge, MA, 1993.

[Nar96] Nardi, B and O’Day, V., Intelligent agents: What we learned at the library. Libri, 46(3):59–88,
September 1996.

[Nar98a] Nardi, B., A web on the wind: The structure of invisible work. Special issue of CSCW, 1998.
[Nar98b] Nardi, B., Miller, J.R. and Wright, D.J., Collaborative, programmable intelligent agents.

Communications of the ACM, In press.
[Nun91] Nunamaker, J.F., Dennis, A.R., Valacich, J.S., Vogel, D.R., and George, J.F., Electronic Meet-

ing Systems to Support Group Work. Communications of the ACM, 34(7):40–61, July 1991.
[OHa94] O’Hara-Devereaux, M and Johansen, R., Global Work: Bridging Distance, Culture and Time.

Jossey-Bass, San Francisco, 1994.
[Orl92] Orlikowski, W.J., Learning from Notes: Organizational issues in groupware implementation.

In J. Turner and R. Kraut (Eds.), Proceedings of the Conference on Computer Supported
Cooperative Work, CSCW’92, (Toronto, Canada), pages 362–369. ACM Press, New York,
1992.

[Orl97] Orlikowski, W.J. and Hofman, J.D., An improvisational model of change management: The
case of groupware technologies. Sloan Management Review/Winter, 38(2), 1997.

28 EHRLICH

[Plo95] Plowman, L. Rogers, Y, and Ramage, M., What are workplace studies for? In H. Marmolin, Y.
Sundblad, K. Schmidt (Eds.), Proceedings of the Fourth European Conference on Computer-
Supported Cooperative Work, ECSCW ’95 (Stockholm, Sweden), pages 309–324. Kluwer
Academic, Dordrecht, 1995.

[Pra99] Prakash, A., Group editors. In Beaudouin-Lafon, M. (Ed.), Computer Supported Cooperative
Work, Trends in Software Series 7:103–133. John Wiley & Sons, Chichester, 1999.

[Pyc96] Pycock, J. and Bowers, J., Getting others to get it right: An ethnography of design work in the
fashion industry. In Proceedings of Conference on Computer Supported Cooperative Work,
CSCW ’96 (Boston, MA), pages 219–228. ACM Press, New York, 1996.

[Res94] Resnick, P., Iacovou, N., Suchak, M. Bergstrom, P., and Riedl, J., GroupLens: An open archi-
tecture for collaborative filtering of Netnews. In Proceedingsof Conferenceon Computer Sup-
ported Cooperative Work, CSCW ’94 (Chapel Hill, North Carolina), pages 175–186. ACM
Press, New York, 1994.

[Rog97] Rogers, Y. and Bellotti, V., Grounding blue-sky research: How can ethnography help? inter-
actions, pages 58–63, May+June 1997.

[Sac95] Sachs, P., Transforming work: Collaboration, learning and design. Communications of the
ACM, 38(9):36–44, September 1995.

[Sch93] Schuler, D. and Namioka, A., Participatory Design: Principles and Practices. Lawrence
Erlbaum, Hillsdale, NJ, 1993.

[Sha95] Shardanand, U and Maes, P., Social information filtering: Algorithms for automating “Word
of Mouth”. In Proceedings of Human Factors in Computing Systems, CHI’95 (Denver, CO),
pages 210–217. ACM Press, New York, 1995.

[Sny98] Snyder, W.M., Communities of practice: Combining organizational learing and strategy in-
sights to create a bridge to the 21st century. Organization Development and Change, 1998.

[Spr93] Sproull, L. and Kiesler, S., Connections: New Ways of Working in the Networked Organiza-
tion. MIT Press, Cambridge, MA, 1993.

[Sta94] Star, S.L. and Ruhleder, K., Steps towards an ecology of infrastructure: Complex problems
in design and access for large-scale collaborative sytems. In Proceedings of Conference on
Computer Supported Cooperative Work, CSCW ’94 (Chapel Hill, North Carolina), pages
253–264. ACM Press, New York, 1994.

[Suc83] Suchman, L., Office procedures as practical action: Models of work and system design. ACM
Transactions on Office Information Systems, 1(4):320-328, 1983.

[Suc95] Suchman, L., Making work visible. Communications of the ACM, 38(9):56–64, September
1995.

[Tan91] Tang, J.C., Findings from observational studies of collaborative work. International Journal
of Man-Machine Studies, 34(2):143–160, February 1991.

[Tan94a] Tang, J.C., Isaacs, E.A. and Rua, M., Supporting Distributed Groups with a Montage of
Lightweight Interactions. In R. Furuta and C. Neuwirth (Eds.) Proceedings of Conference on
Computer Supported Cooperative Work (Chapel Hill, North Carolina), pages 23–34. ACM
Press, New York, 1994.

[Tan94b] Tang, J.C. and Rua, M., Montage: Providing teleproximity for distributed groups. In Proceed-
ings of Human Factors in Computing Systems, CHI ’94 (Boston, MA), pages 37–43. ACM
Press, New York, 1994.

[Tol96] Tollmar, K. Sandor, O. and Schomer, A., Supporting social awareness@work: Design and
experience. In Proceedings of Conference on Computer Supported Cooperative Work, CSCW
’96 (Boston, MA), pages 298–307. ACM Press, New York, 1996.

[Tur95] Turkle, S., Life on the Screen: Identity in the Age of the Internet. Simon and Schuster, New
York, 1995.

[Whi94] Whittaker, S., Frohlich, D., and Daly-Jones, O., Informal workplace communication: What is
it like and how might we support it? In Proceedings of Human Factors in Computing Systems,
CHI ’94 (Boston, MA), pages 131–137. ACM Press, New York, 1994.

[Zub88] Zuboff, S., In the Age of the Smart Machine. Basic Books, New York, 1988.

2

Workflow Technology
CLARENCE A. ELLIS

University of Colorado

ABSTRACT

This chapter is concerned with workflow, its systems, its models, its problems and
promises. Workflow management systems assist in the specification, modeling, and enact-
ment of structured work processeswithin organizations. These systems are a special type of
collaboration technology which we describe as “organizationally aware groupware”. Since
the turn of the decade, over 200 new workflow products have been introduced into the
world market. This chapter motivates and defines the concepts of workflow. Examples are
presented from existing products and prototypes. Finally, we explore some of the current
inhibitors and research issues in this fast growing domain.

2.1 OVERVIEW

Today, organizations find that there is global competitiveness in many areas, and a continual
need to improve productivity. Problems plaguing organizations include increased adminis-
trative overhead, external pressures for increased efficiency, internal pressure for increased
effectiveness, and desire by workers for more reward and less stress. Many organizations look
to technology such as workflow management systems for help.

Contemporary organizations typically employ a vast array of computing technology to sup-
port their information processing needs. There are many successful computing tools designed
as personal information aids (word processors, spreadsheets, etc.) but fewer tools designed for
collaborating groups of people. One of the most popular recent types of group/organizational
tool is workflow. Workflow management systems are designed to assist groups of people in
carrying out work processes, and contain organizational knowledge of where work flows in
the default case. This is in contrast to other group tools such as electronic mail or video-
conferencing systems which contain no knowledge of work processes, and therefore are not
organizationally aware. Workflow is defined as “systems that help organizations to specify,

Computer Supported Cooperative Work, Edited by Beaudouin-Lafon
c
 1999 John Wiley & Sons Ltd

30 ELLIS

execute, monitor, and coordinate the flow of work cases within a distributed office environ-
ment” [Bul92]. The system contains two basic components: the first component is the work-
flow modeling component, which enables administrators and analysts to define processes (or
procedures) and activities, analyze and simulate them, and assign them to people. This com-
ponent is sometimes called the “specification module” or the “build time system”. It also may
be used to view work process statistics, and to make changes to processes.

The second component is the workflow execution (or enactment) component, sometimes
called the “run-time system”. It consists of the execution interface seen by end-users and the
“workflow engine”, an execution environment which assists in coordinating and performing
the processes and activities. It enables the units of work to flow from one user’s workstation
to another as the steps of a procedure are completed. Some of these steps may be executed
in parallel; some executed automatically by the computer system. The execution interface
is utilized for all manual steps, and typically presents forms on the electronic desktop of
appropriate workers (end-users.) The user fills in electronic forms with the assistance of the
computer system. Various databases, personal productivity tools, and servers may be accessed
in a programmed or ad-hoc fashion during the processing of a work step. Typically, a workflow
system is implemented as a server machine which has and interprets a representation of the
steps of the procedures and their precedence; along with client workstations, one per end-
user, which assists the user in performing process steps. This is typically combined with a
network and messaging system (or communication mechanism) to allow the server to control
or interact with end-user workstations; also included is a database that stores the process
representation, attributes of end-users, and other pertinent workflow information. Many of
the workflow products are combined with imaging and/or document management systems
[Bul92].

2.2 WORKFLOW CONCEPTS AND ARCHITECTURE

This section provides some basic workflow definitions in the context of an example office
procedure. This is followed by an architectural specification which is typical of current work-
flow systems, and is in keeping with our definitions. The terminology generally follows the
recommendations of the Workflow Management Coalition which is a non-profit, international
organization of workflow vendors, users, and analysts. The coalition, founded in August 1993,
has a mission to promote the use of workflow through the establishment of standards for ter-
minology, interoperability, and connectivity between workflow products [WMC].

2.2.1 Definition Set

2.2.1.1 Definition (Workflow Management System)

A workflow management system is a system that defines, manages, and executes workflow
processes through the execution of software whose order of execution is driven by a computer
representation of the workflow process logic [WMC].

Many types of office work can be described as connected sets of structured recurring tasks
(called workflow processes or procedures) whose basic work steps (called activities) must be
performed by various people (called actors) in a certain sequence. The power of workflow
systems lies in their computerized representation of these processes, and activities. This sec-

WORKFLOW TECHNOLOGY 31

tion describes the basic terminology and capability of workflow; much more power and utility
is possible once this procedural representation is available within the computer system.

A particular workflow application is created by specifying to the workflow system a set of
processes and activities which are performed within an organization or workgroup. This is
the first step toward computerized workflow; the goal is to enhance the efficiency and effec-
tiveness of the office work, while making the workplace a friendlier, more humane place to
work.

2.2.1.2 Definition (Process)

A workflow process (or procedure) is a predefined set of work steps, and partial ordering of
these steps. A work step consists of a header (identification, precedence, etc.) and body (the
actual work to be done).

Examples include the “order processing procedure” within an engineering company, and
the “claims administration process” within an insurance company. Both of these are relatively
standardized and structured, and each can be described by a sequence of steps. Workflow also
attempts to assist in less structured work tasks. Different steps of a process may be executed
by different people or different groups of people. In some cases several steps of a process
may be executed at the same time or in any order. In general, we therefore define a process to
be a partially ordered set of steps rather than a totally ordered set. We also define workflow
processes in such a way that loops are allowed. Processes typically have attributes, such as
name and responsible person, associated with them.

2.2.1.3 Definition (Activity)

An activity is the body of a work step of a process. An activity is either a compound activity,
containing another process, or an elementary activity.

An elementary activity is a basic unit of work which must be a sequential set of primi-
tive actions executed by a single participant. Alternatively, an elementary activity may be a
non-procedural entity (goal node) whose internals we do not model within our structure. An
activity is a reusable unit of work, so one activity may be the body of several work steps. For
example, if “order entry” and “credit check” are (sub-)processes, then the activity “send out
letter” may be an activity in both of these processes. In this case, these are two distinct steps,
but only one activity. An activity instance associated with the body of a particular work step
is called a work step activity.

Activities typically have attributes such as description and mode associated with them. An
activity has one of three modes. Some work step activities may be automatically executed (au-
tomatic mode), some completely manual (manual mode), and some may require the interac-
tion of people and computers (mixed mode). For example, if the process is “order equipment”
then there may be work steps of:

1. order entry
2. credit check
3. billing
4. shipping.

Order entry in some companies is totally automatic; but credit check is frequently done

32 ELLIS

completely by people (manual mode.) This level of detail of description is typically adequate
for an engineering manager, but is not enough detail for a credit clerk. The credit clerk would
like to look inside of the work step called credit check, and see a process that requires steps
of logging each new credit request, gathering data, evaluating a customer, and filling out of a
report form. Thus, the body of this step is itself a process with work steps of:

2.1. log request
2.2. gather data
2.3. evaluate
2.4. fill out report form.

Furthermore, the step 2.4 of filling out the report form may itself consist of work steps to
fill out the various sections of the form. This example shows that it can be useful to multiply
nest processes within processes. Thus, a work step body has been defined to possibly con-
tain a process. Work steps typically have attributes, such as unique identifier and executor,
associated with them.

By definition, a workflow system contains a computerized representation of the structure
of processes and activities. This also implies that there is a means for someone (perhaps a
system administrator) to specify and input descriptions of processes, activities, and orderings
into the computer. These specifications are called scripts. An ongoing research issue is to
develop better, more end-user compatible scripting languages.

2.2.1.4 Definition (Script)

A script is a specification of a process, an activity, or an automatic part of a manual activity.
The composition or building of this script from available building blocks is called scripting.

Once processes and activities have been defined, the workflow system can assist in the
execution of these processes. We separate the concept of the static specification of a process
(the template) from its execution.

2.2.1.5 Definition (Work Case)

A work case (or process instance) is the locus of control for a particular execution of a process.
In some contexts, the work case is called a job; if a process is considered a Petri net, then a
work case is a token flowing through the net. If the process is an object class, then a work
case is an instance. In our example, if two customers submit two orders for equipment, then
these would represent two different work cases. Each work case is a different execution of the
process. If both work cases are currently being processed by the order entry department, then
the state of each work case is the order entry state. Work cases typically have parameters such
as state, initiator, and history associated with them.

Because of the ever changing and sometimes ad-hoc nature of the workplace, it is impor-
tant for workflow systems to be flexible, and have capabilities to handle exceptions. Many
processes which appear routine and structured are, in reality, highly variable, requiring prob-
lem solving and creative exception handling. Another workflow concept that partially helps
address these issues is the indirect association of people (called actors) with activities via the
concept of roles. Numerous other advantages accrue by the use of roles.

WORKFLOW TECHNOLOGY 33

2.2.1.6 Definition (Role)

A role is a named designator for a workflow participant, or a grouping of participants which
conveniently acts as the basis for access control and execution control. The execution of ac-
tivities is associated with roles rather than end-users. Thus, instead of naming a person as
the executor of an activity, we can specify that it is to be executed by one or more roles. For
example, instead of specifying that Michael executes the order entry activity, we can specify
that

1. the order entry activity is executed by the order administrator, and
2. Michael is the order administrator.

There may be a very large number of activities in which Michael is involved. When Michael
goes on vacation, it is not necessary to find and change all processes and activities involving
Michael. We simply substitute Michael’s replacement in the role of order administrator by
changing step 2 to

2. Robert is the order administrator.

A role may be associated with a group of actors rather than a single actor. Also, one actor
may play many roles within an organization. If there are many order administrators within
our example, then these can be defined as a group, and it is easy to send information to all
order administrators. In this case, an option may be available to “send to all” or alternatively,
“send to any” administrator, and the system might use some scheduling algorithm to select
one. Other flexible scheduling algorithms are possible, including the notification of all mem-
bers of the group that a job is available, and allowing the first responder to handle the job. In
this chapter, we use the term participant to refer to a person, a group, or an automated agent
as further defined below. For example, the credit check activity in our example is really exe-
cuted by the credit department, not by any single person. And the printing operation is really
executed by one of many print servers that might be participants with the role of “printer”.

2.2.1.7 Definition (Participant)

A workflow participant is a person, program, group, or entity that can fulfill roles to execute,
to be responsible for, or to be associated in some way with activities and processes. A human
participant is called an actor.

Access attributes or capabilities may be associated with participants and with roles. Other
attributes, parameters and structures can be associated as needed. For example, the role of
manager is perhaps only played by Michael within the order entry department. Thus a param-
eter of the role may be the group within which this role applies.

In summary, this section has briefly presented a definition of workflow together with expla-
nations of the concepts of process, step, activity, work case, script, role, actor, and participant.
These are basic concepts upon which many workflow systems are built. Other concepts (e.g.
data repository) will be introduced in this chapter as needed.

2.2.2 Conceptual Architecture

This subsection presents the conceptual architecture of a generic workflow system using the
entity-relationship model [Che76]. The architecture builds upon the general concepts intro-

34 ELLIS

Process

Activity

Data Role

ParticipantWork case

N N

M

N

M

N

M M

M

N

1

N

part-of

state-of

responsible-for

player-of
precedence

used-in

executor-of

M

N

Figure 2.1 Workflow conceptual architecture

duced in the previous subsection. It lays out some workflow system basic conceptual entities
and their relationships.

The entity-relationship (abbreviated E-R) model is a high-level semantic model using nodes
and arcs; this model has proven useful as an understandable specification model, has been
implemented within E-R databases, directly parallels some object-oriented concepts, and has
a well-known direct mapping into a relational database.

In the E-R model, objects of similar structure are collected into entity sets. The associations
among entity sets are represented by named E-R relationships which are either one-to-one,
many-to-one, or many-to-many mapping between the sets. The data structures, employing the
E-R model, are usually shown pictorially using the E-R diagram. An E-R diagram depicting
the conceptual architecture of a workflow system is shown in Figure 2.1. A labeled rectangle
denotes an entity set; a labeled arc connecting rectangles denotes a relationship between the
corresponding entity sets.

In Figure 2.1, the box labeled process denotes an entity set of processes that may actually

WORKFLOW TECHNOLOGY 35

be a table of process names and their attributes. Likewise, activity may be a table of activity
names and their attributes. There is an arc connecting these two boxes because there is a
relationship called part-of between these two entity sets. Some elements in the activity set
are steps of (or parts of) some processes. This arc is labeled with the relationship name, and a
denotation of M and N indicates that this is a many-to-many relationship. Therefore, a process
can contain many activities, and an activity can be part of more than one process. The arc
joining the activity box to itself labeled precedence tells which activities may precede which
others.

Since the diagram specifies that this is a many-to-many relationship the process scripting
facility supports the specification of conjunctive and disjunctive precedence relations. For
any activity labeled conjunctive, any specification of immediate successors denotes activities
which all directly follow the completion of the given activity; specification of immediate
predecessors denotes activities which must all complete before the given activity can begin.
Some activities will be labeled disjunctive. OR-out from some activity means that out of the
many immediate successor activities, we select only one to actually execute. Similarly, OR-
in means that only one of the activities which immediately precede the given activity must
complete before it can begin. Thus, any partial ordering of activities using sequencing and
these AND/OR constructs, can be specified and supported using workflow.

Other entities shown in Figure 2.1 are jobs and data. A job, or work case, which can be
considered to be flowing through a process, has a state at any instant which is denoted by
the set of current activities being executed by the job, and the job’s history. The relationship
“state-of” captures this state. This relationship gets updated by the system each time that a job
moves from one activity to another. This is a many-to-many relationship, so one job may be
executing within several activities in parallel, and one activity may be simultaneously serving
several jobs. Similar considerations hold for the data entity which refers to the application data
which are accessed by the various activities. People are connected into the system directly if
they are listed in the “participant” entity set. Thus, people are players of roles, and roles are
designated as the executors of activities.

In summary, the conceptual architecture described in this subsection builds upon the gen-
eral concepts introduced in the previous subsection. It lays out some workflow system basic
conceptual entities and their relationships. Other entities (e.g. goals) and relationships (e.g.
manager-of) can usefully be built upon, or added to, this base.

2.2.3 Concrete Architecture

The distributed technology underlying a workflow system typically is a server–client archi-
tecture with a large powerful computer designated as the server, and smaller client machines
on participant work desks at various locations throughout the organization. These are all in-
terconnected, along with other file systems, databases, and servers, via a local area/wide area
networking configuration. See Figure 2.2 for a typical structure. We note that, depending upon
a vendor’s history, different workflow systems are built upon different implementation bases
such as electronic mail base, relational database, or document processing system.

At the server, there is typically a database to store the process specification and related
organizational information, and there is a workflow engine which uses this information to
coordinate the execution of activities at various client workstations. The server thus knows
about roles and participants, and uses this information to do scheduling and dispatching. The
server ships appropriate information at the appropriate time to the appropriate user machine

36 ELLIS

Workflow Server

admin. interface

workflow database

workflow engine

Workflow Client

scripts

executive

user interface

External Server

Communication Base

Workflow Client

scripts

executive

user interface

External Server

Figure 2.2 Workflow concrete architecture

for activity execution. It also implements security and concurrency control, monitors these
executions, logs statistics and backup/recovery information, and as necessary sends reminders
and time-out information. Occasionally, the server may itself execute an automated activity. It
is also typical for the server to supply an administrative user interface to allow administrators
and analysts to define processes and activities, to gather work performance statistics, to do
analysis and simulation, and to make changes and adjustments to processes.

The client machines are the locus of work activity at enactment time. A client machine typ-
ically serves one end-user (secretary, clerk, ...) who we call a participant. Frequently this is an
IBM PC class of machine running a Windows operating system, and using a package such as
Visual Basic to present a familiar electronic desktop working environment for the end-user.
This environment may include local scripts so that some activities can be executed automat-
ically or interactively, allowing the local computer to do some of the information processing
work for the user. It should also allow the user to invoke personal productivity tools such as
editors and spreadsheets on a programmed or ad-hoc basis. Finally Internet interconnectivity
and access to non-local resources such as a customer database or a mainframe routine, are
useful functions that should be available to the user.

2.3 HISTORICAL PERSPECTIVE AND RELATED WORK

The term workflow was in use at the turn of the century when the industrial revolution was
taking place. There was much efficiency gain, and much profit associated with areas such as

WORKFLOW TECHNOLOGY 37

factory automation [Bae93]. It was also assumed in the mid-1900s that the same techniques
(e.g. time and motion studies to optimize office work) would be very successful in bringing
automation to the office. In fact, the history of workflow application in corporate America has
been mixed; more systems have silently died than been successful [Bai81, Whi94]. The 1970s
were the years of introduction of the first sophisticated Office Information Systems. Some of
these systems were indeed workflow management systems embedding complex specifications
of the corporation’s office procedures, detailing which procedure steps must precede which,
and what data must be used in which steps [Zis77]. The 1970s were a time of wild optimism
about the great beneficial effects upon productivity and effectiveness of this new technology.
However, much of this optimism was unfounded. It was observed that organizations succeed
only if people creatively violate, augment, or circumvent the standard office procedures when
appropriate. When these electronic coordinators were introduced into offices, people could
no longer blatantly disobey the office procedures. In many cases, these systems led to inef-
fective organizations and technology rejection. Thus, the rigid systems of the 1970s tended
to interfere with work routines rather than expedite them. Workflow was also unsuccessful
in the 1970s because sufficient technology was not available, because personal computers in
the office were not socially accepted, because vendors were unaware of the requirements and
pitfalls of group technology, and because networking was not commonly available.

There has been considerable published work which addresses workflow systems. Some of
the beginnings in this area come from the author’s early work on Officetalk/ICNs in the 1970s
[Ell80]. Also, GMD has implemented several versions of Domino [Kre84], a Petri net based
prototype office information system. Usage reports detail numerous problems and reasons
for user rejection of the system — this typifies problems of current workflow. Other workflow
efforts include the Xerox “Collaborative Process Model” [Sar91], Polymer at the University of
Massachusetts [Cro88], Prominand [Kar91], Role Interaction Nets [Rei92], and the WooRKS
workflow prototype within the ITHACA ESPRIT project [Ade92]. There has been a flood of
new workflow systems in the 1990s, and a flood of papers describing them. See for example,
the yearly proceedings of the Workflow 9x vendor conferences.

Considerable effort has been put into workflow studies. Many of these have transpired in the
Information Systems field and the Organizational Design field within business schools. Exam-
ples include Bair’s TUMS [Bai82], Woo’s SACT [Woo90], Hirshheim’s model [Hir85], the
Society model [Ho86], Hammer’s BDL and OAM [Sir84], and the OSSAD model [Dum91].
Several office models have emerged from concepts of discrete mathematics. These include
Petri net based workflow models [Zis77, Hol88, Li90], and graph theory based models
[Luq90]. There is also a set of models which have emerged out of the software engineering
community. These could be classified as extended flowchart/state machine notations [Har90],
project management models [Kel91], and process programming models [Ost88]. Office mod-
els are reviewed and contrasted in several articles including [Ell80], [Bra84], and [Leu92].

An interesting statistic published by the Gartner group, is that in the decade from 1980 to
1990, manufacturing productivity in the USA increased 40%, partly due to technology in-
vestment, and office productivity declined by 2% despite an estimated one trillion dollars of
office automation spending. In the 1980s, there was a swing away from the workflow belief.
The thrust of much of this work was to better understand the working of small groups, and to
provide very flexible tools for people to use within unstructured work, and to not attempt to
capture organizational knowledge within the computer system [Ell91]. Some groupware prod-
ucts saw success within their limited domains. It was apparent that a huge amount of leverage
could be attained if we could successfully understand groups and organizations enough to

38 ELLIS

produce organizationally aware groupware. It was also apparent that this is not an easy task.
One of the lessons learned stems from the social situated nature of office work; this implies
the need for a user-centered interdisciplinary approach. The 1990s saw the enthusiastic re-
birth of interest in workflow; customers have been requesting workflow within all document
handling and imaging and electronic mail systems. Unfortunately, it seems that many of the
bitter lessons experienced in the 1970s and 1980s are still not heeded by many of the greater
than 200 workflow products on the market today.

As an early example, Officetalk was an experimental office information system developed
in the Office Research Group at Xerox PARC in the 1970s [Ell80]. Officetalk was the first
system that we know of that provided a visual electronic desktop metaphor across end-users’
personal computers. It also provided a set of personal productivity tools for manipulating in-
formation, a forms paradigm, and a network environment for sharing information. This family
of systems was created, evolved, and used extensively within the Xerox PARC research lab,
and was also tested in selected sites outside of PARC. During the 1970s and 1980s, the author
participated in design, evaluation, enhancement, and significant extensions to Officetalk. This
included work on Backtalk [Nut79], an interactive workflow simulator, Officetalk-D [Ell82],
a database oriented workflow system, and Officetalk-P [Ell79b], an intelligent forms oriented
workflow system.

However, it sometimes happened that an Officetalk system that was loved and worked won-
derfully in the research laboratory, was hated and worked terribly when installed in a typical
production office setting. We observed, as others have observed (see Chapter 1 in this book
[Ehr99]), that workflow systems are people systems, and must take into account the situated,
frequently unstructured nature of office work. Many workflow systems have failed because
they did not adequately take into account the social and organizational setting into which they
were being placed.

2.4 WORKFLOW MODELS AND MODELING

Models of workflow have spanned the gamut from very informal to very formal. Informal
modeling has been reported by Suchman [Suc83]. Early work to formalize workflow models
was presented in the thesis of Michael Zisman [Zis77] where he developed APNs (Augmented
Petri Nets) that attached production rules to specify semantics within Petri nets. These con-
cepts were implemented in the SCOOP system. The model UBIK represents an organization
by “configurators” which perform actions by sending messages to each other [DeJ90]. The
OFS model represents the flow of forms within an office; within this model, all messages,
documents, letters, etc., are defined to be forms [Tsi82]. Another alternative is to model the
office as a database with transactions. TEMPORA is an integrated architecture for doing busi-
ness design and analysis within a database environment [Lou92]. This is a small sampling of
the large number of models which have been used for the modeling of offices and workflow.

Our research group at the University of Colorado is (and has been for many years) actively
researching the Information Control Net model (abbreviated ICN) for information systems
analysis, simulation, and implementation. The ICN is a simple, but mathematically rigorous
formalism created and designed in the 1970s specifically to model office procedures [Ell79a].
ICNs are actually a family of models which have evolved to incorporate control flow, data
flow, goals, actors, roles, information repositories, and other resources [Ell83]. ICNs have
been studied in universities [Dum91] and applied in industry [Bul92]. They have been shown

WORKFLOW TECHNOLOGY 39

to be valuable for capturing office procedures, for mathematical analysis, for simulation, and
for systems implementation. Some of the documented analyses of ICNs include through-
put, maximal parallelism, reorganization, and streamlining [Coo80]. As a comprehensible,
generic, and extensible process model, the basic ICN is described next.

2.4.1 Mathematical Definition

The ICN family of models are structured around the fundamental observation that organiza-
tions encompass goals, resources, and constraints. Some organizations are very highly struc-
tured, with precisely defined processes and rules; others are very loosely constructed with
predominantly unstructured activities. Owing to the variety of organizations, and owing to
the variety of questions that models may be employed to investigate, we have seen that no
one model adequately addresses all aspects. Thus, we derive a family of models by selecting
different types of resources and different levels of structure to incorporate in any particular
member of the family. For example, an organizational model which focuses upon informal
interpersonal communication must incorporate the very important resource of people, and the
roles that they play in the organization. For the thrust of this chapter, we use the basic “control
ICN” which models partial orderings of activities and their control structures; this explanation
does not include the data structure component.

Definition: A Marked Control ICN is a marked graph specified as a 4-tuple, G =
(C; r; l;m) where

(1) C is a finite set of nodes, fc1; c2; :::; cng.
(2) r is a relation over C � C which defines edges of the graph G. If (c1; c2) is a member

of r, then there is an edge from c1 to c2. We say that the edge is an output of c1, and an input
of c2.

(3) l is a function from C into f0; 1g denoting the input–output logic of nodes. l(c i) = 0
denotes conjunctive logic and l(ci) = 1 denotes disjunctive logic. By convention, we separate
activity nodes (single-input, single-output) from AND nodes (conjunctive input and output)
from OR nodes (disjunctive input and output).

(4) m is a marking for the graph G which associates a set (of tokens) with each node and
each edge of G. If x is a member of C [r, then m associates with x a set M (x) such that if
M (x) is nonempty, then x is said to be marked. The elements of M (x) are the tokens residing
on the graph component x. A token is a marker that may cause a node to fire. If a graph
component x contains a token t, then we say the component x is marked with the token t.

We are now in a position to describe how a marked ICN executes:
A node, ci, with l(ci) = 1 is pseudo-enabled if there is at least one input edge, r(cj ; ci)

such that M (r(cj; ci)) is not empty (OR logic). A node, ci, with l(ci) = 0 is pseudo-enabled
if M (r(cj; ci)) is not empty (AND logic) for every input edge of ci, r(cj; ci).

A node ci can fire if it is pseudo-enabled; initiation of firing results in a change of marking
such that if l(ci) = 1, then some token t in M (r(cj ; ci)) is deleted from one M (r(cj; ci)),
and added to M (ci). If l(ci) = 0, then some token is deleted from each M (r(cj; ci)), and a
single token is added to M (ci).

When a node terminates an execution at some finite time after its initiation of firing, then
some t in M (ci) is deleted from M (ci). If l(ci) = 1, then t is added to M (r(ci; cj)) for some
successor node cj; if l(ci) = 0, then t is added to M (r(ci; cj)) for all successor nodes cj.

40 ELLIS

2.4.2 An ICN Example

Frequently ICNs are manipulated in their graphical form. Figure 2.3 shows the graphical
form for an Information Control Net depicting a procedure for order processing within a
corporation. When a customer request for goods arrives, the first step is the order entry activity
in which an order administrator fills out an order form. This is graphically depicted by the
first (top) circle in Figure 2.3. The large hollow circles thus denote activities. Arcs denote
precedence, so for example, the shipping activity must complete before the billing activity can
begin. After order entry is completed, inventory check and compile references activities can
proceed concurrently, indicated by the black dot labelled “and”. A corresponding second black
dot denotes the “and join” of activities. After the order evaluation activity, either shipping
or rejection processing occurs. Thus, the small hollow dot labelled “or” denotes choice or
decision making. There is a corresponding “or join” hollow circle, so that the archive activity
occurs after either the rejection or the shipping activity is completed.

2.5 WORKFLOW META-MODEL

An important aspect of a successful work environment is that people have the capability and
resources to act as effective problem solvers and exception handlers. In one case study, a
worker commented: “The boss in New York says to do it that way, but we do it this way
because we’re in Jamaica. We change the procedure here, and this worked fine until the com-
puter system was installed.” Thus an important observation emerged from these office studies:
Workflow models must not be so prescriptive that they are a barrier to the office worker. Mod-
els must somehow span a large conformance spectrum; likewise, experience has shown that
within a single process, there is a need to model different parts in different amounts of detail,
and different levels of operationality.

Given the observations concerning the failure of workflow systems and models to ade-
quately recognize the situated unstructured nature of work, this section explains a useful 3-
dimensional meta-model that captures some of the human dimensions of workflow. The CDO
meta-model (CDO abbreviates conformance, detail, operationality) distinguishes parts of the
process that must be strictly performed for the process to be acceptable (mandatory parts),
from parts that can be freely altered (e.g., a mechanism to describe a recommended way of
accomplishing the work). The meta-model is also intended to distinguish parts of the pro-
cess described at very abstract levels from very detailed levels. Along a third dimension, the
meta-model supports representations that are either highly declarative or highly operational.
For example, goals and intentional specifications are considered to be highly declarational;
in contrast, a C encoding of a sorting algorithm is considered to be highly operational. The
dimensions of the model space are shown graphically in Figure 2.4. A point in the 3-D space
represents a part (task) of a workflow.

The model space is intended to represent processes according to the way the workflow
model is to be used, as defined by three different criteria: the amount of conformance that
is required by the organization for which the process is a model, the level of detail of the
description, and the operational (versus declarational) nature of the model (see Figure 2.1).
The model is normalized to the unit cube, so strict total conformance is at x = 1, and max-
imum detail is at y = 1. The third dimension, operationality, attempts to quantify the degree
to which the model describes what is required rather than how the process works. A what

WORKFLOW TECHNOLOGY 41

Order Entry

Inventory Check Compile
References

Evaluate
References

no

yes

Order Evaluation

Rejection Processing Shipping

Billing

Archive

and

orreject accept

Figure 2.3 Information Control Net for order processing

42 ELLIS

Detail (y)

Conformance (x)

Operationality (z)

Figure 2.4 CDO model dimensions

model is highly declarative (near z = 0); a how model is highly operational (near z = 1). In
this domain space, systems that represent only structured work, fully specified, codified, and
required, are at x = 1, y = 1, and z = 1; this is the typical workflow point in the space.
Workflow models and systems frequently do not provide assistance below this point. On the
other hand, groupware systems intended to address unstructured work are in a space closer to
x = 0, y = 0, and z = 0. Fully automated workflow enactment systems could be (ideally)
characterized as a point in the space with x near to 1, y near to 1, and z = 1. Systems that
focus on exception handling are in a space where x << 1. Goal-based systems typically op-
erate in a domain in which z is near to 0, but x and y vary according to the specifics of the
model.

The extended ICN model, used in some of our recent studies, is intended to address the full
space, with different parts of the model addressing different subspaces according to the need
for that part of the model. For example, if part of the work is highly structured, operationally
specified, and required to be accomplished according to the specification, then it should be
modeled differently from work for which only the goal is known. The model should allow one
to represent a process for which parts are operational and required, while the way that other
parts are executed is arbitrary, provided that the executions satisfy the intent. The extended
ICN model allows different parts (or sub-tasks) of a process to be modeled at different points
in the 3-D space; all within the same ICN model.

One aspect of an ICN specifies activities (or tasks, or process steps) and their attributes in
the process; each activity belongs to a region whose type is (informally) defined by a point or
region in the space in Figure 2.1. For example, a type “R” (for required work) region might be
represented by a point in the (1; y; z) plane; the model can be represented as a conventional
ICN subgraph composed entirely of required (mandatory) steps.

A type “A” region (for assisted work) may use an operational or declarational style speci-
fication, but the submodel in the region can be interpreted as one approach to accomplishing
the work. This type of specification is a point in the (0; y; z) plane; it is used when a process
designer has one notion of how to accomplish the work, but realizes that different situations
require different variations on the specification. The A-region work can be used directly, or
it can be used to (manually) infer the intent of this part of the work. This is typically a much
healthier way to view a workflow specification than to consider it the immutable total specifi-
cation that must be followed exactly.

A type “D” region (for declaration region) represents a part of the model that defines what
the region is intended to accomplish, rather than a description of how the work must/might be

WORKFLOW TECHNOLOGY 43

conducted. This type of region occurs at points such as (0; 1; 0) and (:5; :5; 0). Thus, points in
the (x; y; 0) plane are “non-operational” specifications.

Ongoing research work at the University of Colorado focuses on exploring new models to
explicitly distinguish among policy, process, and regulations in different regions of our 3-D
space. The dimensions of this model are not totally orthogonal, and they obviously do not
totally span the space of all human dimensions. Note, for example, that a workflow process
description which has a very high degree of detail is also likely to have a high degree of
operationality, so these dimensions seem to be not totally independent in general. There are,
however, cases in which process descriptions are detailed, but not operational. This occurs in
rule-based systems which have huge numbers of rules (constraints), but are not operational
because the rules are not adequate to completely specify the process.

Indeed, some researchers assert that in numerous human situations, there is no such thing
as a “complete and explicit” account of the process because all process instances are situated
and implicit [Suc87]. Indeed, Brown points out [Bro93] that abstraction from process instance
to process class (i.e. modeling) is itself an imperfect situated social practice that is developed
in the social context of an ongoing meta-process. An example is learning to ride a bicycle —
books give tips, but not an algorithm. You cannot simply learn from a book.

In the case of driving an automobile, some of the “official rules of the road” books are quite
thick manuals articulating auto driving distances and courtesies and places not to park and so
forth. Many of these books list more “don’t do” constraints than “do” steps. These manuals
contain enormous detail, but they do not give you an algorithm for driving. Thus they do not,
and are not intended to be, operational.

Conversely, there exist many process descriptions that are operational, but not detailed. The
statement within an order processing process: “All orders must be routed to credit check, then
billing, then shipping” is operational but not detailed. It is operational because a workflow
system can automatically coordinate the electronic forwarding of the order forms to the correct
departments from these specifications. However, the above statement is not detailed — it
gives us no information about what is supposed to happen inside of credit check or billing or
shipping.

Although the CDO meta-model does not span the space of all human dimensions, and its
dimensions are not totally orthogonal, the model nevertheless is quite useful to present a novel
process analysis perspective, and to illustrate gaps in the space of previous models. We believe
that this new perspective might be particularly useful in understanding the role that various
models should play in large enterprise re-engineering efforts.

2.6 EXAMPLE SYSTEMS

2.6.1 IBM FlowMark

The IBM workflow management product is FlowMark, a system which was beta-tested in
1993, and first released as a product in 1994. FlowMark clearly distinguishes workflow build-
time (modeling and analysis) from run-time (enactment). The run-time system is useful when
actors (end-users of the system) at their workstations are doing the process work steps (ac-
tivities) that have previously been specified. Run-time functions coordinate and oversee the
execution of activities within the distributed system, while maintaining backups, and audit
trails. Run-time allows those participants with proper access rights to start and terminate pro-

44 ELLIS

cesses and activities, to view their up-to-date to-do lists, and to access application data as
needed.

The build-time system is useful for creating and changing the specification of processes.
Build-time functions include facilities to allow the drawing, editing, and compilation of pro-
cess graphs. The creator or analysts during build-time can create, test, simulate, and animate
process specifications, can assign staff to activities, and can associate programs (scripts) with
activities. The diagrammatic process graphs allow one to create and manipulate activity icons,
data icons, and connector arcs. Criteria for control flow branching and decision making are
specified via conditions attached to arcs. Data flow is specified via containers, data structures,
and data arcs. Aggregates of activities called blocks and bundles allow diagrams to remain
small and comprehensible via activity nesting. Properties associated with activities include
actors, I/O data, scripts, who is responsible, time, manual/automatic switch, starting condi-
tions, and completion conditions.

The FlowMark organizational model is interesting. Notions of roles and actors are captured
within the staff specifications, and relationships. The staff specification can include partici-
pants (end-users), levels, roles, organizations and relationships. People have attributes such
as userID, absent flag, and level. Levels are integers between 0 and 9 inclusive which can be
locally interpreted by different applications. For example one company may decide that 0 de-
notes novice, 1 through 3 is associate, and above 3 denotes expert. Organizations are defined
as groups with managers, and they are related by a tree structure. Each participant is involved
in two types of relationships. They can be the player of multiple roles, and they belong to
exactly one organization.

The above concepts and definitions are stored in a FlowMark database after they are created.
For distribution and interoperability, FlowMark definitions can be described in an ASCII text
file in an external format called FlowMark definition language (FDL). The FlowMark work-
flow management system provides import and export utilities so that process graphs and other
specifications can be ported from one location to another via FDL.

2.6.2 Action Workflow

The Action Workflow product by Action Technologies Inc., provides a workflow model, and
architecture based upon the philosophical notions of Heidegger, and the linguistic speech act
theory. These notions and theory are well explained in publications by Winograd and Flores
[Flo88, Med92], who are the founders of the company. The creation of this framework based
upon a multi-disciplinary theory is unique and potent. Winograd and Flores point out that
all interactions (or conversations) are composed of communication acts which must be inter-
preted, and that are subject to mis-interpretation by the receiver. Speech act theory suggests
that there are a finite number of categories of speech that characterize all communications.
Computer systems can help to avoid mis-interpreted communications by clearly displaying
the category of each communication to the receiver.

The theory can be applied to workflow by considering each work case as a conversation
between a “customer” who wants the task to be done, and a “performer” who takes on en-
actment of the task or process. In Figure 2.1 we saw an example where someone wants to
buy goods — this person is the customer to whom the goods (and the bill) will be delivered.
The performer in this case is the company that will supply the goods to the customer. Every
workflow, under this model, is drawn as a loop with four phases:

WORKFLOW TECHNOLOGY 45

1. the customer formulates the request
2. the customer and performer negotiate the terms of agreement
3. the performer does the task
4. the performer and customer negotiate the customer satisfaction.

The analysts at Action Technologies provide a convincing argument that the negotiation
phases are very important, but that all too often the fourth phase (customer satisfaction) is
ignored. In their product usage, no phase is ignored because a loop is not closed (completed)
until all four steps have been completed, implying that the customer has said “I am satisfied.”
Of course, loops most often have sub-loops nested within the different phases, allowing del-
egation, subcontracting, or simply the specification of various levels of detail. Frequently the
performer of a loop becomes the client of a sub-loop.

Action Technologies also has a client–server architecture which can execute on several
different platforms. Like the FlowMark system, there exists an intermediate workflow spec-
ification language and a workflow language interpreter that enables compilation to/from the
graphical nested loops diagram. The speech act theory has been the basis of other products
also, and the source of much lively debate in the research community.

2.6.3 Polymer

Polymer is an experimental goal-based workflow system constructed at the University of Mas-
sachusetts [Cro88]. As Professor Bruce Croft, leader of the Polymer project explained: “Poly-
mer is intended to assist in tasks that are loosely structured, multi-agent, under-specified, and
complex.” The potential utility of this approach can be understood by noticing statements that
have been made concerning human work behavior: “People do not follow every step of a work
procedure specification; rather they know the goal of their task and do whatever is necessary
to attain that goal.” Doing this invokes the creative and unstructured activities that help an or-
ganization to flourish. Many organizations have voluminous procedures manuals, but almost
no employee sits down and reads these in all of their detail.

It is well known that many successful managers work in this mode. It is also the case
that many office tasks that seem very structured and simple, frequently have unstructured
problem solving tasks imbedded. Consider the difficult sub-task done by the order entry clerk
of interpreting the signature of a customer on a piece of paper. At times this can be quite a
challenge. Thus, instead of building an over-structured workflow system that forces the users
into unnatural, inefficient and ineffective step-by-step processing, a workflow system might
allow workers to work via goals. Furthermore, the work of Croft and team attempts to create
a workflow system that knows the goals and works with the humans to help achieve them.

Polymer uses concepts and technologies from the artificial intelligence literature to do goal-
based planning [Cro89]. It attempts to satisfy the goals that are specified in a top-down depth
first traversal fashion. Polymer allows the specification of tasks, agents, objects, goals, and
plans. Within an activity description, there can be goals, preconditions, postconditions, and
also subgoals. Besides this application description module, there is also a planner, an ex-
ecution monitor, a truth maintenance module, and user interaction module. Other research
projects are also investigating goal based approaches to workflow [Ell95]. This is an area
of great promise which is still in the research phase. The next section discusses workflow
research directions further.

46 ELLIS

2.7 RESEARCH DIRECTIONS AND ISSUES

Workflow systems have been categorized into a) administrative workflow systems, b) produc-
tion workflow systems, and c) ad-hoc workflow systems. An administrative system typically
has complex administrative types of processes to administer. There may be many diverse and
complex sub-processes, and a lot of dependency is placed on the system to monitor and re-
mind people. Examples include billing and order processing. Some research issues prominent
within the administrative category include integration, interoperability, and efficient triggering
mechanisms. In contrast, a production workflow is very structured, and high volume. Thus,
many parts of this can be and are relatively highly automated, and the number of work cases
per unit time is high. For example, customer inquiry processing within a large telephone com-
pany has millions of diverse inquiries per month [Dav91]. Many of the tasks and process
steps are done wholly by computer, and a good transaction management system is an impor-
tant part of this. Research issues of efficient extended transaction mechanisms, concurrency
control, recovery, and distributed architecture are important within this category. Finally, the
ad-hoc workflow is one in which there is much unstructured work, and in which much of the
planning of which steps to take cannot be done in advance. Much of the work of managers
has been described [Min79] as “fire fighting and crisis management”, and is very unplanned
in its detail. Ad-hoc workflow is frequently a relatively small workflow in terms of the number
of transactions incoming, and in terms of the complexity of the mainline people and process
specifications. There is need for people to be creatively involved, and for group problem solv-
ing to be supported. An example in this category is document routing which is dependent upon
the content of the document, and human judgement about who in the organization it should
be routed to next. Given these distinct workflow types one might suspect that their problems
are disjoint. This is not the case. Note that these categories are actually all present in many
workflow situations. Areas in which very similar problems arise include exception handling
and dynamic organizational change. These two exemplary research challenges, and others, are
examined next in this section.

2.7.1 Exception Handling

One attribute which distinguishes workflow systems from many other kinds of computer sys-
tems is people. Typically workflow involves people in non-trivial ways. People are not simply
the consumers of output, but are intimately involved in the processing. Several studies of of-
fices have been done with an express interest in observing and categorizing the exception
processing. These studies have found that there is a large amount of exception handling in
all three of the categories of workflow. And the creativity and problem solving abilities of
humans, rather than just computers, are strongly needed. Thus, successful workflow designs
need to think beyond the computer as a tool to automate and replace people, to computer
as collaborator and communication vehicle to help people in problem solving and exception
handling.

In a recent Ph.D. dissertation by Heikki Saastamoinen [Saa95], he analyzed exceptions by
performing an 8 month study at a large paper handling company in Finland. He looked at the
frequency of exceptions, their scope, complexity, type, amount of delay, and amount of repair
work. He found that exceptions are consuming a huge amount of the time of the people in
organizations. These findings are consistent with other studies, and statistical analysis using
a large number of questionnaires to a sampling of companies [Saa94, Str89] that have been

WORKFLOW TECHNOLOGY 47

published. Saastamoinen finds that it is useful to separate exception detection from exception
handling from exception prevention. He also notes that some people use the term “error” for
exception, and that this is sometimes inappropriate because it is frequently not a mistake, but
a “freak occurrence of nature” that is a fault. He interestingly also found several examples of
“positive exceptions” which helped raise awareness of people, and led to a better organization.
He classified exceptions into three types:

1. Established Exceptions: they are not the normal case, but there are rules to handle them;
they are anticipated.

2. Otherwise Exceptions: no rule to handle, but these are local bounded exceptions where
scope and goal are known.

3. True Exceptions: no precedent, non-local (span multiple people/activity domains), goal
unclear, unanticipated.

In established exceptions, techniques like UNDO, REDO, compensation and rollback may
apply from database theory. An example of this type of exception is “external tax paid for
internal order”. There is a standard compensation process which compensates for this, and
this exception was anticipated by the system designers. The important point that was made
convincingly by Lucy Suchman, is that it is impossible for the system designers to a priori
think of all exceptions [Suc87]. So, for example in a trip planning system, the designers may
implement an exception handler for the case of “airplane full” (an established exception), but
may not have implemented any exception handler for “airplane crashes” (a true exception).
Saastamoinen found that the exception detection, prevention, and handling take up more than
50% of the work time in many companies. He found that true exceptions were the most expen-
sive in terms of delay, complexity, and usage of the most time of the most expensive people
within an organization. The older workflow systems were especially bad offenders. First they
would regularly insult the users by printing a message for each exception that was worded to
make it seem like an “error!”. These systems were so rigid that they did not allow humans
to do reasonable work-arounds. And they frequently hindered rather than helped the creative
people to solve problems.

Thus, an important issue is the question of how workflow systems can be designed for
unexpected exceptions, to help rather than hinder the knowledge workers. The work fold-
ers concept of Karbe tried to provide exception handling facilities for the top ten exceptions
[Kar91], but found that this was inadequate for true exceptions. The FlowPath workflow prod-
uct introduced the capability for any user at any time to send a work case to another activity,
role, or participant with parameters to specify further routing, time of delivery, return to sender
afterwards, etc. A problem of access control and general control of the process then emerges.
Lucy Suchman gives an excellent example of a true exception within an accounting office in
which somehow one page of a two page billing statement is missing [Suc83]. It takes quite
a lot of creativity and problem solving to crack this one, and to stay within the rules of the
organization.

2.7.2 Interoperability

One of the complaints that is very high on the list for workflow customers is that their work-
flow systems cannot adequately interact with their legacy data processing systems. Frequently
some inputs, outputs, and intermediate results of the workflow system must go to and from
other previously existing computer systems. The workflow typically needs to interact with

48 ELLIS

a number of other databases, file systems, and applications. In many organizations it is not
feasible to throw away the large mainframe systems simply because there is a new workflow
system in house. Thus, pragmatically speaking, a strong requirement of workflow manage-
ment systems is to communicate and interact well with a variety of other data processing and
information systems within an organization. Owing to the proliferation of different types and
styles of these systems, workflow vendors face a significant challenge. Vendors must seek so-
lutions that offer quick, low effort programming of varied interfaces to varied legacy systems.
This requirement also extends to interaction with varied applications, databases, and personal
productivity tools.

Another type of interoperability that is becoming more and more in demand is interoper-
ability between different workflow systems.The workflow management coalition is trying to
address this and other interfacing problems within their standards work [WMC]. For example,
if a large corporation is buying expensive goods, they may use their workflow management
system to execute the equipment purchase process. Preferably, their purchase orders and other
relevant workflow outputs can be automatically and electronically input to the workflow sys-
tem of the supplier. The work of Eder and group [Ede95] explores issues of workflow on the
Internet; inter-organizational interoperability can be obtained by using the extended HTTP
and HTML protocols, and EDI. There are now a number of workflow systems whose trans-
port medium is strictly the Internet technology [W4].

2.7.3 Dynamic Change

Change is a way of life in most organizational and personal settings. There are many different
types of change, scales of change, and timeframes for change. Workflow systems must support
rather than hinder this changeability. Those organizations in the modern business world which
refuse to change are typically headed toward rapid obsolescence because they cannot compete.
Organizations must frequently make structural changes such as:

� adding a new employee
� adjusting procedures for a new tax law
� filling in for a manager on vacation.

There are also important issues concerned with change of application data, evolution of
organizational objectives, change of social communication structures, etc. In order to make
structural changes as above within a workflow system context, it is typically and unfortu-
nately necessary to suspend or abort the work in progress within the execution module, and
start up the specification module to make the changes to the specification. Then after the
change, the specification module is terminated, parameters are re-initialized, the specifica-
tion is re-compiled, and once again, the execution module is started. This is an inefficient,
error prone, and ineffective process because many organizations find it very unproductive,
and sometimes impossible, to shut down all activity in order to make changes. From phar-
maceutical factories to software engineering houses, this is a nagging problem — the bigger
the organization, the more complex are the processes, and the more painful the change pro-
cess. Today, organizations usually do not solve this problem, they cope, evade, or “muddle
through”.

By combining the first and second components of workflow, the model is constantly avail-
able and process change can potentially occur dynamically if the correctness and consistency
problems of dynamic change can be solved. Thus, even with these components combined,

WORKFLOW TECHNOLOGY 49

we do not know how to smoothly and correctly handle the myriad of changes which are
constantly happening. Although there is considerable literature addressing workflow, office
modeling, and business re-engineering, the problem of dynamic structural change has not
been generally solved. In this section, we see an example of one type of incorrect behavior
that can accidentally occur within dynamic structural change. The conclusion is that in large
organizations around the world, dynamic change is an ad-hoc and risky event.

Change to the values of application data items is a normal type of activity that occurs
in administrative information processing. However, structural change to the procedures and
processes is not considered “normal” by most organizations. Dynamic means that the change
to the process occurs while the process is executing. Static change, in the ICN context, means
that the execution of the process is halted, all tokens are removed, and the change is applied at
quiescence. Static correctness means that certain assertions or constraints are not violated —
it implies that we have a set of correctness criteria that hold for all tokens flowing through the
ICN before the change, and also for all tokens that enter the ICN after the change is completed.

Dynamic change correctness is concerned with tokens which enter the net prior to the
change and do not exit the ICN until some time after the change. Anomalous behavior can
be exhibited by these tokens even if we know that the change maintains static correctness.
A simple example of this is the change that includes swapping of the billing and shipping
activities in the example ICN of Figure 2.5. Notice that Figure 2.5 is simply a sub-ICN of the
previously explained ICN of order processing (Figure 2.3). Tokens that are currently within
the shipping node when the swap change occurs never encounter the billing activity, so the
company never gets paid for the goods that are shipped. Suppose that the correctness criterion
is that all customer orders must pass through shipping and billing in some order. This anomaly
occurs although the ICN before the change is correct, and the ICN after the change is correct.
Similarly, an anomaly occurs if we simply try to enhance the efficiency of the procedure by
changing to perform billing and shipping in parallel. This example depicted in Figure 2.5 is
small and obvious; other examples which occur in ICNs of hundreds of nodes are not at all ob-
vious, and difficult to find and correct. By combining some techniques of Petri nets and graph
grammars, Keddara [Ked95] has been able to characterize situations in which this behavior is
non-problematic.

2.7.4 Workflow Transactions

Many notions such as transactions, that have been studied within the database community,
are not present in today’s typical workflow products. Concepts of archival storage (data
mining), efficient retrieval, transparency (e.g. of distribution), concurrency control, and re-
liability/recovery have been conceived within the database community, studied in research
labs, and implemented in database management products, but have mostly not made their way
into workflow management systems [Sh95]. This is partly due to thinking of workflow as
equivalent to control flow, and ignoring data flows. This is also partly due to the origins of
many workflow products and companies being non-database companies. Finally, this is partly
due to the need to rethink these concepts within the workflow context, and to not simply copy
the database implementations of these concepts. Sometimes the database expert does not have
sufficient knowledge or sensibilities about the workflow needs of organizations.

For example, there are clearly multiple people needing to access the workflow information
and system concurrently. Both within a single workflow, and among different workflows,
we must enable parallelism. Thus, the database transaction has been suggested because it

50 ELLIS

order

bill

archive

order

bill

archive

ship

ship

OLD PROCESS NEW PROCESS

Figure 2.5 Dynamic structural change

allows concurrent access while maintaining atomicity and serializability. However, the people
working on a workflow are typically collaborating, for example, on a customer work case.
The transactions are thus not executing on the order of microseconds, but on the order of
minutes, days, or even months. The standard solutions lock up too much of the information
for too long. Thus we must be concerned with long transactions; concepts such as nested
transactions may be applicable here [ElM92]. Furthermore, we know that the system must
enhance, not destroy, the ability of people to work tightly together as teams to do decision
making and problem solving. The underlying database philosophy of guaranteeing to users
that their work is independent and isolated from others’ is basically an incorrect perspective
for the workflow domain. There need to be facilities that allow a distributed team to work
together unfettered on a dataset by all having read and write access to all data, and all to see
instantaneously the work and changes of all others. This is the real-time interaction mode
that can be very useful, but that is hindered by the locks that are created, and the firewalls
that are created within conventional transaction mechanisms. Serializability turns out to be an
inadequate correctness criterion in this application area. New creative solutions are needed.

In workflow there is a need to anticipate the unexpected. Frequently after some amount of
working on a work case, the customer calls and says to cancel their case, significantly alter
their case, or to expedite it. This suggests a need for undo, cancel, abort, and rollback mecha-
nisms. Once again these concepts are not adequate if they are blindly adopted from database
implementations. Different threads of the workflow may have been executed in parallel in
such a way that it is impossible to undo some parts, but possible for others if parts have, for
example, been delegated to a subcontractor. If the tree has already been chopped down, then
it is impossible to undo; if the plane trip has already been flown, then it is impossible to just
cancel it [Jab96].

There have been numerous proposals to use database-like techniques that have been devel-
oped for “non-standard transactions”. For example, undo, redo, compensation, sagas, nested

WORKFLOW TECHNOLOGY 51

transactions, and abort mechanisms [ElM92]. These mechanisms are good innovations for es-
tablished exceptions, but are much less useful for true exceptions where the detection point
may be totally disjoint from the cause point, and where it may be totally impossible to undo.

2.7.5 Further Research Directions and Issues

This chapter has introduced only a few of the workflow research areas. Other areas include
distributed workflow, workflow benchmarking, combining workflow and groupware, real-
time interactions, incorporation of goals into workflow systems, incorporation of multimedia,
learning and evolving workflow systems, organizational sub-models, social sub-models, and
group user interfaces. Also, numerous deep problems exist concerning end-user programma-
bility by secretaries, clerks, and other non-computer people. Many of these problems remain
as inhibitors to successful workflow implementations.

2.8 SUMMARY

This chapter has presented a tour of workflow issues, technology, and challenges. Workflow
management systems consist of two components: a modeling component used for the defini-
tion, analysis, simulation and restructuring of processes, and an enactment component, called
the “run-time system” which has a workflow engine to coordinate process steps, and an exe-
cution interface for use by the distributed end-users.

Besides presenting workflow definitions, architectures, and models, this chapter has pre-
sented a historical perspective that suggests that the human and social factors are very im-
portant, and have frequently been ignored in the past. Workflow systems are foremost people
systems. This leads to consideration of a meta-model attempting to capture some of the hu-
man dimensions of workflow, and the description of some workflow systems and research
prototypes which are attempting to solve some of the hard problems that are still plaguing
the field. A few of these hard problems have been described, including exception handling,
interoperability, dynamic change, and workflow transactions.

It is hoped that the work presented herein will raise awareness of work and considerations
that are paramount for workflow success, and also that this will stimulate good researchers to
take up the banner of doing needed research in this fast growing area.

REFERENCES

[Ade92] Ader, M. and Lu, G., The WooRKS Object Oriented Workflow System. OOPSLA92 Exhi-
bition, booth 712–714, October 19–21, 1992. Developed as part of the ITHACA Research
project within the ESPRIT Program.

[Bae93] Baecker, R. (Ed.), Readings in Groupware and Computer Supported Cooperative Work.
Morgan Kaufmann Publishers, January 1993.

[Bai81] Bair, J. (Co-editor), Office automation systems: Why some work and others fail. Stanford
University Conference Proceedings. Stanford University, Center for Information Technol-
ogy, 1981.

[Bai82] Bair, J., Methods for success with new workflow systems. In D. Coleman (Ed.), Group-
Ware’92, pages 160–164. Morgan Kaufmann Publishers, San Mateo, CA.

[Bar83] Barber, G., Supporting organizational problem solving with a workstation. ACM Transac-
tions on Office Information Systems, 1(1), 1983.

52 ELLIS

[Bra84] Bracchi, G. and Pernici, B., The design requirements of office systems. ACM Transactions
on Office Information Systems, 2(2):151–170, April 1984.

[Bro93] Brown, J.S. and Duguid, P., Stolen knowledge. Educational Technology, March 1993.
[Bul92] Bull Corporation, FlowPath Functional Specification. Bull S. A., Paris, France, September

1992.
[Che76] Chen, P., The entity-relationship model – Toward a unified view of data. ACM Transactions

on Database Systems, 1(1), 1976.
[Coo80] Cook, C., Office streamlining using the ICN model and methodology. In Proceedings of the

1980 National Computer Conference, June, 1980.
[Cro88] Croft, W. and Lefkowitz, L., Using a planner to support office work. In Proceedings of ACM

COIS’88, pages 55–62, March 1988.
[Cro89] Croft, W. and Lefkowitz, L., Planning and execution of tasks in cooperative work environ-

ments. IEEE AI, 1989.
[CSCW92] Computer Supported Cooperative Work (CSCW), An International Journal. Kluwer Aca-

demic Publishers, Vol. 1, 1992.
[Dav91] Davis, D. B., Software that makes your work flow. Datamation, 37(8):75–78, April 1991.
[DeJ90] De Jong, P., Structure and action in distributed organizations. In Proceedings of ACM

COIS’90, pages 1–10, April 1990.
[Dum91] Dumas, P., La Méthode OSSAD. Les Editions d’Organisation, 1991.
[Dys92] Dyson, E., Workflow. Release 1.0, EDventure Holdings, New York, September 1992.
[Ede95] Eder, J. and Groiss, H., Interoperability with world wide workflows. Integrated Design and

Process Technology, IDTP Vol.1, December 1995.
[Ehr99] Ehrlich, K., Designing groupware applications: A work-centered approach. In Beaudouin-

Lafon, M. (Ed.), Computer Supported Cooperative Work, Trends in Software Series 7:1–28.
John Wiley & Sons, Chichester, 1999.

[Ell79a] Ellis, C. A., Information control nets: A mathematical model of office information flow.
In Proceedings of the 1979 ACM Conference on Simulation, Measurement and Modeling of
Computer Systems, pages 225–239, August 1979, .

[Ell79b] Ellis, C., OfficeTalk-P: An office information system based upon migrating processes. In
Najah Naffah (Ed.), Integrated Office Systems. INRIA, France, 1979.

[Ell80] Ellis, C. A. and Nutt, G. J., Office information systems and computer science. ACM Com-
puting Surveys, 12(1):27–60, March 1980.

[Ell82] Ellis, C., OfficeTalk-D: An experimental office information system. In Proceedings of the
First ACM Conference on Office Information System, June 1982.

[Ell83] Ellis, C., Formal and informal models of office activity. In Proceedings of the IFIP Interna-
tional Computer Congress, Paris, 1983.

[Ell91] Ellis, C. A., S. J. Gibbs, and G. L. Rein, Groupware: Some issues and experiences. Commu-
nications of the ACM, 34(1):38–58, January 1991.

[Ell95] Ellis, C. and Wainer, J., Goal-based models of collaboration. Collaborative Computing
Journal, 1(1), 1995.

[ElM92] ElMagarmid, A. (Ed.), Database Transaction Models for Advanced Applications. Morgan
Kaufmann, 1992.

[Flo88] Flores, F., Graves, M., Hartfield, B. and Winograd, T., Computer systems and the design of
organizational interaction. ACM Transactions on Office Information Systems, 6(2):153–172,
April 1988.

[Gas86] Gasser, L., The integration of computing and routine work. ACM Transactions on Office
Information Systems, 4(3):205–225, July 1986.

[Geo95] Georgakopoulos, D. , Hornick, M., and Sheth, A., An overview of workflow management:
From process modeling to workflow automation infrastructure. Distributed and Parallel
Databases, 3(22):119–154, April 1995.

[Gru88] Grudin, J., Why CSCW applications fail, In Proceedings of the Conference on Computer
Supported Cooperative Work (CSCW’88), pages 85–93. ACM Press, New York, 1988.

[Har90] Harel, D., et. al., STATEMATE: A working environment for the development of complex
systems. IEEE Transactions on Software Engineering, 16(4), April 1990.

[Hir85] Hirschheim, R. A., Office Automation: A Social and Organizational Perspective. John Wiley
& Sons, 1985.

WORKFLOW TECHNOLOGY 53

[Ho86] Ho, C., Hong, Y. and Kuo, T. A., Society model for office information systems. ACM
Transactions on Office Information Systems, 4(4):104–131, April 1986.

[Hol88] Holt, A., Diplans: A new language for the study and implementation of coordination. ACM
Transactions on Office Information Systems, 6(2), 1988.

[Jab96] Jablonski, S., Bussler, C., Workflow Management. Thomson Computer Press, 1996.
[Joh94] Johansen, R., and Swigart, R., Upsizing the Individual in the Downsized Organization.

Addison-Wesley, 1994.
[Kar91] Karbe, B., Ramsperger, N., Concepts and implementation of migrating office processes.

Verteilte Kunstliche Intelligenz und Kooperatives Arbeiten, page 136, 4, Internationaler GI-
Kongress Wissensbasierte Systeme, Munchen, Germany, October 1991.

[Ked95] Keddara, K., and Rozenberg, G., Dynamic change within workflow systems. In Proceedings
of the ACM SIGOIS Conference on Organizational Computing Systems, August 1995.

[Kel91] Kellner, M., Software process modeling support for management planning and control. In
Proceeding of the First International Conference on the Software Process, pages 8–28. IEEE
Computer Society, October 1991.

[Kre84] Kreifelts, T., Licht, U., Seuffert, P. and Woetzel, G., DOMINO: A system for the specifica-
tion and automation of cooperative office processes. In Wilson and Myrhaug (Eds.), Proc.
EUROMICRO’84, pages 3–41, 1984.

[Kre87] Kreifelts, T. and Woetzel, G., Distribution and exception handling in an office procedure
system. In Bracchi and Tsichritzis (Eds) Office Systems: Methods and Tools, pages 197–
208, 1987.

[Kre91a] Kreifelts, T., Coordination of distributed work: From office procedures to customizable activ-
ities, Verteilte Kunstliche Intelligenz und Kooperatives Arbeiten, page 148, 4, Internationaler
GI-Kongress Wisensbasierte Systeme, Munchen, Germany, October 1991.

[Kre91b] Kreifelts, T., et.al., Experiences with the DOMINO office procedure system, In Proceedings
of the ECSCW’91, pages 117–130. Kluwer, Dordrecht, 1991.

[Leu92] Leung, Y., Workflow products market report. B.S.A. Technical Memorandum, Bull Corpora-
tion, 1992.

[Li90] Li, Jianzhong, AMS: A Declarative Formalism for Hierarchical Representation of Procedu-
ral Knowledge. Ph.D. Thesis, Ecole Nationale Supérieure des Télécommunications, Paris,
France, December 1990.

[Lou92] Loucopoulos, P. and Katsouli, E., Modelling business rules in an office environment. SIGOIS
Bulletin, 13(2). ACM, August 1992.

[Lut88] Lutze, R. and Triumph-Adler, A., Customizing cooperative office procedures by planning.
In Proceedings of ACM COIS’88, pages 63–77, March 1988.

[Luq90] Luqi, A., Graph model for software evolution. IEEE Transactions on Software Engineering,
16(8), August 1990.

[Mal94] Malone, T. and Crowston, K., The interdisciplinary study of coordination. ACM Computing
Surveys, 26(1):87–120, March 1994.

[Mar91] Martial, F.V., Activity coordination via multiagent and distributed planning. Verteilte Kun-
stliche Intelligenz und Kooperatives Arbeiten, page 90, 4, Internationaler GI-Kongress Wis-
sensbasierte Systeme, Munchen, Germany, October 1991.

[Med92] Medina-Mora, P. et. al., The Action Workflow approach to workflow management technol-
ogy. In Proceedings of ACM CSCW’92, pages 281–288, November 1992.

[Min79] Mintzberg, H., The Structure of Organizations. Englewood Cliffs, 1979.
[Nut79] Nutt, G. J. and Ellis,C. A., Backtalk: An office environment simulator. In ICC ‘79 Confer-

ence Record, pages 22.3.1–22.3.5, June 1979.
[Nut83] Nutt, G. J., An experimental distributed modeling system. ACM Transactions on Office

Information Systems, 1(2):117–142, April 1983.
[Nut89] Nutt, G. J., Beguelin, A., Demeure, I., Elliott, S., McWhirter, J., and Sanders, B., Olym-

pus: An interactive simulation system, In Proceedings 1989 Winter Simulation Conference
(Washington, D.C.), pages 601–611, December 1989.

[Nut90] Nutt, G. J., A simulation system architecture for graph models. In Rozenburg, G. (Ed.),
Advances in Petri Nets ’90. Springer Verlag, 1990.

[Ost88] Osterweil, L., Automated support for the enactment of rigorously described software pro-
cesses. In Proceedings of the Third International Process Programming Workshop, pages

54 ELLIS

122–125. IEEE Computer Society Press, 1988.
[Pan84] Panko, R., 35 Offices: Analyzing needs in individual offices. In Proceedings of the Second

ACM-SIGOA Conference on Office Information Systems, June 1984.
[Rei92] Rein, G., Organization Design Viewed as a Group Proces Using Coordination Technol-

ogy. Ph.D. Thesis Dissertation, Department of Information Systems, University of Texas at
Austin, May 1992.

[Rei93] Rein, G., Singh, B., and Knutson, J., The grand challenge: Building evolutionary technolo-
gies. In Proceedings of the HICSS93 Conference, pages 5–8, January 1993.

[Roo68] Roos, L., and Stark, F., Organizational roles. In Lindzey, G., and Aronson, E. (Eds.), Hand-
book of Social Psychology, 2nd Edition, 1968.

[Saa94] Saastamoinen, H.T., Markkanen, M.V., Savolainen, V.V., A survey of exceptions in informa-
tion systems. University of Colorado Technical Report, CU-CS-712-94, April 1994.

[Saa95] Saastamoinen, H.T., On the Handling of Exceptions in Information Systems, Ph.D. Thesis
Dissertation, University of Jyvaskyla, November 1995.

[Sar91] Sarin, K. S., Abbott, K. R. and McCarthy, D. R., A process model and system for supporting
collaborative work. In Proceedings ACM COCS’91, pages 213–224.

[Sh95] Sheth, A., and Rusinkiewicz, M., Specification and execution of transactional workflows. In
W. Kim (Ed.), Modern Database Systems: The Object Model, Interoperability and Beyond,
pages 592–620. ACM Press, New York, 1995.

[Sir84] Sirbu, M., Schoichet, S., Kunin, J. S., Hammer, M. and Sutherland, J., OAM: An office
analysis methodology. Behaviour and Information Technology, 3(1):25–39, 1984.

[Str89] Strong, D.A. and Miller, S.M., Exception handling and quality control in office operations.
Boston University School of Management Working Paper, #89-16. Boston, MA, 1989.

[Suc83] Suchman, L., Office procedure as practical action: Models of work and system design. ACM
Transactions on Office Information Systems, 1(4):320–328, October 1983.

[Suc87] Suchman, L., Plans and Situated Action: The Problem of Human–Machine Communication.
Cambridge University Press, Cambridge, England, 1987.

[Tsi82] Tsichritzis, D., Forms management. Communications of the ACM, 25(7):453–478, July
1982.

[Woo90] Woo, C., SACT: A tool for automating semi-structured organizational communication. In
Proceedings of ACM COIS’90, pages 89–98, April 1990.

[Whi94] White, T. and Fisher, L., The Workflow Paradigm: The Impact of Information Technology on
Business Process Reengineering. Future Strategies, Inc., Alameda, CA, 1994.

[WMC] Workflow Management Coalition, Coalition Overview, Reference Model, and Glossary. See
Internet home page http://www.aiai.ed.ac.uk/WfMC/

[W4] The W4 World Wide Web Workflow product features, 1997. http://www.w4.fr
[Zis77] Zisman, M. D., Representation, Specification, and Automation of Office Procedures. Ph.D.

Thesis Dissertation, Wharton School, University of Pennsylvania, 1977.

3

Media Spaces: Environments for
Informal Multimedia Interaction

WENDY E. MACKAY

Aarhus University

ABSTRACT

Distributed organizations, with distributed cooperative work, are a fact of life. How can
new technologies help? Distributed video is an appealing choice, carrying more contex-
tual information than voice alone and, arguably, better at conveying subtle cues, such as
the emotional states. Although new commercial systems are being introduced, they focus
primarily on providing new technology. Most are based on relatively simple extensions
of two existing models of communication: formal meetings become videoconferences and
telephones become videophones. However, research in computer-supported cooperative
work has tried to emphasize the user, with models based on Shared Workspaces (to sup-
port shared work on a common task), Coordinated Communication (to support structured
communication to serve a specified purpose), and Informal Interaction (to support infor-
mal, unplanned and unstructured interactions). Although mediaspaces can incorporate all
three, they emphasize informal communication, providing people working together at a
distance with interactions that they take for granted when they are co-located. This chapter
describes some of the pioneering work in media spaces, with more detailed descriptions
of our own work at Rank Xerox EuroPARC (RAVE for our own use in the laboratory and
WAVE, to support engineers working collaboratively between facilities in England and the
Netherlands), concluding with a discussion of the technical, user interface and social issues
involved in designing media spaces.

3.1 INTRODUCTION

Telephones, faxes, electronic mail and the World Wide Web have transformed work, enabling
people to work together, even when they live in different countries and in different time zones.
Yet long-distance projects are still difficult, even when cultural and organizational differences

Computer Supported Cooperative Work, Edited by Beaudouin-Lafon
c
 1999 John Wiley & Sons Ltd

56 MACKAY

are taken into account. Why? One important reason is the lack of informal social contact
that people have when they work in the same physical location [Hea91]. People who are
co-located benefit from chance encounters in hallways or chats before and after meetings,
resolving problems before they become critical. Working in the same physical environment
helps people discover shared interests and develop a sense of community. Implicit knowledge
about the state of each other’s work can prevent misunderstandings or resentment: If I see
that my colleague’s report is sitting in her “out” basket, ready to send, I can avoid asking
her about it and thus avoid offending her. When people are separated geographically, much
of their informal knowledge about each other disappears and communication becomes much
more formal. Attempts to address this with additional meetings and reports often serves to
exacerbate the situation and emphasizes the differences between groups.

Moran and Anderson [Mor90] identify three fundamental approaches to supporting co-
operative work at a distance: Shared Workspaces [Tan90, Min91, Ish92, Ols91a, Ols91b],
which emphasize people working cooperatively on a common task, Coordinated Communi-
cation [Win89, Ell99], in which people communicate in a structured fashion for some purpose
(such as decision-making), and Informal Interaction, in which people engage in unplanned
and unstructured interactions. Chapters 4 and 5 in this book [Ish99, Pra99] address shared
workspaces and Chapters 1 and 2 [Ehr99, Ell99] address coordinated communication. This
chapter is most concerned with informal interaction, providing people working at a distance
with the kinds of informal interactions they enjoy when working in close proximity to each
other.

The explosion of networked computing through the World Wide Web and the decreasing
cost of video technology have made distributed video a popular choice for addressing the
problem of providing distributed social context. However, whenever new technology is cre-
ated, it usually begins as an imitation of something that already exists. Not surprisingly, then,
most commercial distributed video systems are modeled after one of two familiar forms of
communication: telephone calls and formal meetings. Videophones are based on the model of
a telephone call in which a caller establishes a video and audio link to a second party. When
the call is initiated, the phone rings in the other location; if the other person is available, he or
she decides whether or not to accept the call and complete the connection. The call continues
as long as both parties participate; when one hangs up, the connection is broken. Videoconfer-
encing is the other common model, usually involving specially-designed conference rooms. A
common arrangement uses one video camera to capture people sitting at a table and a second,
overhead camera, to capture documents or slides. Live video images are sent to one or more
remote video conference rooms, via telephone or satellite and projected onto wall screens.
Often, a separate speaker phone is used to enhance the quality of the voice. Desktop video-
conferencing is a low-cost alternative, designed to be used with computers in the office. A
small video camera is usually placed on top of the monitor and digitized images are sent to
a window on another participant’s screen. Some of these systems can handle several video
images at once, although the computer monitor quickly runs out of screen space. Audio can
be a problem if it is delayed and people often use telephones or speaker phones in addition to
the on-line video.

Telephone and conferencing models represent a limited subset of the ways in which video
can support distributed cooperative work. The purpose of this chapter is to describe the con-
cept of a media space, which attempts to extend distributed video to include a variety of forms
of communication, ranging from informal encounters and peripheral awareness to focused,
formal meetings. The difference between media spaces and most commercial distributed video

MEDIA SPACES 57

systems has little to do with technology and everything to do with the way in which the tech-
nology is embedded into the social environment. Understanding these social issues is essential
for understanding how to design and introduce effective media spaces. As Moran and Ander-
son [Mor90] explain in their description of EuroPARC’s RAVE media space:

“EuroPARC’s concern is not simply with artifacts and their enabling technologies, but with
understanding the processes and relationships which such artifacts support, including the pro-
cesses by which they are designed. The discipline of design must involve a constant movement
back and forth between the design and use of technologies and reflection upon those activities.”

3.2 EARLY MEDIA SPACES

The idea of a videophone has been around for a long time. In the early 1960s, AT&T demon-
strated a prototype “PicturePhone” at the Seattle World’s Fair, which allowed callers to view
each other on small video monitors, set up in expanded telephone booths. The set-up opti-
mized lighting conditions and video camera position to simulate face-to-face contact. (Note
that callers could not actually call someone they knew; they had to wait for a stranger at an-
other PicturePhone booth to arrive before having a conversation.) Although touted to be the
phone of the future, it never really caught on and was ultimately deemed a failure [Nol92].
Another interesting experiment was the Hole-In-Space by video artists Galloway and Rabi-
nowitz [Gal80]. They created a real-time video/audio connection between two sites in Los
Angeles and New York. Pedestrians walking by could see full-size images of people walking
in the corresponding location 3000 miles away. People not only stopped and stared, but often
would respond to the remote conversation and begin talking to the passersby at the other end.

The term “Media Space” was coined by Stults and his colleagues at Xerox PARC [Stu86],
who developed what was probably the first real media space. The cost of video had begun
to drop in the 1980s, making it possible to link a laboratory in Palo Alto, California with a
related laboratory in Portland, Oregon. Stults defined a media space as:

“An electronic setting in which groups of people can work together, even when they are not
resident in the same place or present at the same time. In a media space, people can create
real-time visual and acoustic environments that span physically separate areas. They can also
control the recording, accessing and replaying of images and sounds from those environments.”

The Xerox Media Space was originally designed to model the informal types of communi-
cation that occur in hallways and in common areas, re-establishing the possibility of informal
communication for people located apart from each other. The goal was to create a technology-
supported analog to the mailroom or cafeteria; places where people naturally congregate in-
formally and chat, with one conversation leading into another. An important aspect of this
media space was that the connections were always there: only the people came and went.
Conversations or meetings did not have a formal start or stop; they simply represented on-
going interactions among people. Subsequent media space research has emphasized the role
of informal interaction as its key goal, although many have been extended to include facilities
for shared workspaces and coordinated communication.

The period of the late 1980s and early 1990s was an active period in media space research.
Several laboratories embarked on major long-term projects in which members of the labo-
ratories both developed and lived in their media spaces. Although they share a number of

58 MACKAY

characteristics, each media space was clearly shaped by the particular social and physical en-
vironments in which they were established and reflect different research goals. Some of the
groups collaborated closely, with researchers moving back and forth between laboratories.
In particular, Xerox PARC, EuroPARC, University of Toronto and Université de Paris-Sud
shared researchers, software and numerous design discussions.

Bly et al [Bly93] describe their experiences with the Xerox PARC Media Space, including
the three-year experiment linking their laboratory with Portland and the on-going evolution
of the Media Space even after the Portland laboratory was closed. In the beginning, they
used physical buttons to establish or replace video connections. Lab members experimented
with different configurations and handled privacy in a very mechanical way, by turning off
the microphone or turning the video camera towards the wall. They examined how their own
social and work relationships changed as they used the Media Space and highlighted the
need for additional research in user tailorability of the interface and support for managing
privacy issues [Ols91b]. Over time, the Media Space was expanded from four offices, several
public areas and the link to Portland, to include multiple offices in both sites and a variety
of video devices attached to the network. This pioneering work at Xerox PARC influenced
the development of the next major media space, created at PARC’s sister lab in England,
EuroPARC.

3.3 RAVE: EUROPARC’S MEDIA SPACE

Rank Xerox EuroPARC was founded in 1987 as a laboratory of Xerox PARC, located in
Cambridge, England. The building, Ravenscroft House, has 27 rooms with five open areas
spread over four floors. Each floor has two “pods” separated by a central stairwell, which
causes a surprising degree of isolation among lab members. The layout of the lab simulates
some of the problems people face when they must work together, but are physically separated.
The lab decided to encourage cooperative work and foster social interaction by offering lab
members ubiquitous audio, video and data interconnectivity within the building [Bux90]. The
small size of the laboratory (approximately 30 staff and researchers) made it possible for
everyone to have a media space node: everyone lived and worked in both the physical space
and the media space. This global participation enabled EuroPARC to explore a variety of
social as well as user interface and technical issues and provided insights into how to provide
similar levels of social contact for people working together but at a distance.

RAVE (the Ravenscroft Audio Visual Environment) was not designed to replace face-to-
face communication but rather to support work and social interactions, ranging from informal
casual encounters to formal planned cooperative tasks [Gav92b]. RAVE was built with off-
the-shelf analog audio and video technology, using several kilometers of coaxial cable to
connect all analog devices to a computer-controlled 64�64 analog switch. This approach
provided very high- quality video images and stereo sound; but was limited to a single building
(extending it further would have been prohibitively expensive) and required a major recabling
effort whenever nodes were moved. Figure 3.1 shows the basic set-up of EuroPARC’s RAVE
media space.

Each office and many of the common areas were equipped with media space “nodes” with
a PAL video camera, a monitor, a microphone, a mixer to handle multiple audio inputs, stereo
speakers and an optional foot pedal for controlling audio (Figure 3.2). Audio and video con-
nections were managed from client applications running on either LISP machines or, later,

MEDIA SPACES 59

Ethernet

coaxial cable

64x64
analog
switch

ifff server

RS232

Figure 3.1 The RAVE media space consists of individual nodes connected via coaxial cable to a
computer-controlled analog switch

Figure 3.2 A typical configuration for an analog media space node, with a video camera, microphone,
video monitor and workstation

Unix workstations. Users had complete control over the position of the equipment, including
location of cameras and microphones. They could turn equipment on or off, either electron-
ically or physically (e.g. putting on a lens cap or unplugging it). Some nodes were equipped
with additional video picture-in-picture (PIP) hardware, which permits simultaneous connec-
tions with up to four video sources on the same monitor. Connections to remote media spaces
were created by connecting digital codecs to the analog switch via ISDN lines.

The iiif server [Bux90], running on Unix, controlled the analog switch and managed audio
and video connections among media space nodes, as requested by client applications. In ad-
dition to allowing easy point-to-point connections within the building, iiif also guaranteed
privacy and security. Different versions of the iiif server were used to set up media spaces at
Xerox PARC, the University of Toronto and the Université de Paris-Sud, with individualized
client applications designed according to the technical and social needs at each location.

60 MACKAY

Figure 3.3 Lab members can glance at each other or maintain long-term connections, such as this one
between two administrative staff members

3.3.1 The RAVE User Interface

The RAVE user interface enabled users to display views from different video cameras located
around the building and, if given permission, set up a two-way audio-video connection with
any other node connected to the analog switch. Figure 3.3 shows one of the longest-running
connections, between the reception desk on the first floor and the personal assistant to the
director on the top floor. They established a permanent “Office Share”, with continuously-
available video of the other person. Audio connections were made only when a foot pedal was
pressed, to increase privacy. When the participants wanted to glance at others in the building
or make other video connections, they did so directly and then returned to the default Office
Share. Other members of the lab came to rely on their Office Share connection, using it to
talk to each other and avoid running up and down the stairs. The effect was of a permanent
“hole-in-space”, changing everyone’s psychological perception of the physical layout of the
lab.

The user interface to RAVE evolved over the years, as users requested new functionality
and when the entire lab shifted from a LISP-machine-based to a Unix-based environment. The
original RAVE interface was based on user-tailorable on-screen buttons that accessed differ-
ent functionality. Tailorability was particularly important, allowing users to explore different
kinds of connectivity and express individual differences, ensuring everyone a choice in how
they were represented within the media space.

The Buttons interface grew out of research at Xerox PARC [Hen86] and EuroPARC
[Mac90]. Instead of typing commands or selecting from a menu, users could interact with an
on-screen graphical object that ran relevant commands. They could look inside the button and
tailor its functionality, as well as change its appearance, copy or even e-mail it to other users.
Since buttons could be parameterized, users could change application-specific variables and
edit the encapsulated code. This flexibility allowed lab members to explore the RAVE media
space and develop the services that were most useful to them. The earliest buttons provided
relatively low-level functionality, such as making or breaking a specific connection. Over

MEDIA SPACES 61

Figure 3.4 RAVE buttons provide users with services that reflect varying degrees of engagement

time, buttons evolved higher-level functions, providing encapsulated services, with built-in
assumptions about handling issues such as privacy.

One of the most interesting features of RAVE is the ability to shift easily from peripheral to
focused views. The five buttons shown in Figure 3.4 offer different levels of interaction based
on the level of engagement required: from Background views operating at the periphery of
attention, to the unobtrusive presence of a Sweep through the building or an informal Glance,
to the shared awareness enjoyed by participants in an Office Share, to the full engagement of
a Vphone conversation.

Vphone: A highly-focused form of interaction with two-way audio and video connections.
Like telephone calls, one party must explicitly initiate the call and the other must explicitly
accept the connection. The call ends when one party hangs up. Participants used this when
they wanted to discuss a specific topic.

Office Share: The physical connection is technically identical to a Vphone call; the dif-
ference is that the participants decide on the connection in advance, after which they do not
explicitly initiate or terminate individual calls. Participants choose whether or not to include
permanent audio as well as video connections. Office Shares facilitated a range of communi-
cation, from passive awareness to highly-focused interaction. Long-term Office Share users,
with connections lasting for months or even years, claimed it was like sharing a physical office
without many of the annoyances.

Glance: A brief (three-second) one-way video connection to another node. The person be-
ing glanced at first hears an audio cue (or the name of the person), then the connection is
established, after which another audio clue indicates that the Glance is complete. Lab mem-
bers define in advance who has permission to glance at them. Glances provided a quick and
unobtrusive method of determining whether or not someone was around or currently busy,
similar to glancing into someone’s physical office.

Sweep: A brief (one-second) one-way view of a series of pre-authorized nodes, local or
distant. Users could customize their sweep patterns to include the most useful public (and, if
authorized, private) nodes, in order to find out who was around and generally what was going
on in the lab.

Background: A long-term view of a particular location that acts as the default view of the
media space. Technically, Background is indistinguishable from an Office Share. However,
most Background connections are of public areas that do not require specific permission,
unlike the pre-arranged connections to a particular office. Although the view from the roof was
popular with people in windowless offices; the most popular Background was the EuroPARC

62 MACKAY

Figure 3.5 Users can select who has the right to glance at them through the RAVE media space

commons. Since everyone in the lab visited the commons regularly to check mail or get a cup
of coffee, it provided everyone with a low-level consciousness of who was in the building and
when informal gatherings (such as afternoon tea) had started.

Godard [Dou91a] defined and controlled these and other services, directing all connections
made by the iiif server. Based on preferences expressed by users (such as who had permission
to glance at them), Godard would determine whether or not to perform specific requests for
services, requesting additional input when necessary. Before performing an authorized con-
nection, Godard would record the previous connection (such as an Office Share or Vphone
call), ensuring that the user would return to the correct state after the service was performed.

One of the primary benefits of this architecture is that participants can interact with RAVE
in terms of high-level services rather than low-level physical connections. Each service in-
cludes a representation of the user’s intentions and makes it possible to embed information
used to protect privacy. Participants can decide in advance who has the right to perform each
service, as opposed to making on-going decisions about low-level connections, which helps
to balance the tradeoff between privacy and access. Figure 3.5 shows an example of a service
control panel. In this case, the user looks at a list of lab members and indicates those who
have the right to establish a Glance connection.

In practice, the default settings of such lists are very important. If the default is that everyone
has the right to glance unless explicitly deleted from the list, a refused Glance request can be
taken as an explicit, personal rejection. However, if the default is that no one has the right to
glance unless specifically added to the list (as at EuroPARC), then refused Glance requests
may simply indicate a non-updated Glance list, which is less likely to be viewed as an insult.
This poses particular problems for new members of the lab. Since people rarely update their
Glance lists, even during project and group changes, newcomers will find themselves unable
to glance at many of their colleagues and feel excluded from the media space. The result is that
long-term members may have much greater access to the media space than newer members,
often without realizing it. Seemingly-innocuous decisions about default settings may have
long-term effects on the ultimate acceptance of a media space within an organization.

MEDIA SPACES 63

3.3.2 Notification with Auditory Cues

Lab members not only wanted control over the types of connections they made, but also
wanted feedback about when and what kinds of connections were in use. Because Godard
had some understanding of the participants’ intentions, it could not only distinguish among
physically identical connections such as Vphone, Office Share and Background, but it could
also determine and deliver the appropriate feedback. Users could request a variety of notifi-
cation types, such as presenting a message on their workstations. However, the most popular
notifications were more subtle. Gaver’s work on auditory icons [Gav86] and the affordances
of audio [Gav91b] was incorporated into RAVE, providing real-world auditory cues that in-
dicated what was going on. For example, when someone glanced at another person, Godard
triggered a sound (the default was that of a door opening) as the connection was being made.
Three seconds later, when the Glance was terminated, another sound was triggered (usually
a door closing). Other sounds were associated with other kinds of connections, indicating
the corresponding intent. A knock or telephone ring signaled a Vphone, footsteps indicated
a sweep and a camera whir flagged when a single-frame snapshot had been taken. Gaver
[Gav92a] explains why real-world sounds are particularly effective:

� Sound indicates the connection state without requiring symmetry; providing information
without being intrusive.

� Sounds do not require the kind of spatial attention that a written notification would.
� Non-speech audio cues often seem less distracting and more efficient than speech or music

(although speech can provide different sorts of information, e.g., who is connecting).
� Sounds can be acoustically shaped to reduce annoyance [Pat89]. Most sounds involve a

gradual increase in loudness to avoid startling listeners.
� Finally, caricatures of naturally-occurring sounds are an intuitive way to present informa-

tion. The sound of an opening and closing door reflects and reinforces the metaphor of a
glance and is thus easily learned and remembered.

A number of other researchers have explored the role of audio in distributed collaborative
work and media space settings. Researchers at PARC [Mor97] and MIT [Kob97] explored the
problem of browsing for audio data. Seligmann et al [Sel95] examined the cues that people
use to understand ordinary telephone calls and then looked at the more complex information
needs required in multi-party, multimedia conversations. They found that needs for “assur-
ance” became more complex and that users needed information about connectivity, presence,
focus and ways of distinguishing between real and virtual activities.

Godard, with auditory cues, provided control, feedback and intentionality, three prerequi-
sites for privacy, at very little cost in terms of intrusiveness. Godard used a system called
Khronika [Lov91] to handle auditory events. Khronika is an “event notification service” that
supports selective awareness of planned and electronic events, announcing when a video con-
nection has been made, reminding people about upcoming meetings, providing information
about visitors and even gathering people to go to the pub.

Khronika was based on three fundamental entities: events, daemons and notifications, as
shown in Figure 3.6. Events were organized within a class hierarchy, each with a class, start
time and duration. Specific events included meetings, visitors, arriving e-mail and RAVE
Glances. Events could also be manipulated as more abstract classes, such as “professional”,
“electronic” and “entertainment”. Event daemons produced notification events when they de-
tected specified event types. Users could constrain daemons, enabling them to select only the

64 MACKAY

events

daemons

events
notifications

query
of events

of events

ev
en

ts

enter/q
uery

daemons

Senders Khronika Recipients

Figure 3.6 Khronika maintains an event database entered both by people and on-line systems.
Daemons watch for specified events and post notifications when they are detected

events they wished to hear about. For example, a user could create a daemon to look for all
EuroCODE project meetings in the conference room and generate a notification five minutes
prior to the meeting. Users could also specify different notifications, such as an e-mail mes-
sage a day prior to an important meeting, with a pop-up screen message an hour before and a
synthesized speech message five minutes before the start time.

General-purpose non-speech audio cues were also popular. For example, the sound indi-
cating the start of a meeting began with sound of people murmuring at low-volume, followed
by a gavel sound to indicate the precise start time. Such sounds provided low-level periph-
eral awareness of events, enabling people to shift their attention to them when necessary and
ignore them otherwise. Gaver et al [Gav91a] found that non-speech audio feedback changed
both participants perception of the system and their tendency to collaborate while using it.

A button interface to Khronika let users browse the event database as well as create new
events and daemons. Another interface, xkhbrowser, showed a calendar with events spanning
different periods of time. Events could be displayed according to their level of specificity,
enabling users to quickly view the kinds of events they were interested in. We compared the
use of two EuroPARC calendar systems [Dou93]: Khronika’s and the paper-based system
managed by the administrative staff. We discovered that even though the information was os-
tensibly identical, users were influenced by their knowledge of the source of the information,
with correspondingly different levels of trust in different kinds of information. If there was a
conflict between the two systems, users would try to determine which calendar system was
more likely to be accurate, given the particular piece of information. (For example, the person
in charge of the brown bag lunch seminar series was known to input the events into Khronika,
so users tended to believe the Khronika-based information. In contrast, the administrative staff
would track people’s travel schedules, thus the paper-based calendar was assumed to be more
accurate for that kind of information.) Thus the social context played as important a role as
technological functionality in determining how users interacted with each system.

3.3.3 Long-Distance Awareness

EuroPARC maintained a close association with her sister laboratory in the United States,
Xerox PARC. Maintaining live video connections was too expensive, so members of the lab
investigated different ways of linking the two media spaces.

Polyscope [Bor91] distributed low-resolution (200�150 bits) digitized images captured
approximately every five minutes from each media space (assuming the owner had given

MEDIA SPACES 65

Figure 3.7 Portholes presents a collection of recently-captured still images from the media spaces at
EuroPARC and Xerox PARC

permission). A simple animation facility looped several images in sequence, to provide a
jerky, but usually effective, sense of motion and a way to disambiguate scenes. The button
interface allowed users to select an image and immediately establish a Glance or Vphone
connection.

Portholes [Dou91b] was developed to help lab members stay in touch by sharing more-
frequently captured still images from the respective media spaces (Figure 3.7).

Both Polyscope and Portholes allowed multiple nodes from several remote locations to
be presented simultaneously, providing passive awareness of distributed workgroups with-
out making explicit video connections. They offered spatially-distributed but asynchronous
functionality, which complemented the synchronous but single-channeled video services from
each media space.

3.3.4 Observations of Use

Users define the social protocols surrounding the use of their electronic communications.
For example, people try to avoid annoying each other. In the early days of electronic mail,
outsiders were surprised that people working physically next to each other would still send
each other electronic mail. This was not due to a preference for technology-based rather than
human-based communication; it was simply a matter of courtesy. Calling over the wall or
telephoning is an interruption, whereas sending e-mail allows the recipient to respond at their
convenience.

Similar social protocols developed in response to the media space. Over time, media space
users began to change it, creating uses not originally anticipated by the system’s creators.
Subtle characteristics in the technology suggested new uses or resulted in changes in how
the system came to be understood [Suc91]. An interesting example was the use of the RAVE

66 MACKAY

media space for “projecting” presence, taking advantage of the knowledge that members of
the lab had a shared peripheral awareness of the EuroPARC commons. People usually waited
until a critical mass of people had assembled in the commons before appearing in person.
People thus showed up in two waves: the first few arrived. When three or four were there,
suddenly everyone else appeared. People took advantage of their ability to work until the
last minute (and avoided “wasting time”) and were still assured of arriving when the meeting
actually started.

Sitting in the commons, in view of the camera, is a way for a researcher to broadcast his
or her availability, letting colleagues know that it is acceptable to come up and chat. For
example, I had about an hour before I needed to catch a plane and five people I needed to
talk to before I left. I decided to sit in the commons and found that, one-by-one, all five came
to talk. Each person monitored my meetings on their monitors and came up when they could
see I was ready to talk to someone else. Everyone coordinated their activities, managing to
find appropriate times to meet, without wasting their time waiting for me or wasting my time
waiting for them [Mac92].

Interestingly, when members of the administrative staff sat in the commons, their message
was the opposite. They were on a break and it was not acceptable to ask them to do something
(although it was fine to have a chat). The commons had an explicitly “video free” section, so
that people who wanted to avoid being seen could do so easily and naturally. The overall effect
was that of having the common area right outside one’s door, but without the noise. Whenever
the link to the commons broke down, such as when the equipment was being upgraded or there
was work on the building, members of the lab reported the sense of being slightly disoriented
and feeling out of touch.

Sharing the same physical office with someone can be annoying, especially if you have
different tastes in music or are prone to talking all the time. Office Shares, particularly for
people who worked late at night, proved to be extremely comforting. Without listening to each
other, we could still sense each other’s presence (and when the other person was ready for a
break). To a somewhat lesser extent, the Portholes connection to PARC provided a similar
sense of comfort, since someone was always there no matter how late the EuroPARC crowd
worked (given the nine-hour time change from England to California).

Heath and Luff [Hea91] observed lab members using long-term RAVE connections and
found that video sometimes undermined the effectiveness of subtle communicative gestures.
For example, since the camera and monitor are offset, a person looking at the monitor will
appear to be looking down slightly when displayed on the other monitor. Experienced media
space users learned to shift their gaze back and forth between the “natural” view for them (i.e.
looking at the person on the monitor) and the “effective” view (i.e. creating the appearance
of eye-contact by looking directly into the camera). Visitors entering an office with an Office
Share would sometimes be confused, thinking the person on the other end of the media space
connection was looking at them when they were in fact looking elsewhere.

Gaver et al [Gav93] examined the effect of giving users a choice among four different views,
rather than the usual single-camera, face-to-face view. The additional views included an “in
context” view, showing people and objects in relationship to their workspace, a “desk view”,
using a high-resolutionmonochrome camera to view documents and either a “dollhouse” view
specific to the experimental task, or a “birds-eye” view showing most of the room. They found
that face-to-face views were rarely used when people were actively involved in a collaborative
task; the exception was when participants engaged in negotiation about task strategy. This

MEDIA SPACES 67

study suggests that the camera setup for media spaces should change when users want to
engage in collaborative tasks.

3.4 OTHER MAJOR MEDIA SPACES

Several other media spaces were developed in the same time frame as RAVE. The US West
Advanced Technologies Telecollaboration project [Bul89] was similar to the PARC/Portland
link, supporting a small group of people sharing several projects who were located in Denver
and Boulder, Colorado. The media space included several offices, a conference room and pub-
lic areas at both sites. Users could “call” to get a private office-to-office audio/visual connec-
tion, “look around” to get a video-only connection, and “videoconference” to support multiple
participants in the conference rooms. Public areas were continuously connected, as at PARC.

BellCORE was also very active in media space research at this time, creating Cruiser
[Roo88] and the VideoWindow [Fis90], both controlled by a system called Rendezvous
[Hil94]. In contrast to the Xerox PARC approach, which emphasized letting the users evolve
the characteristics of the media space, BellCORE researchers followed a theoretical approach,
focusing on the role of informal communication [Kra88, Fis93]. Cruiser was based on the
model of walking down a hallway and glancing into open offices to see who was there. All
connections were reciprocal, in that the person doing the glancing was always seen by the
person being glanced at. Participants could control the access to their images and could also
establish two-way connections in the course of a “cruise”. Cruiser was designed to encourage
spontaneous, informal communication, but often resulted in longer-term Office Share. Coop-
erstock [Coo92] reports on the iterative design of Cruiser, describing how users and designers
influenced the design of the system over four iterations.

VideoWindow was more similar to the PARC/Portland Media Space link, with two large-
screen displays located in two public areas on different floors of the research building. The
link was available continuously for three months and was designed to support informal com-
munication among the 50 researchers and staff in the area. People would arrive to get their
mail or have a cup of coffee and engage in conversation with the people physically present as
well as the people located at a distance.

The Montage system from SunSoft [Isa93] explored how to use video to help members of
distributed groups develop a sense of “teleproximity”, helping collaborators find opportune
times to interact with each other by using reciprocal glances to “peek into someone’s office”.
The system also provided access to an on-line calendar, e-mail and on-screen note facility. As
with Cruiser, video connections appeared in a small window on the computer screen, rather
than on a separate monitor. Researchers found that most glances did not result in interactive
communication [Tan94]. Issacs [Isa95] reports on their experiences using video in a broadcast
setting, as opposed to in a smaller forum with a local audience. They found that the audiences
preferred watching the multimedia presentations by speakers in the broadcast setting, while
the speakers themselves preferred the intimacy of local talks.

The University of Toronto engaged in two major media space projects, in collaboration
with researchers at Xerox PARC and EuroPARC. CAVECAT [Man91, Gal91] was imple-
mented with software from EuroPARC’s RAVE system and supported approximately ten
offices within a single building. In addition to the media space features from RAVE, re-
searchers explored the problem of integrating shared drawing facilities with shared presence
[Pos92]. Sellen [Sel92a] studied the speech patterns in video-mediated conversations. She

68 MACKAY

Figure 3.8 Hydra incorporates a video camera, monitor and directional microphone into a small
table-top unit that can act as a proxy for distant participants of a meeting

compared same-room and video-mediated conversations, using two interfaces, including a
system called Hydra [Sel92b]. Figure 3.8 shows three Hydra units, each with a small video
camera, monitor and directional microphone, which act as proxies for distant meeting partici-
pants. Real and video-mediated participants could react to each other as they would if all were
co-present in the same room. Sellen found quantitative differences between face-to-face con-
versations and the two video-mediated interfaces. Although there were no significant quantita-
tive differences between the two video-mediated interfaces, there were significant qualitative
differences, with users preferring the Hydra interface. Olson and Olson [Ols95] studied the
role of adding video to remote-collaborations. They found that users of audio-only connec-
tions had more difficulty communicating but that there were no basic differences between the
quality of work performed in face-to-face settings and in settings with both high-quality audio
and high-quality video.

The University of Toronto’s follow-on project, called Telepresence, experimented with me-
dia spaces outside of a laboratory setting and included studies of the ways in which media
spaces changed the social relationships among people working at a distance [Har94]. Both
Toronto media spaces used an icon of a door, displayed in various states to indicate the user’s
level of accessibility (Figure 3.9). A fully-open door indicated that anyone could make a full
two-way audio/video connection, whereas a door ajar enabled people to glance, but required
a ring or further interaction from the user in order to make a full two-way audio/video con-
nection. When the door was shut, glances were not authorized and further interaction was
required to establish a two-way audio/video connection. When the door was locked, no video
connections were possible. Yamaashi et al [Yam96] describe another extension in which users
were given two views: a wide-angle view to show the context of the office and a more detailed
shot linked seamlessly together. They also explored the use of sensors placed in the physical
environment to provide contextual cues to remote users of the media space. For example, the
state of the physical door to the office (i.e. open, ajar, closed or locked) controlled the state of
the on-screen door icon.

A later Xerox PARC media space, called Kasmer [Bly93], was created to support a much

MEDIA SPACES 69

Figure 3.9 The original doors interface allowed users to select from four different door states: open,
ajar, closed and locked

Figure 3.10 The interface to the Kasmer media space. The upper control panel allows users to select
services. The lower display panel shows other users and their current level of accessibility

larger group of people in different groups within the laboratory, as well as offering codec
links to external sites (Figure 3.10) . The underlying software was borrowed from CAVECAT,
University of Toronto’s system, and RAVE, from EuroPARC. The system was designed to
balance frequent, easy communication within groups, while also providing less frequent com-
munication to distant or external groups. Each working group included 10–25 participants
and media space nodes; each with their own social conventions and models of use. Adler and
Henderson [Adl94] describe their experiences with a 9-month Office Share connection within
this environment. Mynatt et al [Myn97] explore the differences between on-line and physical
space, arguing that media spaces reinterpret physical space through the positioning of audio
and video elements and argue that activities derived from one space do not translate well into
other spaces.

Another extension of the media space work is on-going at the Université de Paris-Sud,
based on work the authors did at EuroPARC, PARC and University of Toronto. Mediascape

70 MACKAY

Figure 3.11 The Mediascape media space, with the standard user interface (left) and an electronic
Post-It note (right)

[Rou98] was originally built with the iiif server, but has since been reimplemented with a set of
custom HTTP servers, enabling users to embed access to the media space into any document
on the World Wide Web. Unlike the numerous “webcams” that have appeared, which show a
single view from a fixed camera, Mediascape is a full media space, with facilities for managing
connections among multiple sites, notifying users and controlling access. The user interface
is highly customizable since it is a plain HTML document. The standard interface is shown in
Figure 3.11 (left). Images are updated every few minutes as in Portholes. Passing the cursor
over an image initiates a Glance. A double-click establishes a Vphone connection, according
to both users’ expressed availability. Mediascape uses the same door metaphor as CAVECAT.
In the figure, one user has locked his door (bottom left) and another has left his door ajar
(bottom right). Additional services include Post-It, to leave a message on someone’s computer
screen, Grab, to grab a still image from the media space, and Dvideo to send pre-recorded
or live digitized video. Electronic Post-It notes are implemented by remotely controlling the
recipient’s Web browser (in this case Netscape Navigator). The image in the note has the same
capabilities as in the interface: it updates every few minutes and can be used to establish other
media space connections.

3.4.1 Building Upon the RAVE Media Space

The RAVE media space provided an infrastructure for other research projects as well. As
part of a European ESPRIT project, called EuroCODE [Mac95a, Mac98], we were responsi-
ble for designing a multimedia communication system for engineers building a bridge across
Denmark’s Great Belt (Storebaelt) Waterway. This project developed a radically-different in-
terface to the media space: a paper engineering drawing. We developed Ariel (Figure 3.12)
which detects individual engineering drawings via their barcodes. In the prototype shown, the
drawing was placed over a large (A0 size) graphics tablet. A projector on the ceiling pro-
jected menus and other computer-generated information, including media space images, onto
the paper. Here, the user is establishing a Glance connection with the author of the drawing,
in order to discuss possible changes. The user could also associate any audio, video or text
information with any part of the drawing and capture handwritten notes which could be sent
to colleagues.

MEDIA SPACES 71

Figure 3.12 Ariel lets construction engineers access the media space and a hypermedia annotation
system via paper engineering drawings. The user selects the media space option from the control section
of the paper engineering drawing (upper left). Ariel projects a menu and the user selects Glance with the
graphics tablet pen, which establishes a three-second connection

3.5 WAVE: A DETAILED CASE STUDY

WAVE [Pag93] was an attempt to test the media space concepts learned from RAVE in a
real-world setting: a distributed product development organization within a large multina-
tional corporation. WAVE differed in several important respects from the RAVE media space.
RAVE existed within a single building and was designed to encourage communication among
people who had other forms of informal and formal communication available to them. WAVE
was more similar to the original PARC Media Space and Portholes, in that the participants
were distributed in both space and time. (However, Portholes had to span eight, sometimes
nine, time zones, whereas WAVE involved a one-hour difference between England and the
Netherlands.)

RAVE was able to take advantage of point-to-point analog video connections, with an ana-
log video switch and kilometers of coaxial cable, to provide high-quality images and sound
with no delay. Portholes was restricted to still images displayed on a computer screen, with
occasional dial-up links with a low-resolution video link and a rather annoying audio delay.
The distances between the WAVE sites caused us to consider different technical solutions
for distributing video, which had a corresponding impact on the user interface and social use
of the media spaces. One research goal was to find out the acceptable thresholds for video
quality under various media space conditions, given the bandwidth and cost constraints of in-
ternational long-distance links. Another critical difference from RAVE and Portholes was that
the participants were not researchers, but engineers creating a product. For them, the media
space was like a telephone or fax, a technology to be used only if it supported the work at
hand.

We studied an engineering design center in England, which took designs created in Japan or
the United States and localized them for the European market. The organization was subject

72 MACKAY

to the typical pressures of any high-tech company in a highly innovative, competitive and tur-
bulent market: They had to increase customer satisfaction, maintain a technological edge and
improve quality while decreasing costs. Product development had to reduce time-to-market,
streamline processes, adapt to rapid technological change, while making efficient use of re-
sources.

The organization had a sophisticated telecommunications infrastructure: a corporate tele-
phone system based on leased lines (users need only dial an extension to reach other sites);
voice conference calls; answering machines; beepers; electronic mail; fax; and sophisticated
(and expensive) satellite videoconference facilities. All engineers and administrative staff had
either a workstation or a computer terminal on their desks. Yet, in spite of this infrastruc-
ture, engineers spent a great deal of their time traveling; travel accounted for over 10% of the
product development budget. At the time of our study, the travel budget was being cut and
managers were interested in finding ways to reduce the need for face-to-face meetings. We
met with the director of the division and interviewed all of his senior managers and many
of their staff, who often took us on tours of their work areas after the interview. Interviews
were generally open-ended, although each began with a set of standard questions, including
the person’s role in the organization, a description of his or her work (either a project or a
function), as well as any communication breakdowns and strategies for addressing them. We
also attended regularly-scheduled live and video-mediated meetings [Pag93].

We chose a major product development project in a critical stage within its two-year life
cycle. The product was designed in England and was being assembled in a factory in the
Netherlands, requiring complex communication and coordination between the two sites. The
English engineers understood the product design, whereas the Dutch engineers understood
the manufacturing problems and maintained the relations with the local suppliers. We identi-
fied two situations with serious coordination and communication needs: cooperation between
design and manufacturing engineers and configuration management. After further analysis of
their work patterns, we installed two media space connections: a dial-up video phone between
the desktop of an engineer in England and the shop floor of the factory in the Netherlands,
and an Office Share between the desktops of two people sharing administrative tasks across
the two sites.

3.5.1 Analyzing the Existing Videoconference System

Early forecasts of the success of videoconferencing and video telephony were wildly opti-
mistic. Egido [Egi88], in her analysis of why videoconferencing systems fail, cites an early
1970s prediction that a full 85% of meetings would be conducted by videoconferences by
the end of the decade. Yet, videoconferencing has been slow to be accepted, despite major
financial investments by corporations. Because people easily equate media spaces with video-
conferencing, we were interested in how the people in the organization we studied felt about
their existing satellite-based videoconferencing system.

Each site (in Europe and the United States) had a special meeting room set up to accommo-
date six people at a table, with two video cameras to capture each group of three. A ceiling-
mounted camera was used to transmit images of objects or documents. Images of colleagues
at remote sites were projected on two large video monitors opposite the table, with images
of documents presented on a third monitor in the middle. One user likened it to being on a
television quiz show, with opposing teams lined up, facing each other.

MEDIA SPACES 73

The videoconference room was designed for highly-stressful project checkpoint meetings,
which had priority over everything else. Others could schedule meetings when the room was
not already booked, usually to address critical problems that arose. Such meetings generally
involved technical people who made use of the ceiling cameras to discuss design documents.
(They had no facilities for bringing hardware prototypes into the meeting room, nor did they
have facilities for sharing electronic documents.)

Like Egido, we found mixed, mostly negative reactions to the videoconferencing system.
High-status managers were most likely to find it useful: they controlled the meetings and
appreciated the reduction in travel costs. For example, during a period in which cross-Atlantic
travel was eliminated, one manager said “It really came into its own during the Gulf war; [its]
use has really increased since then.” Another found it “good for sharing problems and project
status; [although not] for general information exchange”.

Interestingly, most others found it to be divisive, increasing the adversarial nature of the
relationship among the participants. These users were individual contributors who used the
system to negotiate issues and solve problems. Several people described their concerns as
follows: “There is lots of friction. If people [already] have positions, being able to see them
doesn’t help to bridge the gap. You see a panel of people; it’s a stand-off situation. It encour-
ages antagonism” and it “is not good for problem solving . . . you react differently to body
language on it versus face-to-face. The etiquette changes.” One person described his weekly
Friday meetings: “It would end the week horribly . . . it was pretty bloody. Emotions fly across
the airwaves.”

In summary, most people viewed face-to-face meetings as the optimal form of commu-
nication. Telephones were useful, but only for certain kinds of communication. The video
conference system was viewed as useful by upper-level management, but created adversarial
relationships among the participants. We were interested in whether or not a media space,
with its emphasis on informal interaction, would provide better communication and reduce
the adversarial quality of the interactions found with the videoconference system.

3.5.2 Design Center – Shop Floor Link

Since stopping the production line was very expensive, the engineers had a basic rule of
thumb: if a problem arose that they did not think could be solved with telephone or fax in less
than four hours, the design engineer got on a plane and flew to the Netherlands. The media
space was seen as a way to reduce the latter.

One end of the link was on the desktop of a system integration engineer in England, re-
sponsible for ensuring that all sub-systems worked together. He knew most of the designers
on the project and could quickly contact the appropriate person whenever a problem arose
on the shop floor. The other end of the link was the shop floor itself. We installed equipment
on a cart which could be moved to any part of the manufacturing line. We used two codecs,
based on the H.272 standard (designed for desktop videoconferencing using public ISDN net-
works), connected by a 64 Kb/s data line (Figure 3.13). The codec in England was connected
to an ISDN telephone via an X.21 interface; the ISDN telephone was used for dialing and for
displaying line status messages. Unfortunately, the Netherlands did not have ISDN available
at the time, so we used a switched 64 Kb/s IDN line. This made the set-up on the Dutch side
a bit more complicated. We connected a 64 Kb/s modem to an X.21 controller, which was
connected to the codec and to a VT100 terminal. In order to dial and disconnect the line, the
Dutch users had to type several commands on the VT100 terminal.

74 MACKAY

codec

X.21 interf.

64k modem

Dutch PTT
IDN

BT
ISDN

codec

the
Netherlands England

VT100
terminal

Figure 3.13 WAVE link between the design center in England and the factory in the Netherlands

Figure 3.14 Image captured from the WAVE link. Note the use of the small hand-held camera to show
a close-up view of the problem

In England, we installed a single camera, a monitor with built-in speakers and a directional
microphone. We also installed a videotape recorder to capture video from the Netherlands and
audio in both directions. On the Dutch side, we installed two cameras: a standard-sized camera
was clamped to the cart to provide an overview, and a miniature camera (1cm�5cm) with a
flexible cable to show small details (i.e. 2mm size type). We also installed two monitors, for
incoming and outgoing video. Since there was a great deal of background noise on the shop
floor, we provided headphones with a built-in microphone.

The link on the shop floor was up for two weeks; during this period, we spent two days at
each site sitting next to the equipment and observing what users did. For the remaining time,
we collected videotapes of the video and audio going through the link and later interviewed the

MEDIA SPACES 75

people who used the link (Figure 3.14). Users complained about the poor audio quality, poor
video resolution and the lack of reliability. Yet they were elated when they were able to solve
problems without traveling. As one manager said, “This technology is a pain . . . However
yesterday we used it and it saved us a trip, therefore I will let my people spend more time on
it. I would rather have this lousy link than nothing. There are many things here which are not
perfect that we have to cope with, this will be another one.” The following examples show
how they used the system:

Show a problem: A manufacturing engineer shows something going wrong on the produc-
tion line and asks designers for explanations, solutions, or changes. Video is very important,
not only to improve communication, but also to overcome the initial skepticism and mistrust.
Looking at the problem together and jointly working on the solution helps to overcome cul-
tural differences (not only between Dutch and English, but also between manufacturing and
design roles), fostering a cooperative attitude towards solving the problem and “getting things
done”, rather than arguing an abstract problem over the phone to “pass the ball”.

For example, following a part change, the packaging also had to be changed, making a
new cut into the cardboard and assembling the pieces so they would fit together. A packag-
ing engineer was able to use the video link to show, step-by-step, how to make the cut and
assemble the pieces, while the Dutch engineers repeated each step. In half an hour, a problem
which would have required a trip was solved. The engineers were enthusiastic about the video
link, saying that it had been particularly useful to do each step of the assembly at both sites,
watching each other’s actions.

Show a solution: A design engineer demonstrates the correct way of doing something on
the shop floor. The video link allows the engineers to go through each step of the process,
performing it simultaneously at both sites to ensure that everyone understands the solution
and its consequences. The video link is much faster and more direct; allowing participants at
both sites to see the solution, which increases confidence in the solution and trust between the
two sites.

For example, a manufacturing engineer showed a programmer in England a software bug by
pointing the camera at the display and keyboard of the product so that the programmer could
see what was going wrong. The programmer told the manufacturing engineer which keys to
press and they found another, related bug. The problem might have been described over the
telephone, but the manufacturing engineer felt that the programmer was skeptical about the
bug and assumed the manufacturing engineer was doing something wrong. Using the video
link allowed him to actually see the problem and try things out; it also allowed him to locate
the bug precisely.

Cooperative problem-solving: A problem is shown and engineers at both ends of the link
brainstorm solutions, discuss ideas, point at causes and try out experiments on the machine.
Unlike a standard videoconference, the participants rarely look at each other’s faces and con-
centrate on the technical problem to be solved.

For example, the paper feed mechanism worked well on the prototypes, but did not work
reliably on the units coming off the manufacturing line. Although it seemed to be a manufac-
turing problem, the manufacturing engineers were interested in suggestions from the design-
ers. Six Dutch engineers showed the problem to three English engineers, who were able to
brainstorm and test various solutions. Because there was only one set of headphones on the
shop floor, the Dutch engineers passed around the miniature camera to show things and let
one person handle the audio communication to England.

76 MACKAY

The management made a cost/benefit evaluation of effectiveness of the link and concluded
that the system was useful for solving problems on the shop floor and that the link saved at
least two trips during the course of the experiment. They were not happy with the unreliability
of the link, but said, “when it works and is used for the right application, it is a very powerful
tool”.

3.5.3 Configuration Management Link

The second media space link was installed between two planner analysts, located in England
and the Netherlands. The planner analysts were responsable for configuration management,
including tracking design changes, evaluating the cost of parts and changes and maintaining
the inventory of the thousands of parts which make up a product acting as a bottleneck for
all design changes. They registered each change, evaluated the cost and submitted them to
the weekly Change and Control Board (CCB), held at the videoconference facility. Senior
management at both sites would review and approve change requests, based on cost, timing,
quality and technical issues. The planner analysts spent a great deal of time on the phone
(10–30 calls per day) and managed 30–50 change requests per week.

We installed an Office Share type of link with a continuous video connection, active
throughout the day. Because a continuously-available ISDN line would have been too ex-
pensive, we used the corporate TCP-IP network, using existing 128 Kb/s leased lines. We
installed a Videopix video digitizing board on each of their Sun workstations, using two soft-
ware packages: vfctool, which came with the Videopix board, and IVS, a public domain soft-
ware developed at INRIA (Figure 3.15).

Vfctool grabbed frames from a video digitizing board shared over a LAN, without com-
pression. With the network traffic between the Netherlands and England, it took up to six
minutes to update an image with a size of 320�240 pixels and 8 gray levels. IVS [Tur93]
was designed to support video and audio conferences over the Internet and achieved higher
refresh rates by compressing the images according to the H.261 standard. IVS transmited the
compressed data stream over an IP network using the User Datagram Protocol (UDP) and
took about 20 to 30 Kb/s of bandwidth. We used QCIF images (176�144 pixels) with eight
gray levels and obtained a refresh rate of one frame every two to four seconds, according to
network traffic. IVS was very robust to packet loss and network overload; the only problem
was that sometimes the video window was closed down. However the software never crashed
and the user could restore the link with a couple of mouse clicks.

The link to support configuration management ran for a full six days, spread over a period
of about one month. We spent several hours observing users while the link was up and inter-
viewed them periodically. We abandoned Vfctool, because the refresh rate was too slow and
it was unreliable as a source of information. Although they enjoyed putting up messages such
as “Good morning”, “I’ll be back at 3pm” or “I am on holiday today”, the planner analysts
were frustrated that the image was usually out-of-date and that the person in the image was
often no longer there. We switched to IVS, with a smaller video window and lower image
resolution, but a much higher refresh rate. The planner analysts regularly checked the IVS
image before calling each other (at least ten times per day). They particularly enjoyed the
Office Share on Monday nights, when they would often work until midnight preparing for the
Change and Control Board meeting the next morning. They said that the link provided them
with “remote solidarity”, encouraging them to drink coffee together and keep working until
they were done. Another, more subtle aspect was how they communicated that they did not

MEDIA SPACES 77

Corporate
TCP/IP network

video
window

the
Netherlands

England

Sun sparkstation
& VideoPix board

Video
camera

Head
phones

Built-in
speakers

Sun
microphone

Ethernet

Figure 3.15 Office Share between planner analysts located in England and the Netherlands

want to be disturbed, by explicitly holding the phone, actively working through a large pile of
papers or by moving out of the range of the camera. Their informal ways of communicating
were encoded and decoded with no effort or attention; in most of the cases they were unaware
that they were communicating. In one case, a planner analyst said: “Yesterday I saw you were
talking with . . . ”, but was later unable to remember that he had seen the person via the Office
Share. Other people in the building also used the Office Share. Passersby would wave at the
remote planner analyst and sometimes used it to find someone or talk to someone at the other
site. People adapted easily to the link; after an initial period of self-consciousness they quickly
forgot about the camera and responded to the other person.

3.6 ETHICAL ISSUES

Video is a very powerful medium, perhaps too powerful. One of the biggest issues is privacy:
how do we balance the benefits of a relatively open media space with individuals’ needs for
privacy? Privacy issues are multi-dimensional and are greatly affected by the culture of the
organization in which the media space is placed and the purposes for which it was created.
Gaver [Gav92a] identifies four issues that must be disentangled when thinking about privacy:

� Control: Users want to control who can see or hear them at any time.
� Knowledge: Users want to know when somebody is in fact seeing or hearing them.
� Intention: Users want to know what the intention of the connection is.
� Intrusions: Users want to avoid connections that disturb their work.

Fish et al [Fis93] point out that the tradeoff between privacy and functionality involves a
conflict between the desirability of control and knowledge and the intrusion implied by activ-
ities needed to maintain them. Explicitly acknowledging every connection provides control,
but the requests themselves would be intrusive. Similarly, if every glance results in seeing
someone’s face on the monitor, it demands some sort of social response and may well disrupt
previously-existing connections. If users must specify and be informed of the exact intention

78 MACKAY

of every connection, the media space is no longer lightweight and is bogged down with con-
tinuous demands for the user’s attention. The challenge is to provide users with control and
notification, but in a lightweight and unobtrusive way.

Since privacy issues are affected by the social context in which the media space is em-
bedded, it is not possible to simply create an “ideal technology” that is appropriate in every
setting. The Xerox PARC Media Space, RAVE and WAVE media spaces worked within an
atmosphere of trust because the participants knew each other and worked together. From a
management perspective, it was also very important to enforce the idea that “turning off the
media space” was acceptable behavior; allowing people at all levels of the organization to feel
comfortable. (Contrast this to the experiences of users of the videoconferencing system in the
WAVE study, in which high-level managers were very satisfied with the system, but everyone
else found it to be disruptive.) Larger media spaces, such as Kasmer, have had some prob-
lems, when people suddenly found themselves being glanced at by people they don’t know.
Web-based media spaces such as Mediascape have world-wide reach, with correspondingly
lower levels of trust among the users and require greater levels of privacy protection.

The organizations that created the media spaces in this chapter each developed their own
safeguards to privacy, making judgments about how to balance privacy concerns while still
making the media space worthwhile. In Cruiser [Roo88], all connections had to be symmetri-
cal; such that hearing or seeing someone implied that that person could also see or hear you.
The Media Space [Bly93] took the opposite extreme; all video connections were fully open
with both audio and video links. This worked well when the media space involved close-knit
members of a small work group, but eroded when others from other parts of the organiza-
tion joined the media space and were seen to be “voyeurs”. RAVE was based on the notion
of services, such as Glance, in which the user’s intention was incorporated into the service.
Users decided in advance who had permission to glance at them; letting them avoid giving
permission each time. RAVE specified access levels per person, which were rarely updated
over time, whereas CAVECAT used the door metaphor to establish dynamic access levels,
but did not distinguish who requested which type of access. Mediascape combines the two
models: users can customize access rights according to the current state of the door as well as
the origin of the call. This is especially important since Mediascape is accessible through the
World Wide Web.

Media space designers need to explicitly consider a set of ethical issues when handling
video [Mac95b]. People should be informed of the presence of live cameras. (Unfortunately,
most of us are largely unaware of the myriad security cameras that capture and record video
of us every time we use a bank teller, shop in a store or even walk down the street. Such
uses of video increase our insecurity when contemplating media spaces.) At EuroPARC, a
mannequin with a sign around his neck was a light-hearted way of letting people know they
were in the range of the cameras. Displaying the camera’s image on an adjacent monitor is
also effective. People should be able to easily detect when a camera is left on all the time, such
as in commons areas. People should be able to figure out when they are on camera and have
the opportunity to avoid it by moving out of range. Recording video is especially problematic,
since video taken out of context can be used in ways that may cause viewers to completely
misinterpret what happened. People should know when video is being recorded and be given
the opportunity to stop. Once recorded, people should have the ability to view the recorded
material and consent to any further use of the material, by giving their informed consent.

MEDIA SPACES 79

3.7 CONCLUSION

Distributed video is not a single, unitary phenomenon that can understood simply at the level
of the technology it incorporates. What is important is the way in which the video (and asso-
ciated technologies) are set up and used within a social setting. Media spaces, with their em-
phasis on informal and open-ended as well as formal communication, are an important new
approach for supporting distributed cooperative work groups. Media space designers must
consider the context in which their technology will be used and ensure that uses can easily
adapt them to meet the specific needs of their users. Media spaces are still in their infancy with
much research to be done. However, as video costs continue to drop and as the Web becomes
ubiquitous, media spaces promise to provide an effective means for supporting distributed,
collaborative work.

ACKNOWLEDGEMENTS

The RAVE media space at EuroPARC and its extensions were a collaborative effort of many
people, including Bob Anderson, Victoria Bellotti, Michel Beaudouin-Lafon, Bill Buxton,
Kathy Carter, Ian Daniel, Paul Dourish, Bill Gaver, Christian Heath, Lennart Lvstrand, Allan
MacLean, Tom Milligan, Mike Molloy, Tom Moran, Toby Morrill, Daniele Pagani, Gary Ol-
son, Judy Olson and Randy Smith. Our collegues at Xerox PARC in Palo Alto also contributed
research ideas, particularly Annette Adler, Sara Bly, Steve Harrison, Austin Henderson, Scott
Minneman and John Tang.

REFERENCES

[Adl94] Adler, A. and Henderson, A., A room of our own: Experiences from a direct office share. In
Proceedings of Human Factors in Computing Systems, CHI ’94 (Boston, MA), pages 138–
144. ACM Press, New York, 1994.

[Bly93] Bly, S., Harrison, S. and Irwin, S., Media spaces: Bringing people together in a video au-
dio and computing environment. Communciations of the ACM special issue, 36(1): 29–47,
January, 1993.

[Bor91] Borning, A. and Travers, M., Two approaches to casual interaction over computer and video
networks. In Proceedings of Human Factors in Computing Systems, CHI ’91 (New Orleans,
LA), pages 13–19. ACM Press, New York, 1991.

[Bul89] Bulick, S., Abel, M., Corey, D., Schmidt, J. and Coffin, S., The US WEST Advanced Tech-
nologies Prototype Multimedia Communications System. GLOBECOM ’89: In Proceedings
of the IEEE Global Telecommunications Conference (Dallas, Texas), 1989.

[Bux90] Buxton, W. and Moran, T., EuroPARC’s integrated interactive intermedia facility (iiif): Early
experiences. In Proceedings of the IFIP WG8.4 Conference on Multi-User Interfaces and
Applications (Herakleion, Crete), pages 11–34. North-Holland, 1990.

[Coo92] Cool, C. Fish, R., Kraut, R., Lowery, C., Iterative design of a video communication system.
In Proceedings of the Conference on Computer-Supported Cooperative Work, CSCW ’92
(Toronto, ON), pages 25–32. ACM Press, New York, 1992.

[Dou91a] Dourish, P., Godard: A flexible architecture for AV services in a media space. EuroPARC
working paper, 1991.

[Dou91b] Dourish, P. and Bly, S., Portholes: Supporting awareness in a distributed work group. In
Proceedings of Human Factors in Computing Systems, CHI ’92 (Monterey, CA), pages 541–
547. ACM Press, New York, 1992.

80 MACKAY

[Dou93] Dourish, P., Bellotti, V., Mackay, W. and Ma, C., Information and context: Lessons from a
study of two calendar systems. In Proceedings of COCS ’93 (San Francisco, CA). ACM
Press, New York, 1993.

[Egi88] Egido, C., Videoconferencing as a technology to support group work: A review of its failure.
In Proceedings of the Conference on Computer Supported Cooperative Work, CSCW ’88
(Portland, OR), pages13–24. ACM Press, New York, 1988.

[Ehr99] Ehrlich, K., Designing groupware applications: A work-centered approach. In Beaudouin-
Lafon, M. (Ed.), Computer Supported Cooperative Work, Trends in Software Series 7:1–28.
John Wiley & Sons, Chichester, 1999.

[Ell99] Ellis, C.A., Workflow technology. In Beaudouin-Lafon, M. (Ed.), Computer Supported
Cooperative Work, Trends in Software Series 7:29–54. John Wiley & Sons, Chichester, 1999.

[Ens92] Ensor, J., Ahuja, S., Connaghan, R., Pack, M. and Seligmann, S., The Rapport multimedia
communication system. Demo in Conference Companion: Human Factors in Computing
Systems, CHI ’92 (Monterey, CA), pages 49–59. ACM Press, New York, 1992.

[Fis90] Fish, R., Kraut, R. and Chalfonte, B.L., The VideoWindows system in informal commu-
nications. In Proceedings of the Conference on Computer-Supported Cooperative Work,
CSCW ’90 (Los Angeles, CA), pages 1–13. ACM Press, New York, 1990.

[Fis93] Fish, R., Kraut, R., Root, R. and Rice, R.E., Video as a technology for informal communica-
tion. Communciations of the ACM special issue, 36(1): 48–61, January, 1993.

[Gal80] Galloway, J. and Rabinowitz, S., Hole-In-Space: Mobile image videotape. Santa Monica,
CA.1980.

[Gal91] Gale, S., Adding audio and video to an office environment. In Studies in Computer Supported
Cooperative Work. Bowers and Benford (Eds.), pages 49–62, Elsevier Science Publishers
B.V., 1991.

[Gav86] Gaver, W.W., Auditory icons: Using sound in computer interfaces. Human-Computer Inter-
action, 2:167–177. 1986.

[Gav91a] Gaver, W.W., Smith, R.B. and O’Shea, T., Effective sounds in complex systems: The ARKola
simulation. In Proceedings of Human Factors in Computing Systems, CHI ’91 (New Orleans,
LA), pages 85–90. ACM Press, New York, 1991.

[Gav91b] Gaver, W.W., Sound support for collaboration. In Proceedings of the European Confer-
ence on Computer Supported Cooperative Work, ECSCW ’91 (Amsterdam, the Netherlands),
pages 293–308. ACM Press, New York, 1991.

[Gav92a] Gaver, W., Moran, T., MacLean, A., Lövstrand, L., Dourish, P., Carter, K. and Buxton, W.,
Realizing a video environment: EuroPARC’s RAVE system. In Proceedings of Human Fac-
tors in Computing Systems, CHI ’92 (Monterey, CA), pages 27–35. ACM Press, New York,
1992.

[Gav92b] Gaver, W.W., The affordances of media spaces for collaboration. In Proceedings of the
Conference on Computer-Supported Cooperative Work, CSCW ’92 (Toronto, ON), pages 17–
24. ACM Press, New York, 1992.

[Gav93] Gaver, W., Sellen, A., Heath, C. and Luff, P., One is not enough: Multiple views in a media
space. In Proceedings of Human Factors in Computing Systems, InterCHI ’93 (Amsterdam,
the Netherlands), pages 335–341. ACM Press, New York, 1993.

[Har94] Harrison, B., Mantei, M., Beirne, G. and Narine, T., Communicating about communicating:
Cross-disciplinary design of a media space interface. In Proceedings of Human Factors in
Computing Systems, CHI ’94 (Boston, MA), pages 124–130. ACM Press, New York, 1994.

[Hea91] Heath, C. and Luff, P., Disembodied conduct: Communication through video in a multi-
media office environment. In Proceedings of Human Factors in Computing Systems, CHI ’91
(New Orleans, LA), pages 99–103. ACM Press, New York, 1991.

[Hen86] Henderson, D.A. and Card, S., Rooms: The use of multiple virtual workspaces to reduce
space contention in a window-based graphical user interface. ACM Transactions on Graph-
ics, 5(3): 211–243, 1986.

[Hil94] Ralph Hill, Tom Brinck, Steven Rohall, John Patterson and Wayne Wilner. The RendezVous
architecture and language for constructing multiuser applications. ACM Transactions on
Computer Human Interaction, 1(2):81–125, June 1994.

[Isa93] Isaacs, E. and Tang, J., What video can and can’t do for collaboration: A case study. In
Proceedings of ACM Multimedia ’93 (Anaheim, CA), pages 199–206, 1993.

MEDIA SPACES 81

[Isa95] Isaacs, E., Morris, T., Rodriguez, T. and Tang, J., A comparison of face-to-face and dis-
tributed presentations. In Proceedings of Human Factors in Computing Systems, CHI ’95
(Denver, CO), pages 354–361. ACM Press, New York, 1995.

[Ish92] Ishii, H. and Kobayashi, M., Integration of interpersonal space and shared workspace: Clear-
board design and experiments. In Proceedings of the Conference on Computer-Supported
Cooperative Work, CSCW ’92 (Toronto, ON), pages 33–42. ACM Press, New York, 1992.

[Ish99] Ishii, H., Integration of shared workspace and interpersonal space for remote collaboration.
In Beaudouin-Lafon, M. (Ed.), Computer Supported Cooperative Work, Trends in Software
Series 7:83–102. John Wiley & Sons, Chichester, 1999.

[Kob97] Kobayashi, M. and Schmandt, C., Dynamic soundscape: mapping time to space for audio
browsing. In Proceedings of Human Factors in Computing Systems, CHI’97 (Atlanta, GA),
pages 194–201. ACM Press, New York, 1997.

[Kra88] Kraut, R. and Egido, C., Patterns of contact and communication in scientific research col-
laboration. In Proceedings of the Conference on Computer-Supported Cooperative Work,
CSCW ’88 (Portland, OR), pages 1–13. ACM Press, New York, 1988.

[Lov91] Löstrand, L., Being selectively aware with the Khronika system. In Proceedings of the
European Conference on Computer Supported Cooperative Work, ECSCW ’91 (Amsterdam,
the Netherlands), pages 265–278. ACM Press, New York, 1991.

[Mac90] MacLean, A., Carter, K., Moran, T. and Lövstrand, L., User-tailorable systems: Pressing
the issues with Buttons. In Proceedings of Human Factors in Computing Systems, CHI ’90
(Seattle, WA), pages 175–182. ACM Press, New York, 1990.

[Mac92] Mackay, W.E., Spontaneous interaction in virtual multimedia space: EuroPARC’s RAVE
system. Imagina ’92, Monte Carlo, Monaco. 1992.

[Mac95a] Mackay, W.E., Pagani D.S., Faber L., Inwood B., Launiainen P., Brenta L. and Pouzol V.,
Ariel: Augmenting paper engineering drawings. Video in Conference Companion: Human
Factors in Computing Systems, CHI ’95 (Denver, CO), pages 421–422. ACM Press, New
York, 1995.

[Mac95b] Mackay, W.E., Ethics, lies and videotapes. In Proceedings of Human Factors in Computing
Systems, CHI ’95 (Denver, CO), pages 138–145. ACM Press, New York, 1995.

[Mac98] Mackay, W.E., Augmented Reality: linking real and virtual worlds. In Proceedings of ACM
Conference on Advanced Visual Interfaces, AVI ’98 (L’Aquila, Italy), pages 13–21. ACM
Press, New York. 1998.

[Man91] Mantei, M., Baecker, R., Sellen, A., Buxton, W., Milligan, T. and Wellman, B., Experiences
in the use of a media space. In Proceedings of Human Factors in Computing Systems, CHI ’91
(New Orleans, LA), pages 203–208. ACM Press, New York, 1991.

[Min91] Minneman, S.L. and Bly, S.A., Managing a trois: A study of a multi-user drawing tool in
distributed design work. In Proceedings of Human Factors in Computing Systems, CHI ’91
(New Orleans, LA), pages 217–224. ACM Press, New York, 1991.

[Mor90] Moran, T.P. and Anderson, R.J., The workaday world as a paradigm for CSCW design. In
Proceedings of the Conference on Computer-Supported Cooperative Work, CSCW ’90. (Los
Angeles, CA), pages 381–393. ACM Press, New York, 1990.

[Mor97] Moran, T., Palen, L., Harrison, S., Chiu, P., Kimber, D., Minneman, S., van Melle, W. and
Zellweger, P., “I’ll get that off the audio”: A case study of salvaging multimedia meeting
records. In Proceedings of Human Factors in Computing Systems, CHI’97 (Atlanta, GA),
pages 202–209. ACM Press, New York, 1997.

[Myn97] Mynatt, E., Adler, A., Ito, M. and O’Day, V., Design for network communities. In Proceed-
ings of Human Factors in Computing Systems, CHI’97 (Atlanta, GA), pages 210–217. ACM
Press, New York, 1997.

[Nol92] Noll, A., Anatomy of a failure: Picturephone revisited. Telecommunications Policy, pages
307–316. May-June 1992.

[Ols91a] Olson, G. and Olson, J., User-centered design of collaboration technology. Journal of Orga-
nizational Computing, 1:61–83, 1991.

[Ols91b] Olson, M.H. and Bly, S., The Portland experience: A report on a distributed research group.
International Journal of Man–Machine Studies, 34, 1991.

[Ols95] Olson, J and Olson, G., What mix of video and audio is useful for small groups doing remote
real-time design work? In Proceedings of Human Factors in Computing Systems, CHI’95

82 MACKAY

(Denver, CO), pages 362–368. ACM Press, New York, 1995.
[Pag93] Pagani, D. and Mackay, W.E., Bringing media spaces into the real world. In Proceedings of

the European Conference on Computer-Supported Cooperative Work, ECSCW ’93 (Milan,
Italy). ACM Press, New York, 1993.

[Pat89] Patterson, R.D., Guidelines for the design of auditory warning sounds. In Proceedings of the
Institute of Acoustics 1989 Spring Conference, 11(5):17–24, 1989.

[Pos92] Posner, I. and Baecker, R., How people write together. In Proceedings of the Twenty-fifth
Hawaii International Conference on Systems Sciences (Kauai, Hawaii), volume IV, 1992.

[Pra99] Prakash, A., Group editors. In Beaudouin-Lafon, M. (Ed.), Computer Supported Cooperative
Work, Trends in Software Series 7:103–133. John Wiley & Sons, Chichester, 1999.

[Roo88] Root, R.W., Design of a multi-media vehicle for social browsing. In Proceedings of the
Conference on Computer-Supported Cooperative Work, CSCW ’88 (Portland, OR), pages
25–38. ACM Press, New York, 1988.

[Rou98] Roussel, N., Towards a toolkit for building media spaces. LRI Technical Report, Université
de Paris-Sud, Orsay, France, 1998. http://www-ihm.lri.fr/˜roussel/Mediascape.

[Sel92a] Sellen, A., Speech patterns in video-mediated conversations. In Proceedings of Human
Factors in Computing Systems, CHI ’92 (Monterey, CA), pages 49–59. ACM Press, New
York, 1992.

[Sel92b] Sellen, A., Buxton, W. and Arnott, J., Using spatial cues to improve videoconferencing.
Video in ConferenceCompanion: Human Factors in Computing Systems, CHI ’92 (Monterey,
CA), pages 651–652. ACM Press, New York, 1992.

[Sel95] Seligmann, D., Mercuri, R. and Edmark, J., Providing assurances in a multimedia interactive
environment. In Proceedings of Human Factors in Computing Systems, CHI’95 (Denver,
CO), pages 250–256. ACM Press, New York, 1995.

[Stu86] Stults, R., Media space. Xerox PARC technical report, 1986.
[Suc91] Suchman, L. and Trigg, R., Understanding practice: Video as a medium for reflection and

design. In Design at Work: Cooperative Design of Computer Systems, Greenbaum and Kyng
(Eds), Lawrence Erlbaum, Hillsdale, N.J., 1991.

[Tan90] Tang, J. and Minneman, S., VideoDraw: A video interface for collaborative drawing. In
Proceedings of Human Factors in Computing Systems, CHI ’90 (Seattle, WA), pages 313–
320. ACM Press, New York, 1990.

[Tan94] Tang, J. and Rua, M., Montage: Providing teleproximity for distributed groups. In Proceed-
ings of Human Factors in Computing Systems, CHI ’94 (Boston, MA), pages 37–43. ACM
Press, New York, 1994.

[Tur93] Turletti, T., H.262 Software codec for videoconferencing over the Internet. INRIA Technical
Report No. 1834, Sophia Antipolis, France, 1993.

[Wel93] Wellner, P., Interacting with paper on the DigitalDesk. In Communications of the ACM,
36(7):86–96, July 1993.

[Win89] Winograd, T. and Flores, F., Understanding Computers and Cognition: A New Foundation
for Design. NJ: Ablex, 1986.

[Yam96] Yamaashi, K., Cooperstock, J., Narine, T. and Buxton, B., Beating the limitations of camera-
monitor mediated telepresence with extra eyes. In Proceedings of Human Factors in Com-
puting Systems, CHI ’96 (Vancouver, BC), pages 50–57. ACM Press, New York, 1996.

4

Integration of Shared Workspace
and Interpersonal Space for
Remote Collaboration�

HIROSHI ISHII

MIT Media Laboratory

ABSTRACT

Computer-based groupware and video telephony are the major technological components
of remote collaboration support. However, integration of these two components has been a
big design challenge. This chapter introduces the research effort to integrate the shared
workspace created by groupware technology and the interpersonal space supported by
video communication technology. TeamWorkStation and ClearBoard will be introduced
as example systems which were designed to support focused real-time collaboration by
distributed group members.

4.1 INTRODUCTION

“Groupware” is a label for computer-based systems explicitly designed to support groups of
people working together. It is growing rapidly as a new application category in the computer
industry [Ell91, Col93].

Most of the current groupware such as workflow systems and collaborative authoring tools
are devoted to computational support and are designed under the constraint of limited com-
munication bandwidth. However, the deployment of broadband digital networks opens a new
future for multimedia collaboration environments that integrate real-time audio and video

� This chapter is based on an article “Iterative design of seamless collaboration media” originally published in
Communications of the ACM, Special Issue on Internet Technology, Vol. 37, No. 8, August 1994, pp. 83–97, with
the permission of ACM.

Computer Supported Cooperative Work, Edited by Beaudouin-Lafon
c
 1999 John Wiley & Sons Ltd

84 ISHII

communication links with computer-based shared workspaces [Bri92, Lyl93]. Especially, the
integration of two functional spaces, shared workspace (e.g. electronic shared whiteboard)
and interpersonal space (e.g. videophone), is a critical interface design issue.

4.1.1 Shared Workspace and Interpersonal Space

One major focus of groupware development has been the creation of virtual “shared
workspaces” in distributed computer environments. Some groupware definitions take this
workspace-oriented view, such as:

“Groupware . . . the computer-based systems that support groups of people engaged in a
common task (or goal) and that provide an interface to a shared environment.” [Ell91]

Whiteboards and overhead projections of transparencies are examples of shared workspaces
in face-to-face meetings. Participants can see, point to, or draw on a whiteboard simultane-
ously. An overhead projector makes handwritten or computer-generated documents visible to
all participants in a room while permitting the speaker to point or draw. Shared workspace
activities include sharing information, pointing to specific items, marking, annotating, and
editing.

In a distributed, real-time collaboration, these activities can be supported by computer-
based groupware, including

� shared screen systems such as Timbuktu [Far91]
� shared window systems such as VConf and Dialogo [Lau90], and
� multi-user editors such as Cognoter [Fos86], GROVE [Ell91], Commune [Bly90], Cave-

Draw [Lu91], Aspects [Gro90], GroupSketch [Gre92], GroupDraw [Gre92], We-Met
[Wol92], and TeamPaint (described later). Use of hand gestures in a shared workspace
can be supported by shared video drawing media such as VideoDraw [Tang91] and Team-
WorkStation [Ish90].

In face-to-face meetings, we speak, make eye contact, and observe each other’s facial
expressions and gestures. These verbal and non-verbal channels are important in building
confidence and establishing trust [Arg75, Bux92, Man91]. The focus of telecommunication
technologies such as the video-phone and videoconferencing has been the creation of “inter-
personal spaces” that maintain a sense of “telepresence” or “being there” [Hol92] through the
visibility of gestures and facial expressions of distributed group members. “Media Space” is
an example of such technologies. Originated by Xerox PARC [Bly93], it is an environment
that integrates video, audio, and computer technologies, allowing individual and groups to
work together despite being distributed geographically and temporally (see also Chapter 3 in
this book [Mac99]). Recent developments include Cruiser (Bellcore) [Fis93], VideoWindow
[Fis90], RAVE (Rank Xerox EuroPARC) [Gav92], and CAVECAT/Telepresence (University
of Toronto) [Man91]. (“Media space”, originally the name of a specific system [Bly93], is
used here in the sense of Mantei et al [Man91] as a general term to represent computer-
controlled video environments.)

4.1.2 Limitations of Existing Support Technologies

Both shared workspace and interpersonal space are present in ordinary face-to-face meetings
and may be essential for remote real-time collaboration. Several media space technologies
support both spaces.

REMOTE COLLABORATION 85

Shared Workspace

Shared Workspace

Shared Workspace

Interpersonal
Space

(a)

(b)

(c)

Interpersonal
Space

Interpersonal
Space

Interpersonal
Space

Interpersonal
Space

Interpersonal
Space

Figure 4.1 Typical screen arrangements in media space

Figure 4.1 illustrates three typical display arrangements of media spaces. In (a), a dis-
play providing a live video image of the partner’s face adjoins a display showing the shared
work. The ARKola simulation [Gav91] in the IIIF environment [Bux90a] and some nodes of
CAVECAT [Man91] adopt this arrangement. SEPIA-IPSI media space [Str92] locates small
custom-built desktop video devices (small monitors and cameras) on top of the computer
screen. In (b), the displays are repositioned to resemble the situation of interacting across a
table. VideoDraw [Tang91] and Commune [Bly90, Min91] adopt this arrangement. In (c), the
live video images and the shared workspaces are incorporated into different windows of a
single screen. TeamWorkStation, PMTC [Tan91], MERMAID [Wat90] and most of the recent
PC-based desktop conferencing products employ this desktop-video technology.

86 ISHII

4.1.3 Iterative Design of Seamless Collaboration Media

We have been exploring the future of collaboration media that make good use of real-time
video through the iterative design of various groupware systems. Our research started in 1988
and was motivated by the study on shared drawing space [Tang91] in the Media Space envi-
ronment [Bly93]. While most of the current video telephony has been designed to see “talking
heads”, our goal is to go beyond this model and demonstrate new usage of video-mediated
communication technologies. Video is powerful media for not only seeing talking heads, but
also for creating shared workspaces and shared visual context for remote collaboration.

The following sections introduce the progression of iterative media design from Team-
WorkStation to ClearBoard. These systems were designed to support focused real-time collab-
oration by distributed group members. The key concept behind our iterative design is “seam-
lessness”. Seamless design pursues the following two goals:

� Seamlessness (continuity) with existing work practices: People develop their own work
practices after using a wide variety of tools and interacting with a large number of people.
We believe the continuity with existing work practices and everyday skills is essential.
Groupware that asks users to abandon their acquired skills and to learn a new protocol is
likely to encounter strong resistance [Gru88].

� Seamlessness (smooth transition) between functional spaces: Collaboration requires us to
shift among a variety of functional spaces or modes. Seamless design undertakes to de-
crease the cognitive load of users as they move dynamically across different spaces. For
example, TeamWorkStation was designed to enable smooth transition between individual
workspaces and shared workspaces by allowing users to keep using both familiar desktop
tools and computer tools. ClearBoard realizes seamless integration of interpersonal space
and shared workspace allowing people to use various non-verbal cues such as a partner’s
gaze direction for smooth focus switching between these two spaces.

4.2 TEAMWORKSTATION-1 AND SEAMLESS SHARED WORKSPACES

People do a lot of their work without computers, or using different tools on different computer
systems, and have developed their own work practices for these situations. Even in a heavily
computerized individual workplace, users often work both with computers and on the physical
desktop. Neither one can replace the other. For example, printed materials such as books and
magazines are still an indispensable source of information. Therefore, when designing real-
time shared workspaces, depending on the task and the media of the information to be shared
(paper or computer file), co-workers should be able to choose either computers or desktops,
and to switch between them freely. One person’s choice should be independent of the other
members’ choices. Group members should be able to use a variety of heterogeneous tools
(computer-based and manual tools) in the shared workspace simultaneously. To realize such
a seamless shared workspace, we designed TeamWorkStation-1 (TWS-1) [Ish90, Ish91].

The key design idea of TWS-1 is a “translucent overlay” of individual workspace images.
TWS-1 combines two or more translucent live-video images of computer screens or physical
desktop surfaces using a video synthesis technique. Translucent overlay allows users to com-
bine individual workspaces and to point to and draw on the overlaid images simultaneously.
We chose video as the basic medium of TWS because it is the most powerful for fusing pre-
sentations of traditionally incompatible visual media such as papers and computer documents.

REMOTE COLLABORATION 87

Figure 4.2 Overview of TeamWorkStation-1 prototype

4.2.1 System Architecture of TWS-1

Figure 4.2 shows an overview of the first prototype, TWS-1. Two CCD video cameras are
provided at each workstation: one for capturing live face images of the group member, and
the other for capturing the desktop surface images and hand gestures. TWS-1 provides two
screens. The individual screen (private workspace) is on the left and the shared screen is on the
right. These two screens are contiguous in video memory, and this multi-screen architecture
allows users to move any application program window between the individual and shared
screens by merely mouse dragging. Therefore, it is easy to bring your own data and tools from
each personal computer into the shared workspace to use in remote collaboration. Hardcopy
information can also be shared easily by placing it under the CCD camera (i.e. on the physical
desktop). Figure 4.3 shows an image of a shared screen where two users are discussing the
system configuration by annotating and pointing electronic diagrams in a drawing editor by
hand.

The first prototype TWS-1 was implemented on Macintosh computers to provide small
work groups (2–4 members) with a shared workspace. The system architecture of TWS-1 is
illustrated in Figure 4.4 [Ish91]. The video network is controlled by a video server that is
based on a computer-controllable video switcher and video effecter. The video server gath-
ers, processes and distributes the shared computer screen images, desktop images, and face
images. Overlay of video images is done by the video server. The results of overlaying are
redistributed to the shared screens via the video network.

4.2.2 Experience of TWS-1

Through experimental use of TWS-1, we found that users liked the feature which allowed
them to keep using their favorite individual tools, especially papers and pen, while collabo-
rating in a desktop shared workspace. That is, there was no need to master the usage of new
sophisticated groupware. The drawback of this overlay approach is that the results of collab-

88 ISHII

Figure 4.3 A shared screen of TeamWorkStation-1

speaker
phone

CCD cameras

video network

data network

video server
• video switcher
• video effector

individual
screen

shared
screen

voice network

Figure 4.4 System architecture of TeamWorkStation-1 prototype

oration cannot be shared directly. Since individual workspaces are overlaid as video images,
the marks and the marked documents occupy different “layers” in the shared screens. They
are actually stored separately in different places in different media (in computer files or on
paper). We mainly used a video printer or video tape recorder to record the results and the
collaboration process.

“Shared workspace” is taken by many computer scientists to mean “data sharing”. However,
we think it is not required that all the outcomes of the work-in-progress be directly “manipula-
ble” by all the participants. We seldom felt the necessity to edit the other’s diagrams directly.
If a diagram was to be changed, usually the originator would change it according to the com-
ments made by the other. One reason appears to stem from the respect paid to the ownership
of the outcomes. This seems to be a very natural feeling, even in a close collaborative session.

REMOTE COLLABORATION 89

N-ISDN
INS-Net 64/1500

2B+D, H1/D

CCD cameras
shared
screen

mouse

personal
computer

TWS-2 Box

video CODEC

headphone
µphone

Figure 4.5 System architecture of TeamWorkStation-2 prototype

The overlay solution provides us with a comfortable work environment, because the overlaid
layers keep the person’s own layer of work intact.

Since TWS-1 was designed for laboratory experiments to verify the concept of seamless
shared workspaces, we did not pay much attention to the number of cables or the com-
munication bandwidth. As a result, the system configuration became complex and difficult
to maintain. This complexity prevented us from conducting the field tests using publicly
available digital networks, and motivated us to start designing a completely new system,
TeamWorkStation-2.

4.3 TEAMWORKSTATION-2 FOR N-ISDN

TeamWorkStation-2 (TWS-2) was designed to provide a shared workspace over narrowband
ISDN (N-ISDN) Basic Rate Interface (2B+D) and the Primary Rate Interface (H1/D) using
the CCITT H.261 standard of moving picture transmission [Ish93a]. We chose N-ISDN Basic
Rate Interface as the target network because of its widespread availability in Japan.

We devised a new multi-user interface called ClearFace for TWS-2. ClearFace superim-
poses translucent, movable, and resizable face windows over a workspace image to enable
more effective use of the normally limited screen space. We found users had little difficulty in
selectively viewing either the facial image or the workspace image.

4.3.1 System Architecture of TWS-2

We radically simplified the system architecture. Figure 4.5 shows the system architecture of
TWS-2. We targeted dyadic communication to make the centralized video server unnecessary
and to eliminate complexities that would arise from multipoint connection. The two TWS-2
terminals are connected by one ISDN link. Each terminal is composed of three major compo-
nents: a TWS-2 box, a video codec, and a PC-9801TM personal computer. All video processing
functions (e.g. translucent overlay, picture-in-picture) are supported at each terminal. All the
hardware for video processing, camera control units, audio amplifiers, and power units were
encapsulated into a single TWS-2 box.

The PC-9801TM computer is mainly used to control the video processing hardware in the
TWS-2 box and the video codec. If direct sharing of information stored in the computer is

90 ISHII

Figure 4.6 Appearance of TWS-2 terminal

required, we can use screen-sharing software while overlaying desktop video images with the
shared computer screen.

Figure 4.6 shows the appearance of a TWS-2 terminal in use. A headphone with a small
microphone is provided for voice communication. Like TWS-1, TWS-2 provides two CCD
cameras, one to capture the user’s face image and another to capture the physical desktop
image. The TWS-2 box also provides an external video input port that can be used to show
recorded video clips by connecting a video player.

TWS-2 provides only one screen instead of the two screens (individual and shared screens)
of TWS-1. The experimental use of the previous system, TWS-1, led us to observe that most
work was done in the “desktop-overlay” mode in which only the video images of physical
desktop surfaces are overlaid. We decided to make “desktop overlay” the basic service of
TWS-2, and to make “computer screen overlay” an option. This decision led to the one-screen
architecture of TWS-2.

Figure 4.7 shows a typical screen image of TWS-2 in use. In Figure 4.7, users are dis-
cussing the system architecture using hand drawing and gestures. This example demonstrates
the important TWS feature that all of the collaborators share not only the results of drawing,
but also the dynamic process of drawing and gesturing.

4.3.2 Experimental Use of TWS-2

We have tested TWS-2 since 1992 by connecting our offices in Tokyo, Yokosuka, and Osaka
by INS-Net 64. (The latest version of TWS-2 is available via Ethernet as well as N-ISDN.)
We conducted several controlled laboratory experiments as well as tests of real work out-
side of laboratories [Ish93a]. Before we started the TWS-2 experiments, many people felt

REMOTE COLLABORATION 91

Figure 4.7 Design session via TWS-2

dubious about the ability of INS-Net 64 to support real-time activities because of their pre-
vious experience with the jerky displays of video phones. However, the subjects generally
commented that they could smoothly interact with their partner and that they were absorbed
in the task. Although the subjects noticed some delay and jerkiness in the remote desktop
video image, these did not hinder subjects from concentrating on their work. However, all the
subjects noted that they could not clearly see their partner’s desktop image. This confirmed
that the CIF (Common Intermediate Format) (352 pixels/line� 288 lines/picture) standard is
definitely insufficient to see small characters or fine drawings in the remote documents.

4.3.3 Beyond the Video Phone

Video phones and videoconferencing are the most typical video applications that use N-ISDN,
and they represent the effort at imitating “being there” which has long been the goal of
telecommunication technologies [Hol92]. Real-time video is used only to see the remote part-
ners’ facial expressions, postures and gestures in these applications.

In contrast to these “talking head” applications, TWS-2 demonstrates a new direction for
the usage of real-time video: the creation of a virtual shared workspace. The main focus of
TWS-2 is not the imitation of face-to-face communication but rather the sharing of overlaid
desktop images for collaboration.

The experiments to date confirm that TWS-2 has one large advantage over ordinary video
phones as the pre-eminent N-ISDN service. The advantage is due to the bandwidth limitation
and human perception. People are especially perceptive to changes in facial expressions. If
facial expression is the main means of communication, even slight asynchronism between
the voice and the movement of eyes and lips is immediately noticed, and makes smooth con-
versation difficult. Since the facial expression is always changing and the face and body are
always moving, delay in transmitting the partner’s image increases perceived discontinuities
and hence increases the negative impression of users.

92 ISHII

The main difference between the desktop and face images is that the desktop images are
relatively static. Images of papers and the marks drawn on the papers do not change quickly.
Only the hands move on the desktop when users gesture or draw. Thus the total amount of
motion is far less than that experienced with video phone displays. This more static nature
of the desktop surface increases the effective video frame rate. Although quick hand motions
look jerky, TWS-2 users can be more productive than their video phone counterparts since
they can visually share objects and work on them.

4.4 SEAMLESS INTEGRATION OF INTERPERSONAL SPACE AND
SHARED WORKSPACE

One major focus of groupware development has been the creation of virtual “shared
workspaces” in distributed computer environments. Shared workspace activities include shar-
ing information, pointing to specific items, marking, annotating, and editing. These activities
can be supported by computer-based groupware, including shared screen systems, shared win-
dow systems, and multi-user editors [Ell91] (see also Chapter 5 in this book [Pra99]).

In face-to-face meetings, we speak, make eye contact, and observe each other’s facial ex-
pressions and gestures. These verbal and non-verbal channels are important in building con-
fidence and establishing trust [Bux92]. The focus of telecommunication technologies such as
the video phone and videoconferencing has been the creation of “interpersonal spaces” that
maintain a sense of “telepresence” or “being there” [Hol92] through the visibility of gestures
and facial expressions of distributed group members.

Both shared workspace and interpersonal space are essential for remote, real-time collab-
oration. Many desktop multimedia conferencing systems such as TeamWorkStation, PMTC
[Tan91], and MERMAID [Wat90] support both spaces, but they have a major limitation: an
arbitrary seam exists between the shared workspace and the face images. We realized that this
problem was not just the superficial physical discontinuity of spatially separated windows.
Absent are the non-verbal cues that would enable a smooth shift in attention between the
shared workspace and the partner’s face image. Current groupware and videoconferencing
technologies do not support these cues.

Lack of eye contact is another problem of TWS. Camera positioning prevents one person
from knowing the direction of the other’s gaze; it could be directed toward the face image,
toward objects in the shared workspace window, or elsewhere. A shift in focus is not apparent
until accompanied by a visible gesture or an audible remark. Awareness of gaze direction and
mutual eye contact are impossible.

ClearBoard is designed to overcome these limitations by seamlessly integrating interper-
sonal space and shared workspace (Figure 4.8). A design goal of ClearBoard is to allow a
pair of users to shift easily between interpersonal space and shared workspace using familiar
everyday cues such as the partner’s gestures, head movements, eye contact, and gaze direction.

4.4.1 ClearBoard Metaphor

The key metaphor of ClearBoard design is “talking through and drawing on a big transparent
glass board”. Figure 4.9 shows “ClearBoard-0” which is the simple mock-up of this Clear-
Board concept for co-located pairs of users. ClearBoard-0 consists of a glass board positioned
between the partners on which they draw or post objects. ClearBoard requires less eye and

REMOTE COLLABORATION 93

Shared WorkspaceInterpersonal Space

videophone groupware

Figure 4.8 Seamless integration of interpersonal space and shared workspace

Figure 4.9 A simple mockup of the ClearBoard metaphor: ClearBoard-0

head movement to switch focus between the drawing surface and the partner’s face than is
needed in either the whiteboard or the desktop environment. However, a real glass board has
the problem that written text appears reversed to one’s partner; we were able to solve this
problem by mirror-reversing video images in ClearBoard-1 and 2 as described below.

4.5 DESIGN OF CLEARBOARD-1

Figure 4.10 shows ClearBoard-1, our first prototype to support remote collaboration [Ish92a].
Two users are discussing a route by drawing a map directly on the screen surface. Both users
can share a common map orientation. The partner can read all the text and graphics in their
correct orientation.

In order to implement the remote version of ClearBoard, we devised the system architecture
called “drafter-mirror” architecture illustrated in Figure 4.11. Each terminal is equipped with
a tilted screen, a video projector and a video camera. Users can write and draw directly on the
surface of the screen using color paint markers. The video camera located above the screen
captures the drawings and the user’s image as reflected by the half-mirror as a continuous

94 ISHII

Figure 4.10 ClearBoard-1 in use

video network

projector

half mirror
polarizing film
projection screen

projector

directly drawing on
the mirror with a
color paint marker

Figure 4.11 System architecture of the ClearBoard-1 prototype

video image. This image is sent to the other terminal through a video network and projected
onto the partner’s screen from the rear so that both users can share a common orientation of the
drawing space. The partner can draw directly over this transmitted video image. This shared
video drawing technique, which allows remote partners to draw directly over the video image
of their co-workers’ drawing surface, was originally demonstrated in VideoDraw [Tang91].

4.5.1 Experimental Use of ClearBoard-1

Since 1990 this prototype has been used in experimental sessions. We observed effortless
focus switching between the task and the partner’s face. Users could read their partner’s facial
expression, achieve eye contact, and utilize their awareness of the direction of their partner’s
gaze. Easy eye contact even during drawing-intensive activities increased the feeling of inti-
macy and co-presence. No subjects reported difficulty with the mirror-reversal of the partner.
This may be because our faces are quite symmetric, or our own images are reversed in mirrors.

We found that ClearBoard provides the capability we call “gaze awareness”: the ability to
monitor the direction of a partner’s gaze and thus his or her focus of attention. A ClearBoard
user can tell which screen objects the partner is gazing at during a conversation more easily
and precisely than is possible in an ordinary meeting environment with a whiteboard.

To understand the implication of gaze awareness, we conducted a collaborative problem
solving experiment on ClearBoard using the “river crossing problem.” [Ish93b]. This experi-

REMOTE COLLABORATION 95

main drawing sheet

pencil

eraser

scissors

imported diagram made with MacDraw II

drawing by user Bcursor of user Bpencil of user Adrawing by user A

new blank sheet

Figure 4.12 A screen of TeamPaint

ment confirmed that it is easy for the instructor to say which side of the river the student was
gazing at. This information was quite useful in understanding the student’s thinking process
and in providing advice. The importance of eye contact in the design of face-to-face commu-
nication tools is often discussed. However, we believe the concept of gaze awareness is more
general and more important. Eye contact can be seen as a special case of gaze awareness.

An interesting and less critical confusion manifested itself when users directly drew over
their partner’s image, playfully adding eye glasses or a mustache, for example. Clearly they
had a “WYSIWIS” (what you see is what I see) expectation, not realizing that although the
drawing is shared, the facial images are not, with each person seeing only the other’s image.
Thus, the metaphor of the ClearBoard is not always entirely assimilated.

4.6 DESIGN OF CLEARBOARD-2

In using this ClearBoard-1 prototype, we found several problems. The projected video image
of a drawing was not sufficiently clear. Lack of recording capabilities was an obstacle to re-
using the work results. To overcome these problems in ClearBoard-1, we decided to design a
new computer-based prototype, “ClearBoard-2” [Ish93b]. Instead of using color paint mark-
ers, ClearBoard-2 provides users with “TeamPaint”, a multi-user computer-based paint editor
and digitizer pen.

96 ISHII

Figure 4.13 ClearBoard-2 in use

4.6.1 TeamPaint

TeamPaint is a groupware application for shared drawing. It runs on networked MacintoshTM

computers, and it is based on a replicated architecture. TeamPaint offers several functions:
recording of working results, easy manipulation of marks, and the use of data held in computer
files. TeamPaint provides an intuitive interface based on the metaphor of drawing on a sketch
pad with a color pencil as shown in Figure 4.12.

Each user is provided with individual layers and can only modify his or her own layers by
default. All members see the composite image of all the layers. Because each layer is isolated
from the others, no access control is necessary. TeamPaint has no floor control mechanisms
but enables simultaneous gesturing and drawing by multiple users. Gestures, in the form of
cursor movements, and through them the drawing process, are visually shared by all members.

4.6.2 The ClearBoard-2 System and Its Use

Using TeamPaint, transparent digitizer sheets, and electronic pens, we implemented a
computer-based prototype, ClearBoard-2. Figure 4.13 shows the ClearBoard-2 prototype in
use, and Figure 4.14 shows the system architecture of the prototype. The composite drawing
image of TeamPaint is made to overlay the face images with a special video overlay board.
The mixed RGB video image is projected onto the screen’s rear surface. TeamPaint makes it
easy to get a new blank sheet and the drawing marks are easier to see. The lower screen angle
decreases arm fatigue, but gives the impression that the partner is under the screen, rather than
behind it as in ClearBoard-1.

The use of RGB video and the chroma-keying overlay technique does increase image
clarity. Furthermore, the capability of recording results and re-using the data produced in
previous sessions or from any other application program promises to add tremendous value
to an already practical tool. Through the use of ClearBoard-2, it was often observed that the
user’s gaze follows the partner’s pen movements. We confirmed that “gaze awareness” is as
well supported in ClearBoard-2 as it was in ClearBoard-1. One can easily tell which object
on the TeamPaint screen the partner is looking at.

REMOTE COLLABORATION 97

AppleTalk network

half mirror
polarizing film
projection screen
transparent digitizer sheet

TeamPaint is running on
distributed Macintosh computers.

video
projector

Macintosh

video overlay board
+

CCD camera

mirror

computer
drawing with a
digitizer pen
and TeamPaint

Macintosh

+

video network

Figure 4.14 System architecture of ClearBoard-2 prototype

We see the evolution from ClearBoard-1 to ClearBoard-2 as being very important. Com-
puter and video-communication technologies have, until now, evolved independently. Al-
though they have been loosely coupled using arbitrary multi-window interfaces in many desk-
top multimedia conferencing systems, they have never been integrated seamlessly from the
users’ cognitive point of view. ClearBoard-2 succeeds in naturally integrating the user in-
terfaces of computer-based groupware with that of videoconferencing. We expect that the
seamless integration of computer and video communication technologies will be an integral
part of the next generation of collaboration media.

Moreover, ClearBoard-2 can be seen as an instance of the paradigm shift from traditional
HCI (Human–Computer Interaction) to HHI (Human–Human Interaction) mediated by com-
puters. We are interacting not with computers, but through computers.

We believe that the ClearBoard design is not only beyond the traditional desktop metaphor
based on a multi-window interface, but also suggests a direction of “beyond being there”
[Hol92]. We expect ClearBoard to be useful both as a collaboration medium and as a vehicle
to investigate the nature of dynamic human interaction.

4.7 SUMMARY AND FUTURE WORK

This chapter has discussed the integration of shared workspace and interpersonal space for
real-time remote collaboration, and has introduced an evolution of our seamless collabora-
tion media design. TeamWorkStation (TWS) demonstrates a new usage of real-time video
for collaboration, by providing distributed users with a seamless shared workspace. Using a
translucent video overlay technique, real-time information such as hand gestures and hand-
written comments can be shared, as can information contained in printed materials and com-
puter files. Users can continue to use their favorite application programs or desktop tools, so

98 ISHII

there is only a minor cognitive seam between individual workspaces and shared workspaces.
TWS-2, a redesigned version which uses N-ISDN Basic Rate Interface, demonstrated the ad-
vantage of this application over ordinary videophones given the same bandwidth limitation.

In order to integrate the shared workspace and the interpersonal space seamlessly, we de-
signed ClearBoard. ClearBoard-1 permits co-workers in two different locations to draw with
color markers while maintaining direct eye contact and the use of natural gestures. Through
experiments, we discovered that ClearBoard also supported the important feature of “gaze
awareness”. In order to offer new functions, such as recording of working results, easy manip-
ulation of marks, and the use of data held in computer files, we designed a computer-drawing
version, ClearBoard-2. ClearBoard-2 supports shared drawing with TeamPaint and electronic
pens.

Through the iterative design of these collaboration media, we believe it is most important to
respect the skills that people use in everyday life [Bux90b]. The design focuses on basic skills
such as drawing, gesturing, talking, gaze reading, and using computers. We believe skill-based
design will lead to cognitive seamlessness.

We are now very much interested in how the next generation of collaboration media may
augment the process of collaborative creation by people such as artists, musicians, designers
and children. NTT’s vision video, “Seamless Media Design” [NTT93], illustrates our expec-
tation of future collaboration media based on the ClearBoard concept.

4.7.1 Broadband Digital Network

Although all these prototype systems except for TWS-2 were implemented using hybrid (ana-
log video + digital data) networks, it is obvious that hybrid networks have serious limitations
in extending their scale.

We expect that the new international telecommunication standard B-ISDN (Broadband In-
tegrated Services Digital Network) and ATM (Asynchronous Transfer Mode) [Lyl93] will
provide a universal and scalable infrastructure for various collaborative applications includ-
ing TeamWorkStation and ClearBoard. ATM is expected to be a common technology for
both LAN (Local Area Networks) and WAN (Wide Area Networks). ATM also provides
“bandwidth-on-demand” to meet the requirements of many applications.

Although N-ISDN provides users with fixed communication bandwidth, we expect that
ATM technology will provide users with the flexibility to dynamically change the appropri-
ate bandwidth and the balance between the frame rate and resolution of motion pictures on
demand (based on the contents and the usage of video). For example, a TWS session us-
ing a detailed blueprint of a new building may require more bandwidth for higher resolution
of shared documents compared with a TWS meeting with shared sheets of blank paper for
freehand drawing. Competitive negotiation tasks may require both higher frame rate and res-
olution to read your colleague’s subtle facial expression rather than documents. ClearBoard
requires much more communication bandwidth (higher resolution, higher frame rate, and less
delay) than TWS since ClearBoard presents a life-size partner’s image and users want to read
subtle and quick changes of a partner’s gaze.

Since required bandwidth changes dynamically both within a single application depending
on the contents and usage of video, and among various applications, rapid reassignment of
bandwidth on demand will be a critical feature to support seamless transitions among various
collaboration modes.

REMOTE COLLABORATION 99

4.7.2 From Multimedia to Seamless Media

“Multimedia” is now becoming a big buzz word in the computer and communication indus-
tries. As a result, the number of cables behind a computer, the number of features users need
to understand, and the number of incompatible data formats are increasing beyond the limits
of human cognitive capability. A variety of media (such as text, video, audio, graphics) and
services (on-demand video, videoconferencing, electronic newspaper) are becoming available
through a single powerful computer on the desktop and a broadband communication network
named the “information super highway”. However, each medium and service are still sepa-
rated from each other and they are not seamlessly integrated from a user’s cognitive point of
view.

The communication channels of human beings are inherently multi-modal and seamless.
It does not make much sense to decompose the representation of information into primitive
data types such as text, video, audio, and graphics, and stress the “multi-ness” of the media.
For example, we are speaking, gesturing, and drawing simultaneously in a design meeting.
We have great skills to express ideas and understand each other in everyday contexts using
all these media as a whole. We believe the multi-ness of media is not the main issue; how to
integrate them into a seamless media, hiding the various low-level representations, disconti-
nuities among primitive media, and complexity of underlying technologies is the core issue
in designing new applications. “Multi-media” sounds like a premature label that represents a
stage of media evolution from the mono-media to the seamless media.

4.7.3 Toward Ubiquitous Media and Augmented Reality

We hope that ClearBoard will change our concept of a wall from being a passive partition
to being a dynamic collaboration medium that integrates distributed real and virtual spaces.
We are now exploring a vision of new architectural spaces where all the surfaces including
walls, ceilings, windows, doors and desktops become active surfaces through which people
can interact with other spaces, both real and virtual. In these spaces, both computers and
video must be inherently ubiquitous media [Bux94, Wei91]. Many challenges exist to achieve
a seamless extension of spaces and their interconnections. Nevertheless, our design will be
based on the natural skills and social protocols people are using in everyday life to manipulate
and interact with information, artifacts and each other.

ACKNOWLEDGEMENTS

I would like to thank Masaaki Ohkubo, Kazuho Arita, and Takashi Yagi at NTT for their con-
tribution to building the TWS prototype, and Minoru Kobayashi at NTT for his contribution
to implementing ClearBoard. I appreciate the contribution of Prof. Naomi Miyake at Chukyo
University and Prof. Jonathan Grudin at University of California Irvine to the observational
and experimental phase of this research. I thank George Fitzmaurice and Beverly Harrison
at the University of Toronto for their careful comments on an early version of this chapter.
Finally, the stimulating discussions with Prof. William Buxton at the University of Toronto
on the principles of skill-based design and the ubiquitous media were greatly appreciated.

100 ISHII

REFERENCES

[Arg75] Argyle, M., Bodily Communication. Methuen & Co. Ltd., London, 1975.
[Bae93] Baecker, R. (Ed.), Readings in Groupware and Computer-Supported Cooperative Work.

Morgan Kaufmann, San Mateo, 1993.
[Bly90] Bly, S.A. and Minneman, S.L., Commune: A shared drawing surface. In Proceedings of

COIS ’90, pages 184–192. ACM, New York, 1990.
[Bly93] Bly, S.A., Harrison, S.R. and Irwin, S., Media spaces: Bringing people together in a video,

audio and computing environment. Communications of the ACM 36(1):28–47, January 1993.
[Bri92] Brittan, D., Being there: The promise of multimedia communications. MIT Technology

Review, pages 42–50, May/June 1992.
[Bux90a] Buxton, W. and Moran, T., EuroPARC’s Integrated Interactive Intermedia Facility (IIIF):

Early experiences. In Proceedings of the IFIP WG8.4 Conference on Multi-User Interfaces
and Applications, pages 11–34. North-Holland, Amsterdam, 1990.

[Bux90b] Buxton, W., Smoke and mirrors. Byte, pages 205–210, July 1990.
[Bux92] Buxton, W., Telepresence: Integrating shared task and person spaces. In Proceedings of

Graphics Interface ’92, pages 123–129. Morgan Kaufmann, Los Altos, 1992.
[Bux94] Buxton, W., Living in augmented reality: Ubiquitous media and reactive environment. (un-

published paper).
[Col93] Coleman, D. (Ed.), Proceedings of Groupware ’93. Morgan Kaufmann, San Mateo, 1993.
[Ell91] Ellis, C.A., Gibbs, S.J. and Rein, G.L., Groupware: Some issues and experiences. Commu-

nications of the ACM 34(1):38–58, January 1991.
[Far91] Farallon Computing Inc., Timbuktu 4.0 User’s Guide. Farallon Computing Inc., Emeryville,

CA, 1991.
[Fis90] Fish, R.S., Kraut, R.E. and Chalfonte, B.L., The VideoWindow system in informal com-

munications. In Proceedings of the Conference on Computer-Supported Cooperative Work,
CSCW ’90, pages 1–11. ACM, New York, 1990.

[Fis93] Fish, R.S., Kraut, R.E., Root, R.W. and Rice, R.E., Video as a technology for informal
communication. Communications of the ACM 36(1):48–61, January 1993.

[Fos86] Foster, G. and Stefik, M., Cognoter, theory and practice of a collaborative tool. In Proceed-
ings of the Conference on Computer-Supported Cooperative Work, CSCW ’86, pages 7–15.
ACM, New York, 1986.

[Gal90] Galegher, J., Kraut, R. and Egido, C., Intellectual Teamwork: Social and Technological
Foundations of Cooperative Work. Lawrence Erlbaum Associates, Hillsdale, NJ, 1990.

[Gav91] Gaver, W., Smith, R. and O’Shea, T., Effective sounds in complex systems: The ARKola
simulation. In Proceedings of Human Factors in Computing Systems, CHI ’91, pages 85–90.
ACM Press, New York, 1991.

[Gav92] Gaver, W., The affordance of media spaces for collaboration. Proceedings of the Conference
on Computer-Supported Cooperative Work, CSCW ’92, pages 17–24. ACM, New York,
1992.

[Gre91] Greenberg, S. (Ed.), Computer-Supported Cooperative Work and Groupware. Academic
Press, London, 1991.

[Gre92] Greenberg, S., Roseman, M., Webster, D. and Bohnet, R., Issues and experiences designing
and implementing two group drawing tools. In Proceedings of HICSS ’92, pages 139–150.
IEEE Computer Society, Los Alamitos, CA, 1992.

[Gre88] Greif, I. (Ed.), Computer-Supported Cooperative Work: A Book of Readings. Morgan Kauf-
mann, San Mateo, CA, 1988.

[Gro90] Group Technologies, Inc., Aspects: The first simultaneous conference software for the Mac-
intosh. Aspects User’s Manual, Group Technologies, Inc., Arlington, VA, 1990.

[Gru88] Grudin, J., Why CSCW applications fail: Problems in the design and evaluation of organi-
zational interfaces. In Proceedings of the Conference on Computer-Supported Cooperative
Work, CSCW ’88, pages 85–93. ACM, New York, 1988.

[Gru91] Grudin, J., CSCW introduction, Communications of the ACM, 34(12):30–34, December
1991.

[Hol92] Hollan, J. and Stornetta, S., Beyond being there. In Proceedings of Human Factors in
Computing Systems, CHI ’92, pages 119–125. ACM, New York, 1992.

REMOTE COLLABORATION 101

[Ish90] Ishii, H., TeamWorkStation: Towards a seamless shared workspace. In Proceedings of the
Conference on Computer-Supported Cooperative Work, CSCW ’90, pages 13–26. ACM,
October 1990.

[Ish91] Ishii, H. and Miyake, N., Toward an open shared workspace: Computer and video fusion ap-
proach of TeamWorkStation. Communications of the ACM, 34(12):37–50, December 1991.

[Ish92a] Ishii, H. and Kobayashi, M., ClearBoard: A seamless medium for shared drawing and conver-
sation with eye-contact. In Proceedings of Human Factors in Computing Systems, CHI ’92,
pages 525–532. ACM Press, May 1992.

[Ish92b] Ishii, H., Arita, K. and Kobayashi, M., Toward seamless collaboration media: From Team-
WorkStation to ClearBoard. SIGGRAPH Video Review, CSCW ’92 Technical Video Pro-
gram, Issue 87, Item 6. ACM, New York, 1992.

[Ish93a] Ishii, H., Arita, K. and Yagi, T., Beyond videophones: TeamWorkStation-2 for narrowband
ISDN. In Proceedings of European Conference on Computer-Supported Cooperative Work,
ECSCW ’93, pages 325–340. Kluwer Academic Publishers, Dordrecht, the Netherlands,
September 1993.

[Ish93b] Ishii, H., Kobayashi, M. and Grudin, J., Integration of interpersonal space and shared
workspace: ClearBoard design and experiments, ACM Transactions on Information Sys-
tems (TOIS), 11(4):349–375, October 1993. (a previous version of this paper was published
in the Proceedings of CSCW ’92, pages 33–42, ACM, November 1992).

[Lau90] Lauwers, J.C., Joseph, T.A., Lantz, K.A. and Romanow, A.L., Replicated architectures for
shared window systems: A critique. In Proceedings of COIS ’90, pages 249–260. ACM,
New York, 1990.

[Lu91] Lu, I. and Mantei, M., Idea management in a shared drawing tool. In Proceedings of Eu-
ropean Conference on Computer-Supported Cooperative Work, ECSCW ’91, pages 97–112.
Kluwer Academic, Dordrecht, the Netherlands, 1991.

[Lyl93] Lyles, B., Media spaces and broadband ISDN. Communications of the ACM, 36(1):46–47,
January 1993.

[Mac99] Mackay, W., Media spaces: Environments for informal multimedia interaction In Beaudouin-
Lafon, M. (Ed.), Computer Supported Cooperative Work, Trends in Software Series 7:55–82.
John Wiley & Sons, Chichester, 1999.

[Man91] Mantei, M., Baecker, R., Sellen, A., Buxton, W. and Milligan, T., Experiences in the use
of a media space. In Proceedings of Human Factors in Computing Systems, CHI ’91, pages
203–208. ACM Press, New York, 1991.

[Min91] Minneman, S.L. and Bly, S.A., Managing á trois: A study of a multi-user drawing tool in
distributed design work. In Proceedings of Human Factors in Computing Systems, CHI ’91,
pages 217–224. ACM Press, New York, 1991.

[NTT93] NTT, Seamless Media Design (video). Presented at TED4 KOBE, May 1993. Also presented
at CSCW ’94 formal video session.

[Pra99] Atul Prakash, Group editors. In Beaudouin-Lafon, M. (Ed.), Computer Supported Coopera-
tive Work, Trends in Software Series 7:103–133. John Wiley & Sons, Chichester, 1999.

[Str92] Streitz, N., Haake, J., Hannemann, J., Lemke, A., Schuler, W., Schuett, H. and Thuering, M.,
SEPIA: A cooperative hypermedia environment. In Proceedings of Conference on Hypertext,
ECHT ’92, pages 11–22. ACM Press, New York, 1992.

[Tang91] Tang, J.C. and Minneman, S.L., VideoDraw: A video interface for collaborative drawing.
ACM Transactions on Information Systems (TOIS), 9(2):170–184, April 1991.

[Tan91] Tanigawa, H., Arikawa, T., Masaki, S. and Shimamura, K., Personal multimedia-multipoint
teleconference system. In Proceedings of INFOCOM ’91, pages 1127–1134. IEEE Commu-
nications Society, 1991.

[Wat90] Watabe, K., Sakata, S., Maeno, K., Fukuoka, H. and Ohmori, T., Distributed multiparty
desktop conferencing system: MERMAID. In Proceedings of the Conference on Computer-
Supported Cooperative Work, CSCW’90, pages 27–38. ACM, New York, 1990.

[Wei91] Weiser, M., The computer for the twenty-first century. Scientific American, pages 94–104,
September 1991.

[Wol92] Wolf, C. and Rhyne, J., Communication and information retrieval with a pen-based meeting
support tool. In Proceedings of the Conference on Computer-Supported Cooperative Work,
CSCW ’92, pages 322–329. ACM, New York, 1992.

5

Group Editors
ATUL PRAKASH

University of Michigan

ABSTRACT

This chapter focuses on group editors, an important class of collaborative tools that allow
multiple users to view and edit a shared document simultaneously. Building group editors
requires solving non-trivial problems such as providing adequate response time for edit op-
erations, ensuring consistency with concurrent updates, providing adequate per-user undo
facilities, and providing collaboration awareness. Design choices are presented for imple-
menting these facilities as well as examples of implementations from several group editors.

5.1 INTRODUCTION

A group editor is a system that allows several users to simultaneously edit a document with-
out the need for physical proximity and allows them to synchronously observe each others’
changes. Group editors are a way to enhance collaboration by providing a shared workspace
in which users can organize ideas, work jointly on papers, do brainstorming, etc. A group
editor should have most of the functionality of single-user editors, such as being able to open,
edit, and save documents.

In addition, group editors must usually be designed to have the following features:

� Collaboration awareness: A group editor should provide sufficient context information so
that users are aware of other active participants in the group session. It should also facilitate
sharing of views and sufficient idea of the work each participant is doing so as to encourage
communication and avoid conflicting work.

� Fault-tolerance and good response time: A group editing session should continue to run
smoothly despite machine crashes and people joining or leaving a session. Also, the editors
should provide interactive response time for frequently done operations, such as browsing
and a sequence of updates by a particular user.

Computer Supported Cooperative Work, Edited by Beaudouin-Lafon
c
 1999 John Wiley & Sons Ltd

104 PRAKASH

� Concurrency control: Concurrency control is needed to ensure consistency of data being
edited when parallel editing is going on. Concurrency control protocols should be designed
to minimize the impact of network latency on response times experienced by users, so that
group work using the editor is not an inconvenience.

� Multi-user undo: A group editor should allow users to individually undo their changes.
This is important because users may use a group editor to work in parallel on different
parts of a document. Users should be able to use an undo command to reverse their own
mistakes even if their change was not the last one carried out in the editor.

� Usable as a single-user editor: Group editors should provide good support for single-user
use. Users should not have to switch to a different editor when they are working alone or
asynchronously.

� A rich document structure to serve as a medium of collaboration: Some group editors use
the document as a medium for brainstorming, organizing ideas, or as a means of commu-
nication among users. An important factor in the design of such group editors, as a result,
is providing an appropriate document structure that facilitates group communication.

The rest of the chapter is organized as follows. It first gives examples of several group edi-
tors, illustrating how they can be used to support collaborative activities. Then, it presents the
high-level architecture of typical group editors so that fault-tolerance and response time re-
quirements can be met. Next, it suggests several approaches to addressing concurrency control
requirements and supporting undo in group editors, and the tradeoffs between the approaches.
Then, it discusses the collaboration awareness features that can be useful to provide in group
editors. After that, it presents the structure of content in group editors that are designed to
support specific collaborative tasks such as brainstorming activities. Then, it briefly highlights
other design issues that arise in building group editors. Finally, it presents some directions for
future work in group editors.

5.2 EXAMPLES OF GROUP EDITORS

5.2.1 Group Graphical Editors

Dolphin [Str94] is an example of a graphical group editing environment for supporting joint
work and brainstorming by users who are not co-located. In Figure 5.1, four users are using a
shared document in Dolphin as the medium to support brainstorming. Users can sketch, type,
or create links to other pages to communicate their ideas. Audioconferencing tools, such as
MBone’s vat, are often used with Dolphin so that users can conveniently discuss the contents
of the document.

The rich hyperlink-based structure of documents in Dolphin allows different kinds of col-
laborative tasks to be supported. Simple brainstorming tasks may use the system only as a
graphical sketch pad. More involved, decision-making discussions can choose to take ad-
vantage of the hyperlink-support to organize the discussions into IBIS-like decision tree
structures [Rei91]. The system does not have most of the formatting features of commer-
cial (single-user) word-processing systems such as Word or LATEX, though, in principle, it
could be extended to support more extensive formatting features.

Many of the graphical operations, such as dragging or resizing objects, require high
interactivity, independent of network latencies. Dolphin provides immediate feedback on such

GROUP EDITORS 105

F
ig

ur
e

5.
1

A
n

ex
am

pl
e

of
a

gr
ou

p
ed

ito
r.

T
he

le
ft

w
in

do
w

sh
ow

s
a

do
cu

m
en

tb
ei

ng
us

ed
to

su
pp

or
tc

ol
la

bo
ra

tio
n

am
on

g
fo

ur
us

er
s

in
a

sh
ar

ed
w

in
do

w
.

A
n

au
di

oc
on

fe
re

nc
in

g
to

ol
(s

ho
w

n
on

th
e

bo
tto

m
ri

gh
t)

is
al

so
us

ed
to

fa
ci

lit
at

e
in

te
ra

ct
io

n.
c

19
96

by
G

M
D

-I
PS

I,
re

pr
in

te
d

by
pe

rm
is

si
on

.

106 PRAKASH

operations. At the same time, Dolphin guarantees that all users will see a consistent state at
quiescence, even if several users edit the document simultaneously.

Temporary anomalies may arise when several users attempt to modify the same object.
For example, if two users drag the same object to different places simultaneously, they will
initially see the object being dragged in their own direction. However, when the changes
are propagated to other users, one of the operations is undone by the concurrency control
algorithm. As a result, one of the users may see the object suddenly move back to its old
location (undoing the user’s change) and then move to the location selected by the other user
(executing the other user’s operation).

A Dolphin window shows the list of users who are looking at the same document. As users
open or close the document window, the list is automatically updated. This is a form of group
awareness that can be critical to the successful use of group editors. Users often need to know
if other users are also looking at the same document, in order to have a meaningful discussion
about the document. Audio communication among group members can provide additional
context and awareness.

Dolphin allows users to have one shared public window and multiple private windows for
a given document. Navigation in the public window (e.g. following links to other pages of
the document) is visible to all the users. Navigation in a private window is private to a user.
Editing changes to the document itself, however, are not private.

Multi-user whiteboards, such as MBone’s wb and those in Netscape’s Cooltalk and Intel’s
ProShare system, provide basic sketching facilities for brainstorming, as in Dolphin. These
systems do not, however, provide the ability to create links to other parts of a document, or
the ability to use both private and shared windows into a document.

5.2.2 Group Text Editors

All the above editors are primarily graphical editors. The support for text is generally limited
to placing simple textual objects at a selected location in the graphical document. Text is usu-
ally treated as a graphical object that can be placed at a selected coordinate on the document
canvas. Simultaneous update of a text object is usually not supported. Thus, these editors are
not really appropriate for creating large text documents jointly.

Several group editors, such as GROVE [Ell88], DistEdit-based Emacs [Kni90],
MACE [New91], and SASSE [Bae93] have explored issues in providing support for joint
editing of text. In these editors, simultaneous editing of text objects is allowed, even within
the same sentence or paragraph.

Allowing simultaneous editing of a related sequence of characters raises interesting con-
currency control issues. Consider the following example:

A document contains a string ompute. Suppose user A attempts to insert the character r after
character e. In many text editors, this would be carried out using an operation InsChar(7 ; r)
on the document, inserting r at position 7 in the document. But, now suppose that between
the time the operation is generated by A’s input and the time it is executed, another user’s
operation InsChar(1 ;c) is executed, in order to insert a c before the o. If the operations are
simply executed in the order InsChar(1 ;c) followed by InsChar(7 ;r), the resulting string
would be computre, rather than the intended result of computer.

Such a problem of unintended results rarely arises in graphical editors because most op-
erations are with reference to absolute coordinates on a canvas. Intended results can usually

GROUP EDITORS 107

Control/

User Interface

Screen

Manager

Routines

Buffer Update

Structures

Document Data

Figure 5.2 Typical structure of a single-user editor

be achieved by executing the operations in the same order at all sites. Furthermore, simulta-
neous operations often commute; when they do not, the differences in the results may not be
significant enough for users to care [Gre94].

In a text editor, on the other hand, users usually intend their operations to be relative to
positions of existing characters. However, internally, editors often represent operations using
offsets from beginning of the text object. As illustrated in the above example, this can lead to
unintended results. Some of the techniques for dealing with this problem are discussed later
in the chapter.

Another class of group editing environments are those that support more asynchronous or
non-real time styles of interaction. Examples are editors such as CES [Gri76], Quilt [Fis88],
and Prep [Neu90]. Prep, for instance, introduced a novel interface in which multiple columns
are used, with the first column displaying the editor’s text, and subsequent columns showing
the comments on the text by the collaborators in the group. These editors allow users to work
on the same document but typically on different sections and at different times. As a result,
interactions are over a much longer duration, even up to several days. Many of the issues of
concurrency control, fault tolerance, and real-time propagation of updates are less relevant to
such systems. This chapter does not discuss these systems.

5.3 GROUP EDITOR ARCHITECTURE

The high-level structure of a typical single-user editor is shown in Figure 5.2. A user interface
and control section waits for input; when input is received, it is translated into a set of calls
which update the document or update the interface.

Group editors, in order to provide interactive response times on browsing operations, usu-
ally use a fully replicated architecture in which the document state is replicated at each site
(see Chapter 7 in this book [Dew99]). As an example, Figure 5.3 shows the replicated archi-
tecture of DistEdit-based group editors. DistEdit is a toolkit that allows existing text editors
to be converted to group editors with minimal changes to their code as well as to ease de-
velopment of new group text editors. Several editors, including MicroEmacs, Xedit, and Gnu
Emacs, have been modified to make use of DistEdit. In DistEdit, modifications to an editor’s
document state are done using a set of standardized update primitives. Each editor’s update

108 PRAKASH

Control/

User Interface

ISIS

Screen

Manager

Control/

User Interface

ISIS

Screen

Manager

Originating Editor Receiving Editor

Unchanged Editor Module

General DistEdit Module

Editor-Specific DistEdit Module

Other Editor

Other Editor

(Mapping to (Mapping to

DistEdit Primitives) DistEdit Primitives)

DistEdit

Editor-provided

Access primitives

Editor-provided

Access primitives

Primitives

DistEdit

Primitives

DistEdit-internal DistEdit-internal

Receive routines Receive routines

Update routinesUpdate Routines

Renamed Local

Editor

Update Routines

Renamed Local

Editor

Update Routines

Doc. Data

Structures Structures

Doc. Data

Figure 5.3 Replicated architecture of group editors built using the DistEdit toolkit

GROUP EDITORS 109

Site 1

Site 2

execute B

execute Agenerate B

broadcast A
execute A
generate A

execute B
broadcast B

Figure 5.4 A scenario of the document state becoming inconsistent at different sites. Without concur-
rency control, the two operations A and B are executed in different orders at different sites, possibly
leading to different states

operations are mapped to one or more calls on the DistEdit primitives. Those DistEdit prim-
itives are multicast to all the editor copies, using the ISIS communication package[Bir90].
All the editors then apply the updates to their local copies. This general idea of replicating
state and propagating changes is used in many group editors, though different editors differ
in the choice of update primitives, document type, user-interface features, and algorithms for
concurrency control.

As we will see in Sections 5.4 and 5.5, selection of a core set of update primitives that
directly update the document state in a group editor is helpful in the implementation of con-
currency control and multi-user undo. Usually, implementing concurrency control algorithms
and undo is simpler if this core set of update primitives is kept small. Additional update op-
erations can be defined in terms of the core set of update primitives, without substantially
complicating concurrency control and undo algorithms.

5.4 CONCURRENCY CONTROL

Concurrency control techniques are required to ensure that a document’s state in a replicated
architecture remains consistent even when users attempt to modify the document simultane-
ously in a group editing environment. Consider a case where the state, S, of the document
is initially consistent (identical) at the various sites. Let us consider the simple case that two
users attempt to modify the document simultaneously via operations A and B. If each oper-
ation is executed locally first and then broadcast for execution at other sites (Figure 5.4), the
operations would be applied in different orders at different copies of the document, potentially
leading to inconsistent states — an undesirable situation in general.

One solution to the data consistency problem is to use ordered broadcast protocols to ensure
that all broadcasts are received in the same sequence at all sites [Bir87, Cha84]. However, in
this case, the sender of a broadcast has to wait to receive its own message from the network
before it can execute the operation. In fact, it may receive other sites’ messages prior to re-
ceiving its own message owing to message ordering requirements (Figure 5.5). This waiting
can lead to poor interactive response-times in multi-user use. Unfortunately, it can also lead to
poor interactive response times when one user is primarily interacting with the editor because

110 PRAKASH

Site 1

Site 2

execute B

execute Agenerate B

broadcast A

execute B

broadcast B

execute A

generate A

Figure 5.5 The use of ordered broadcast protocols to achieve data consistency. Delivery and execution
of messageB must be delayed at site 2 so that delivery/execution order is consistent with that at site 1.
Also, B is executed in a different state than when it was generated, possibly leading to an unintended
document state

ordered broadcast protocols usually rely on a central site to determine the order of delivery
of messages. Another problem with this solution is that operations received from other sites
may be done on the application’s state between the time that the operation was generated and
the time it is actually executed; executing the operation in the modified state may not lead to
correct or intended results, as we will see later.

Another solution to the data consistency problem is to use a centralized data architecture,
where the copy of the data resides only at one site. Without the use of any other concurrency
control scheme, this is essentially equivalent to the use of a replicated architecture that uses
ordered broadcast protocols. In particular, it has similar response time problems. It can have
much worse performance for browsing if sites do not cache the document state locally. Also,
the possibility of unintended results remains because the centralized site may execute parallel
operations in an arbitrary order, perhaps leading to unintended results.

There are thus two key aspects of ensuring consistency that group editors must deal with:

� consistency of state among the various document copies, assuming that a replicated archi-
tecture is used in order to enhance response time

� consistency of the resulting state of a document with respect to a user’s intention when
doing an update, in cases where other participants’ operations are applied to the document
between the time the user’s operation is generated and the time it is executed.

Techniques for maintaining consistency among copies of a document are largely based on
algorithms that have been proposed in the work on replicated databases. However, perfor-
mance tradeoffs are different between group editors and database systems, and that leads to
different choices of concurrency control algorithms. Group editors must provide interactive re-
sponse times; impact of network latencies on response time to user input must be minimized.
The concurrency control strategies in databases, on the other hand, must usually maximize
transaction throughput, rather than the response time of individual transactions.

Another difference from database systems is that group editors usually do not use a
transaction-based approach to updates because of the complexities involved in developing
support for transactions in a general-purpose programming language and for systems requir-
ing highly-responsive, interactive graphical interfaces. However, some recent systems, such as
COAST [Sch96] and DECAF [Str97], provide transaction-based support for building group-
ware systems.

GROUP EDITORS 111

There are two broad classes of concurrency control techniques: pessimistic and optimistic.
Pessimistic techniques ensure that inconsistencies among copies do not arise by requiring that
any update operations acquire appropriate locks to prevent conflicting updates from occurring.
Optimistic techniques do not prevent inconsistencies from occurring, but use mechanisms to
detect and correct inconsistencies if they occur.

Almost all practical databases use lock-based pessimistic techniques because they usually
provide a better transaction throughput. Many group editors, on the other hand, use opti-
mistic or special pessimistic techniques, with the goal of reducing interactive response times.
The following first discusses strategies for applying pessimistic and optimistic strategies to
group editors and then discusses enhancements to the strategies to avoid inconsistency among
documents with respect to users’ intentions.

5.4.1 Pessimistic Concurrency Control

To ensure consistency among copies of a shared document, one strategy is for operations to
acquire network-wide locks before updating the various document copies. Thus, in the earlier
example of two users doing operationsA and B in parallel, the operations can be executed on
all the copies in the order in which the operations acquire locks.

If acquiring or releasing locks requires going over the network, users may still perceive
substantial increase in interactive response times because each user’s update operation will
involve acquiring some locks over the network, doing the operation, and then releasing the
locks. In fact, if in a group session only one user is interacting with the application, the same
overhead could occur. Such a situation is clearly undesirable.

To improve performance of lock-based schemes, one technique is to use a token-based
locking scheme. DistView [Pra94b], a general-purpose toolkit for building groupware appli-
cations, uses a token-based locking scheme. When a site acquires a lock, it gets a lock-specific
token; only one site can have the token at a time. When a site releases the lock, it is treated as a
hint that the lock is no longer needed. The site still retains the token, but marks it as available
for other users. If the same site wishes to reacquire the same lock, the lock can be granted
immediately without going over the network by simply marking the token as unavailable. If
another site wishes to acquire the lock, it sends a message out to the entire group, requesting
the lock. The sites without the token ignore the message. The site with the token transfers the
token if it is marked available; otherwise it denies the lock request.

The performance impact of the above token-based scheme is that network latencies in ac-
quiring locks occur only if the lock has to be acquired from some other site. If only one user
is repeatedly acquiring and releasing locks, no network messages need to be sent except for
the first lock request (Figure 5.6). This can be an efficient locking strategy in practice because
usage patterns in group editors are often such that one user does most of the interactions,
while others observe the changes. A complication in the token-based scheme is that, for fault-
tolerance, a distributed token recovery algorithm is needed to deal with situations where a site
crashes while holding a token.

Another technique to reduce impact on response time is to support multiple, fine-grain
locks on the document. Different users may hold different locks, so the likelihood of waiting
on locks can be reduced. In DistEdit-based text group editors [Kni90], the granularity of locks
can be as small as one character. A lock covers any contiguous region of text. Inserting a string
requires obtaining a lock on the character which precedes the point of insert. Deleting a string
requires a lock covering the characters of the string.

112 PRAKASH

Site 1

Site 2

generate A1
get lock

execute A1
broadcast A1
release lock

generate A2
get lock

execute A2
broadcast A2
release lock

generate A3
get lock

execute A3
broadcast A3
release lock

execute A1 execute A2 execute A3

Figure 5.6 The DistView toolkit uses a token-based locking scheme to help improve response time
for typical usage patterns. Site 1 needs to acquire a token from a remote site for the first operation A1.
For subsequent operations that require the same lock, no token needs to be acquired over the network,
leading to good response times

As insertions or deletions are performed within a region, the associated lock in DistEdit
expands or shrinks automatically, without re-acquiring fresh locks over the network. Thus,
for insert operations (perhaps the most frequent operation in text editors), network latencies
impact response time only for the first insert at a new position; subsequent characters are
inserted with similar response times as in single-user editors.

Browsing operations in group editors normally do not need to acquire any locks (unless the
editor supports synchronized browsing). Thus browsing can be done interactively, indepen-
dent of updates initiated at other sites.

Locking, as described above, is largely intended to be hidden from users. Locks are auto-
matically acquired or released as users interact with the editor. Several group editing systems,
including MACE [New91] and DistEdit, also support explicit locking, where a user deliber-
ately selects and locks a region of the document. A user may chose to acquire an explicit lock
to work on a region in order to indicate to others that they should not work on that region
until the lock is released. Techniques for handling explicit locks are similar to those used for
handling automatic locks, except that explicitly-acquired locks are kept until released by the
user.

5.4.2 Optimistic Concurrency Control

Another technique to ensure consistency is to use optimistic concurrency control. An opera-
tion is executed on the local copy immediately and then broadcast to other sites for execution.
All update operations are first time-stamped so that any two operations can be consistently
reordered at all the copies, even if they are received in different orders. To reorder operations,
each site has to maintain a history list. The history list is a sequence of operations that have
been performed on the document. The operations on the history list are stored in the order in
which they were performed. For instance, if the history list is

B C D

then, starting from the state prior to B, carrying out the operations B, C, and D in sequence
should lead to the current state of the document.

Consider the situation now if operationA is received by the above copy, where A has lower

GROUP EDITORS 113

Site 1

Site 2

execute B

execute B
generate B

broadcast A

undo B
execute A
execute B

Inconsistent Consistent

execute A
generate A

broadcast B

state state

Figure 5.7 The use of undo/redo strategy for optimistic concurrency control. At site 2, execution order
is made consistent with that at site 1 by undoing execution of B and then executing A and B. Site 2 is
temporarily in an inconsistent state with respect to site 1

time-stamp than B, C, and D. In such a case, the operations can be reordered by undoing
D, C, and B (in that order), performing A, and then performing B, C, and D. The resulting
history list will be

A B C D

For this scheme to work, inverses need to be defined for all operations so that they can be un-
done. Figure 5.7 shows the use of optimistic concurrency control to achieve data consistency
for the example in Figure 5.4.

Karsenty and Beaudouin-Lafon [Kar93] describe an algorithm that improves the perfor-
mance of the above undo/redo scheme by taking advantage of commutativity among opera-
tions, when the commutativity information is provided to the editor. The following example
illustrates the use of undo/redo in their scheme. Suppose that two operations A and B should
be executed in the order A followed by B. However, one of the sites in a groupware system
receives the broadcast of operation B first, executes it, and then receives the broadcast of
operation A. Their algorithm will allow out-of-order execution of A at the site if A and B

commute. The algorithm will in fact not execute A at all if B masks the effect of executing
A; i.e. executing A followed by B gives the same results as just executing B. If commuta-
tivity or masking does not occur, the algorithm will undo A, execute B, and then redo B to
correct the execution order. This algorithm is used in several systems including Dolphin and
COAST [Sch96].

Note that the undo/redo in the above optimistic concurrency control scheme is internal to
the system and is used only for ensuring consistency. No undo/redo capability is provided to
end-users. In particular, support for undoing an operation that is executed in the correct order
is not addressed by the above scheme.

Unlike in lock-based pessimistic schemes, optimistic schemes suffer from a window of op-
portunity where a user can interact with the editor while the user’s copy of the document is
in an inconsistent state. For instance, in Figure 5.7, the user at site 2 could issue editing oper-
ations immediately after broadcasting B. These operations would also execute optimistically
at site 2. The problem is that these operations may be generated based on a state that is later
going to be undone. Unlike in databases, the optimistic (inconsistent) state is visible to the
users, since the goal of using an optimistic algorithm is to reduce response time. Currently,

114 PRAKASH

there does not appear to be a good solution to this problem. Most editors that use optimistic
schemes simply assume that such a possibility does not arise too often, and when it does, users
can deal with any unintended effect.

5.4.3 Consistency with Users’ Intentions

A group editor must not only provide a consistent document state at each site, but must attempt
to perform operations with effects that are consistent with users’ intentions. The algorithms,
as discussed above, need to be enhanced to address this. Consider the example given in Sec-
tion 5.2.2, which is repeated below:

Example 1
A text editor’s document contains the string ompute. User A attempts to insert the charac-
ter r after character e. In many text editors, this would be carried out using an operation
InsChar(7 ;r) on the document, inserting r at position 7. But, now suppose that between
the time the operation is generated by A’s input and the time it is executed, another user’s
operation InsChar(1 ;c) is executed, in order to insert a c before the o. If the operations are
simply executed in the order InsChar(1 ;c) followed by InsChar(7 ;r), the resulting string
would be computre, rather than the intended result of computer.

The above problem is not a replicated data inconsistency problem because all the copies of
the data will have the same string. However, it is an inconsistency with the user’s intention
of inserting the character r after the e in the string. The inconsistency arose because another
user’s action was carried out on the document between the time the user initiated the action
and the time it was executed. Thus the user’s operation, which used positional offsets, was
applied in a different location than intended, leading to unintended results.

The reader may think that the above scenario of two users modifying the same word is not
very likely. However, the same problem arises if users are modifying different parts of a long
document (a more likely scenario) as long as references used in the operations change as a
result of other editing operations.

The solution commonly used in group text editors to address the problem is to detect the
possibility of an undesirable result, modify the operation so that it leads to the intended, desir-
able result, and then execute the modified operation.

In Example 1, this scheme would transform the second operation from InsChar(7 ; r) to
InsChar(8 ; r) so that it leads to insertion at the correct point, given that the first operation
has already been executed.

The use of transformations requires the definition of a transformation matrix Tr [Ell89].
Tr(A;B) tells how an operation A should be transformed to give the intended effect, given
that another parallel operation B has already been executed. For instance, if A and B are
generated in parallel by different users and

Tr(A;B) = A0 and Tr(B ;A) = B 0,

then A0 should be executed instead of A if B has already been executed. Similarly, B0 should
be executed at a site instead of B if A has already been executed.

Transformations can be used in several ways in optimistic schemes. Figure 5.8 shows the
original use of it in the GROVE editor [Ell88, Ell89]. Site 1 executes the parallel operations
A, B as A followed by B0, whereas site 2 executes the operations as B followed by A0. Data
consistency obviously requires that the transformation matrix satisfy the transform property
that executing A followed by B 0 results in the same state as executing B0 followed by A.

GROUP EDITORS 115

Site 1

Site 2

execute Tr(B,A)

generate B

broadcast A

execute Tr(A,B)Inconsistent Consistent

execute A
generate A

execute B
broadcast B

state state

Figure 5.8 The use of transformations to achieve data consistency and consistency with users’ inten-
tions in an optimistic manner, without the use of undo/redo. Sites may do operations in different order
and transformations must satisfy constraints that ensure consistency

Site 1

Site 2

execute Tr(B,A)broadcast A

undo B
execute A

execute Tr(B,A)

Inconsistent Consistent

execute A

generate B
execute B

broadcast B

generate A

state state

Figure 5.9 The use of transformations to achieve data consistency and consistency with users’ in-
tentions in an optimistic manner using undo/redo. In this case, all sites execute operations in the same
sequence, if necessary after reordering operations

Figure 5.9 shows the use of transformations with the undo/redo concurrency control
scheme. In this case, site 1 executes the operations as A followed by B0. Site 2 executes
them in the same order, after undoing B to achieve the same order. This has the slight ad-
vantage that data consistency is achieved even if the transformation matrix fails to satisfy the
transform property. The disadvantage is that the undo/redo-based strategy can be somewhat
slower.

Transformations can also be useful in pessimistic schemes. For instance, if an ordered
broadcast protocol is used, transformations can be applied to achieve the same results as in
the undo/redo scheme shown in Figure 5.9.

With lock-based schemes, transformations can be used for mapping lock requests to correct
regions in the document, even when parallel lock requests are made. Operations do not need
transforms in that case, because operations can use positions that are relative to the positions
specified in the locks. This simplifies transformations considerably, because the number of
operations can be much larger than the types of lock requests.

A second approach to the handling inconsistency with user’s intentions is to simply do
nothing. The assumption is that users can correct any unintended results manually. This may

116 PRAKASH

be an acceptable approach in some cases. It is not an acceptable solution, however, if the
problem is likely to occur frequently during group editing, if it could have a hard-to-correct
effect on the document state, or if the users are unlikely to notice the problem when it occurs.
For simple graphical editors, such as shared whiteboards, this can be a reasonable approach,
because most operations can be designed so that transformations are not required.

A third approach to the problem is to detect the possibility of an undesirable result and to
abort the second operation on all copies of the document (i.e. not execute the operation, or
undo it if it has already been executed). This is somewhat better than doing nothing because
undesirable results are prevented and the user who initiated the aborted action can be notified
(e.g. via a beep) that the operation was not carried out.

Designers of sophisticated group editors may find it practical to rely on all the three ap-
proaches for different aspects in the same editor. The approach of modifying operations may
be used in the same editor to deal with commonly-occurring situations that are easy to detect
and correct, such as changes in the positional offsets of an operation as a result of parallel
operations.

The second approach of doing nothing may be best for situations where the system cannot
easily determine, usually owing to difficult data semantics, whether the results will be con-
sidered to be unintended by users. For example, if given the word helo in a document copy, if
one user attempts to insert an l after the e, and another user attempts to insert an l before the o
simultaneously, the resulting string would be helllo in most text group editors — perhaps an
unintended result if the users expected the result to be hello. However, this result is difficult
to avoid if the editor treats its document state as simply a string of characters — the concept
of words and perhaps even spellings would have to be introduced in the editor to result in the
intended string hello. And even that could be an unintended effect to some users because they
may have expected both letters to be inserted. A more practical solution in this case is to de-
sign the editor to provide predictable behavior that will be compatible with users’ intentions
in most cases, and to provide collaboration-awareness features so that users are less likely to
make updates that lead to unintended results.

The third approach of aborting operations may be useful in the same editor when operations
conflict so severely that only one can be done meaningfully. For example, in editors that
provide locking, if two users attempt to lock an overlapping document region simultaneously
— obviously, only one operation can be allowed to succeed, and the other has to be aborted.

5.4.4 Alternatives to Concurrency Control

Another way to deal with concurrency control is to ensure that parallel editing operations al-
ways commute. In that case, neither pessimistic, nor optimistic concurrency control is needed.
Operations can be executed by sites as they are received.

The MBone-based whiteboard, wb, used such a strategy. In wb, users could only modify
their own work on the whiteboard — not that of others. This restriction ensured that parallel
updates from different users modified different objects on the canvas, thus removing the need
for a concurrency control algorithm. Such a strategy was useful in wb because in an MBone
session, thousands of participants were often expected. Attempting to do concurrency control
among such a large group was likely to be inefficient.

In a graphical editor that does not use any concurrency control, it is possible to get some
inconsistencies. For instance, if two users move different filled objects, say A and B, simul-
taneously to the same location on the canvas, it is possible that one user’s display shows A

GROUP EDITORS 117

as being above B while the other user’s display shows B as being above A. If such incon-
sistencies are acceptable to users, then the two operations can be considered to commute.
Otherwise, a concurrency control algorithm is likely to be needed.

5.5 UNDO IN A GROUP EDITOR

The ability to undo operations is a useful standard feature in most interactive single-user
applications. For instance, the availability of an undo facility in editors is useful for reversing
erroneous actions [Han71]. It can also help reduce user frustration with new systems [Fol74],
particularly if those systems allow users to invoke commands that can modify the system state
in complex ways.

Compared with single-user applications, performing undo in groupware applications pro-
vides technical challenges in the following areas [Pra92, Pra94a]:

� Selecting the operation to be undone. In a group editing environment, there may be par-
allel streams of activities from different users. When work on a shared document occurs
in parallel, users usually expect an undo to reverse their own last operation rather than the
globally last operation, which may belong to another user. An undo framework for group-
ware systems needs to allow selection of the operation to undo based on who performed
it.

� Determining what operation will result in a correct undo. Once the correct operation to be
undone is selected, the operation to execute to effect an undo has to be determined. Simply
executing the inverse of the operation to be undone may not work because of modifications
done by other users.

� Dealing with dependencies between different users’ operations. If multiple users inter-
leave their work in the same region of a document, it may not be possible to undo one
user’s changes without undoing some of the other users’ changes. In this case, there are
dependencies between the changes which need to be taken into account during an undo.

Supporting undo in group editors requires a history list — which was previously used in
Section 5.4.2 for doing optimistic concurrency control. If the editor uses a replicated archi-
tecture, a concurrency control scheme should be used that results in the history lists being
consistent (i.e. operations added to the history list in the same sequence) at all sites.

In addition to maintaining a history list, supporting undo requires that all operations that
modify the state of the document are reversible; i.e. for every operation A, we can determine
an inverse operation A that will undo the effect of A, assuming A was the most recent oper-
ation executed. For instance, in an editor, an INSERT operation can be undone by a DELETE
operation.

We next look at design strategies to address the above three issues.

5.5.1 Selecting Operations

In a group editor, a user may wish to undo his last operation, but that operation may not have
been the globally last operation executed on the document (other users may have done opera-
tions subsequently). We therefore need to allow undoing of a particular user’s last operation
from the history list.

To allow such selection of the operation to undo based on user identity, each operation

118 PRAKASH

on the history list needs to be tagged with the user-id of the user who invoked the opera-
tion [Pra92]. For example, consider the following history list, where Ai’s refer to operations
done by one user, say Ann, and Bi’s refer to operations done by other users:

A1 B1 A2 B2 B3:

Now, suppose Ann wishes to undo her last operation. The selection mechanism would choose
to undo A2, the last operation on the list that is tagged with Ann’s user-id.

In the above example, the operation to be undone, A2, is selected based on the identity of
the user. More generally, the operation to undo could be selected based on any other attribute,
such as region, time, or anything else. To allow selection on other attributes, tags could include
additional information such as the time at which the operation was carried out or the document
region in which it was carried out.

In DistEdit, we have found undo that is restricted to a particular region of a document (e.g.
paragraph) to be particularly useful, in addition to an undo based on user identity.

The above scheme has been termed selective undo [Pra92, Ber94, Pra94a], since the opera-
tion to be undone is not necessarily the last one, but is selected using some attributes attached
to the operation.

5.5.2 Executing the Undo

Once the correct operation to be undone is selected, the operation to execute to effect an undo
has to be determined. We look at several strategies for executing the operation.

5.5.2.1 Direct Selective Undo Strategy

One potential solution for undoing any operation in the history list is simply to execute its
inverse, provided the inverse is executable in the current state [Ber94]. So, given the following
history list:

A1 B1 A2 B2 B3

operation A2 is undone by simply executing A2’s inverse, A2, resulting in the history list:

A1 B1 A2 B2 B3 A2:

This approach essentially assumes that any operation in the history list can be undone sim-
ply by executing its inverse from the current state (provided the inverse can be executed),
irrespective of the other operations on the history list.

Unfortunately, not taking into account dependencies among operations can lead to unex-
pected or hard-to-predict undo behavior in certain situations. To see some of the problems
that arise when operations have dependencies among them, consider the following example.

Example 2
Let’s say that a graphical document contains a circle of size 6 and that the following two
operations are done, leading to a circle of size 4:

� Operation 1: double the radius of the circle
� Operation 2: set the radius of the circle to 4.

Assume that the inverses of the above operations are chosen to be:

GROUP EDITORS 119

� halve the radius of the circle
� restore the radius of the circle to 12 (the size prior to doing operation 2).

Suppose the first user now issues a command to undo operation 1. To undo operation 1, using
the above undo strategy, the inverse of operation 1 is executed, resulting in a circle of radius 2.
Unfortunately, since the circle was never of size 2, this may be a result that is difficult for the
users to understand.

Another problem with the strategy is that the result of undoing a set of operations may
depend on the order in which the operations are undone. In the above example, one can end
up with a circle of size 12 or a circle of size 6, depending on the order in which the above two
operations are undone. Note that one of the possible results is different from 6, the initial size
of the circle.

This strategy, despite the above problems, may be useful in some cases. First, if operations
on the editor are carefully designed to always commute, then this strategy will give expected
results. For instance, in the above example, if the second operation was replaced by an oper-
ation that reduces the radius of the circle by a factor of 3 (and its inverse being an operation
that increases the radius of the circle by a factor of 3), then this strategy, as can be verified,
would give expected results. Second, as suggested in [Ber94], if the users are presented with
the list of operations that have been done and explicitly select one to be reversed with the
understanding that the system will simply execute the inverse of the operation in the present
state, then the results can be better understood by users.

5.5.2.2 Undo–Redo Strategy

Another strategy for undoing an operation is to bring the document to a state prior to an
operation A by undoing all operations executed since A (in reverse order), then undoing A,
and then redoing all the undone operations except A [Cho95]. This strategy is similar to that
used in undo-skip-redo (US&R) strategy [Vit84] for single-user editors. For example, given
the history list:

A1 B1 A2 B2 B3

to undo A2, first inverses of B3 and B2 are executed, then the inverse of A2 is executed, and
finally B2 and B3 are re-executed. This results in the history list:

A1 B1 A2 B2 B3 B2 B3 A2 B2 B3

or its equivalent, in terms of the effect on the document state:

A1 B1 B2 B3:

For Example 2, if operation 1 is to be undone, the effect would be to undo both operations
and then redo the second operation, resulting in a circle of size 4. This is a reasonable result in
the sense that the circle would have been of size 4 if operation 1 had never been done. On the
other hand, a problem remains that this may not be what the user intended to happen because
the undo will appear to have no effect and no error will be reported [Ber94].

Both this strategy, as pointed out by its authors [Cho95], and the direct selective undo
strategy, do not account for the need for transformations. Consider the following example
from a text editor.

120 PRAKASH

Example 3
Let’s say that a text document contains only the string omputr. The following two operations
are done in sequence by two users, leading to the string computer:

� Operation 1: InsChar(1 ;c) to insert c before o, the first position in the string, resulting in
the string computr.

� Operation 2: InsChar(7 ;e) to insert e between t and r, the seventh position in the string.

Reasonable inverses for the above operations are:

� DelChar(1) and
� DelChar(7).

If now, the first user attempts to undo operation 1, we would like the result to be omputer, the
string that would have resulted if operation 1 had not been executed by the first user. However,
the undo/redo strategy would first restore the string to omputr by undoing both operations and
then re-execute operation 2, leading to the string omputre. The direct selective undo strategy
works for this example, but does not work if operation 2 had been done prior to operation 1.

The problem that occurred with Example 3 is that the second operation would have executed
as InsChar(6 ; e) — at a different position — if the first operation had not occurred, assuming
that the intended effect of the operation was to insert e between t and r. Unfortunately, this
basic strategy does not take such needs of modifications to operations into account [Abo92,
Pra92].

Despite the above limitations, the undo/redo strategy can be a useful one, especially when
transformations are not required and users accept its semantics. Results after multiple undo
commands, unlike the direct selective undo strategy, are independent of the order in which
they are carried out.

5.5.3 Transformation-Based Selective Undo

The basic problem illustrated by Examples 2 and 3 is that to undo an operation other than the
last one on the history list, one cannot simply execute the inverse of the operation (or use the
undo/redo strategy) because subsequent operations could have shifted the location at which
the operation was originally performed.

Another problem with implementing selective undo is the the possibility of dependencies,
or conflicts, between operations. Suppose an operation B has modified the same region of
the document as an earlier operation A. It may then not be possible to undo A without first
undoing B. A general solution to undo needs to be able to detect when an operation cannot
be undone because of later conflicting operations that have not been undone.

A general solution to the problem of dealing with transformations and conflicts is pre-
sented in [Pra94a]. Here we examine an intuitive description of the solution used. To allow
an arbitrary operation on the history list to be undone, the solution in [Pra94a] requires that
the application supply functions which can detect conflicts between operations, re-order non-
conflicting operations, and create inverse operations. More specifically, besides the inverse
function, the application must provide the following two functions:

� Con
ict(A;B) that returns true if the operations A and B performed in sequence cannot
be reordered, and false otherwise.

� If A and B do not conflict, a function Transpose(A;B) that returns (B 0; A0), a reordering

GROUP EDITORS 121

of operations A and B such that executing A and B in sequence has the same effect as
executing B0 and A0 in sequence. Also, B0 must be the transformed operation that should
have been executed by the editor if A had not been executed earlier.

The notion of conflict is just a formal way of capturing the requirement that the operations
should not be reordered because of semantic dependencies — typically the operations modify
the same objects or region in the document. For instance, if operation A inserted a string and
operation B modified the inserted string, there would be a conflict between the two opera-
tions. Also, note that the Transpose function above applies to operations that have already
been executed with correct results, unlike the transformation function for the Transformation
matrix, which is used to determine the operation to execute for getting correct results.

If an operation A is undone, we assume that the users want their document to go to a state
that it would have gone to if operation A had never been performed, but all the following
non-conflicting operations had been performed. For example, suppose that on a document in
state S, operations A and B are performed in sequence, and then A is undone. Let’s assume
that Transpose(A;B) = (B0; A0). Therefore, by the definition of the Transpose function, if
A had never been performed, the system would have performed operation B0 in place of B.
Therefore, after undoingA, the selective undo algorithm should result in the document’s state
being as if only B 0 had been performed in state S.

The basic idea behind the algorithm is to shift the operation to be undone to the end of the
history list by transposing it with subsequent operations. If the operation cannot be shifted
to the end of the list owing to a conflict, then the operation cannot be undone without also
undoing the conflicting operation. If the operation can be shifted to the end, then it can be
undone by simply executing its inverse. As an example, suppose that we want to undo A

given the history list:

A B C:

Suppose A conflicts with B. Then Con
ict(A;B) will be true, and the undo of A will fail,
as it should, because A cannot be undone unless B is also undone. If A does not conflict with
B, the result after one iteration of shifting will be:

B0 A0 C

where (B0; A0) = Transpose(A;B). Note that the history list need not be actually altered
because only the new A0 is used in the next iteration. We show the altered list here for clarity.

Next, if Con
ict(A0;C) is true, the undo will fail. Otherwise, another shift will occur,
resulting in:

B0 C0 A00

where (C0; A00) = Transpose(A0;C). It follows from the definition of the Transpose function
that B0 and C0 are the operations that the system would have executed, instead of operations
B and C, if operation A had not been executed earlier.

Now that A has been shifted to the end of the list, A00 can be performed giving the list:

B0 C0:

Performing A00 in the present state therefore correctly cancels A, giving the same document
state as executing B0 and C0 in the original state — the operations that would have executed
had A never been performed; the undo has succeeded.

122 PRAKASH

The Transpose and Inverse functions need to satisfy several formal properties for a correct
undo algorithm. For more details on the properties the reader is referred to [Pra94a]. The paper
also presents a generalization of the above scheme to handling undo of previously undone
operations and undo of operations restricted to a region. Below, we only illustrate the Conflict
and Transpose functions that would be defined for Examples 2 and 3 and the resulting behavior
on undo.

In Example 2, Con
ict(Operation1 ;Operation2) is best declared to be true because they
both change the same attribute of the circle; also there is no simple way to reorder the two
operations with the same resulting effect on the state and satisfying all the properties that are
given in [Pra94a]. Thus, Operation1 cannot be undone by this algorithm without also undo-
ing Operation2 . An implementation can either report a conflict error, undo both operations
automatically, or give an option to the user to either undo both operations or to leave the
document state unchanged, in view of the subsequent change by another user.

In Example 3, operations 1 and 2 need not be declared to conflict. The history list would
contain:

InsChar(1 ; x) InsChar(5 ; y):

To undo the first operation, the algorithm would shift it to the end of the list by (temporarily)
reordering the list as follows:

InsChar(6 ; e) InsChar(1 ; c))

It will then execute its inverse, DelChar(1). This results in the string omputer, the intended
result that deletes e from the first position, leaving the effect of the second operation in the
correct place.

5.5.4 Undo–Redo Strategy with Transformations

Another possible algorithm for selective undo is to use the undo/redo strategy for selective
undo, augmented with transformations. This does not appear to have been described in the
literature, so we only sketch the ideas here. To undo an operation A, one can assume that
its inverse A is a late arriving operation that should have executed immediately after A. To
execute A, we can reverse all the operations that were done after A, then execute A, and then
redo the operations after A after transforming all the operations, using the Transformation
Matrix described in Section 5.4.3.

5.5.5 Relation of Concurrency Control and Undo

An interesting question is whether the choice of concurrency control algorithm and the undo
algorithm are dependent. There are some obvious similarities between the schemes, such as
the use of transformations, undo/redo, etc. There are also some differences. Undo, like other
operations, should behave identically at all sites in a replicated architecture and provide in-
tended results.

Ensuring consistent behavior of the undo operations can be challenging for several reasons.
First, the history list may not be identical at each site, particularly if the transformation-based
scheme illustrated in Figure 5.8 is used. In Figure 5.8, undoing the command B at site 1 may
not necessarily have the same effect as undoing the command B0 at site 2, unless additional
requirements are placed on the transformation matrix. And, in general, it is not clear if it

GROUP EDITORS 123

is always possible to find a transformation matrix that satisfies the requirements for both
consistency and undo. An elegant discussion of the properties that transformations need to
satisfy so that operations can be selectively undone can be found in the work by Ressel et
al [Res96].

Second, conflicting operations may be issued in parallel and the system may pick an execu-
tion order that achieves consistency but makes it later difficult to undo one of the operations
with reasonable results.

Third, with optimistic concurrency control, the undo command itself may be issued and
executed optimistically in an inconsistent state; it is not obvious what operation, if any, should
be undone by an undo command that is issued from an inconsistent state.

In DistEdit [Kni93, Pra94a], some of these problems are addressed as follows. First, the
undo commands are not broadcast, only the operation executed. Thus, even if history lists
are not identical (but equivalent), data consistency is maintained. Second, locks are used so
that only non-conflicting operations are allowed to be executed in parallel. Third, because of
pessimistic concurrency control, the undo commands can only be issued in consistent states.

In [Cho95], several other issues in the design of an undo framework are considered, includ-
ing the problem of undoing commands that are executed only at a subset of sites and undoing
commands that affect more than one site.

5.6 SUPPORTING COLLABORATION AWARENESS

Collaboration awareness features can be critical in a group editor in order to provide better
context regarding the environment in which collaborative activity is taking place. Below we
look at examples of collaboration awareness features from various group editors. Additional
examples can be found in Section 6.4 (page 150) and some implementation issues can be
found in Section 7.4.2 (page 177) in this book [Gre99, Dew99].

5.6.1 Participant Context

Group editors often display the list of users in the group editing session, so as to provide con-
text regarding the participants when group editing is not face-to-face. Examples of this can be
found in the user interface provided by DistEdit [Kni90] and by Dolphin [Str94] (Figure 5.1).
The list of participants is updated as participants leave or join a session.

The list of participants can be useful in several ways. It can be used to allow users to send
electronic mail to individual participants (for example, by clicking on their name or icon). It
can also be used to give additional information about the participants — such as the contact
information from their business card, and their role in the session (observer, participant). Some
recent systems, such as Habanero from NCSA, use the list of participants in the above ways.

Keeping the list automatically updated in the presence of network failures requires some
support from the underlying communication system. In particular, if a user’s editor crashes or
the connection to the editor is lost, other editors need to be able to determine that and drop the
user from the list. It is well known, though, that distinguishinga crash or lost connectivity from
a very slow connection is not possible in typical networks. The standard solution in such cases
is to drop a very slow connection, treating the editor at the end of the connection as effectively
being out of the collaboration session. If the user’s editor later attempts to communicate, it is
forced to rejoin the session as a new member.

124 PRAKASH

One difficulty with providing participant context is that showing a user as a member in a
membership list normally only shows that the user has the group editor open. It does not guar-
antee that the user is paying attention to the group editing session. In face-to-face meetings,
eye contact and other bodily cues indicate whether a particular participant is paying attention.

Several potential solutions exist or are being tried out to provide more information than just
membership lists. One solution is to show idle time for each user — the period for which they
have not interacted with the group editor. This is not a perfect indicator either because it could
be that a user is idle but is paying attention; or perhaps the user could have stopped paying
attention very recently.

Another solution is to use additional media, such as video, to provide awareness (see also
Chapters 3 and 4 in this book [Mac99, Ish99]). Use of video can provide relevant participant
context more rapidly than idle time. However, this solution also has limitations: 1) bandwidth
and computing cycles may be limited to provide good quality video; 2) screen real-estate can
be an issue if the group consists of more than two people; and 3) video is potentially more
invasive of privacy than other solutions.

In general, providing good participant context in a non-obtrusive way and in a scalable man-
ner is an open research problem. A more in-depth discussion of various aspects of awareness
can be found in [Ben93, Rod96, Tol96].

5.6.2 View Context

People often find it natural to use references such as “top-line of the window” or “the node
in the top right corner” to refer to objects being edited. Unfortunately, such references can
be confusing in a group editing environment if users do not have their windows or views of
the document synchronized. Many group editors, thus, usually attempt to provide an ability
to synchronize their views of the document.

Group editors, however, differ in the extent to which they provide synchronized views.
In DistEdit-based text editors, for instance, support is available for synchronization of cursor
positions and highlightedselections, but no support is provided for synchronization of window
sizes, position of lines within a window, etc.

In Suite [Dew91], facilities are provided for closer synchronization of views, including
selection of fonts, scrolling, etc. — application designers are provided substantial controls on
the editor attributes that they wish to synchronize, but the programmers must implement the
attributes.

Supporting view synchronization is usually done by introducing additional shared state
variables, besides the document itself. As an example, for implementing synchronized
scrolling, the position of the scrollbar can be made a shared variable, with a copy at each
site, and updated with the concurrency control techniques described earlier. Response time
can be even more critical for operations such as scrolling that update views — since users
expect browsing to be fast — so judicious use of concurrency control techniques is essential.

The above strategy of using shared state variables to capture the view state can sometimes
be non-trivial to use for programmers. Graphical views of documents often consist of multiple
user-interface widgets (e.g. scrollbars, windows, buttons, canvas), each of which can require a
large number of state variables to represent completely. For example, state variables required
to share the visual representation of a simple button can include its label, font of the text, size
of the button, its shape, whether it is active or disabled, etc. It can, in general, be quite tedious
for programmers to determine what state variables are required to be shared for a particular

GROUP EDITORS 125

widget and then doing the programming to keep the state variables consistent with each other
and with the visual state of the button.

In DistView-based groupware tools [Pra94b] on the NeXT systems, the task for imple-
menting synchronized views is considerably simplified. Groupware-enabled widgets corre-
sponding to each of the standard GUI widgets, but with built-in replication support using state
variables, are provided by extending the standard set of NextStep widgets. These groupware-
enabled widgets are made available in the NextStep’s Interface Builder so that users can build
applications with window replication and sharing using the standard NextStep’s drag-and-
drop graphical environment. More recently, a Java-based version of DistView is attempting to
provide a similar drag-and-drop functionality for building groupware applications using the
Java Beans component model.

5.6.3 Activity Context

While using a group editor on a large document, a participant may need to know the regions
of the document that other participants are working on. Such information can help avoid con-
flicting work and facilitate interactions. SASSE [Bae93] (and its earlier version SASE) are
examples of group editors that provided this information particularly well. In SASE, con-
tinuous feedback was provided to users about other collaborator’s working locations in the
document with color-coded text selections and multiple scrollbars (one per user). In SASSE,
multiple scrollbars were replaced by two scrollbars in order to save screen real-estate: the
normal scrollbar of the local user and another scrollbar with multiple color-coded indicators
to show the locations of other users.

Activity context is also often provided by the use of audioconferencing tools or multi-user
chat tools. This additional conferencing channel can be used by users to coordinate or discuss
the document contents while it is being edited. Figure 5.1 shows the MBone audioconferenc-
ing tool, vat, being used along with the Dolphin group editor.

Use of other generic tools for communication to provide activity context is an attractive
strategy because such tools can be useful for a variety of group editing environments. A key
challenge however is providing a seamless integration among these tools and the group edit-
ing system. If each of the tools and the group editor requires its own set-up and provides
its own interface for joining/leaving a group session, then the system can become tedious to
use. Several strategies for integrating multiple tools seamlessly in a single system are cen-
tered around the room metaphor; participants join an editing session by entering a room. The
rooms contains various tools, such as editors, chat, and audio, and all these automatically be-
come available to a new participant upon entering the room. Systems that integrate multiple
groupware tools based on the room metaphor include wOrlds [Tol95], Collaboratory Builder’s
Environment [Lee96], and TeamRooms [Ros96b].

One significant challenge with providing activity context is determining what is the ap-
propriate context that users need. A system could show to each user what everyone else is
looking at. However, that has screen real-estate implications (besides privacy concerns which
we ignore here). In addition, it could probably overload users with too much unnecessary
context information.

In general, there is a tradeoff between the extent of common view context and the extent
of need for activity context. If views of the document for all users are synchronized, then less
activity context may be needed — actions of one user are going to be visible to all other users
because of view synchronization. On the other hand, if views are not synchronized, actions

126 PRAKASH

of one user may not be visible to other users. Thus, more a priori and on-going coordination
among users may be needed in order to avoid conflicting or overlapping work.

5.6.4 Telepointing

Telepointing can be a useful collaboration awareness feature in group editors that provide
synchronized views. In telepointing, a user’s mouse movements can be tracked by the system
and displayed on everyone’s synchronized window.

Different editors provide varying levels of telepointing capability. DistEdit-based text edi-
tors only provide synchronized cursor capability. A user’s cursor is tracked by cursors of other
users when they are in a lockstep editing mode. Selections of regions of text are also tracked.
No mouse-based telepointing is supported, primarily because close synchronization of views
in a window is not supported owing to heterogeneity of the user-interfaces and platforms of
DistEdit-based editors. Mouse-based telepointing makes little sense unless the pointer can be
displayed in the same position with respect to the data being viewed in all the windows.

Editors such as Dolphin and SASSE support mouse-based telepointers. Both systems use a
standard underlying platform (Smalltalk in Dolphin’s case and Macintosh in SASSE’s case)
so that they are able to provide group windows that are identically-sized and have the same
contents to all the users. This facilitates displaying a mouse-based telepointer at the same
position with respect to the data in the group window.

Supporting multiple telepointers can also be useful, with a different telepointer assigned
to each user [Hay94]. If multiple telepointers are provided, they should be assigned different
colors or shapes so that users can identify who is manipulating a particular telepointer.

The main challenge with implementing telepointers is dealing with performance. Moving
a pointer can generate a large number of mouse-move events. To reproduce the pointer move-
ment at other sites with low latency, these events have to be broadcast over the network as
they are generated. In low-bandwidth situations, the originating site can potentially be slowed
down by the network bottleneck, leading to jerky mouse movement at the originating site. The
movement of telepointers at receivers can also be unsatisfactory because of jitter introduced
by the network in delivering the broadcast messages. The behavior can be worse than trying
to use a window system such as X over a slow network.

Potential strategies to deal with the above performance problems include only broadcasting
a subset of mouse-move events. Recent studies show that transmitting ten mouse-events per
second is usually adequate to get continuity in pointer movements [Ste96]. With judicious
sampling of pointer movements, by using non-blocking protocols, and by incremental painting
of screen when remote pointers move, group editors can be designed to support telepointers
adequately, even in low-bandwidth situations.

5.7 DESIGN OF DOCUMENT STRUCTURE

Some group editors have focused on not just supporting simultaneous editing of documents,
but on the design of document structures that support collaboration activities such as brain-
storming. The assumption is that brainstorming is a major use of group editors, and thus group
editors need to provide appropriate document structures to support brainstorming.

The simplest kind of group editors to support brainstorming are simply little more than
group drawing editors. They provide a graphical canvas on which users can draw shapes (such

GROUP EDITORS 127

as rectangles, arrows, lines, etc.) to represent objects of conversation, type in text for labeling,
and use one or more telepointers to draw attention to objects represented on the canvas. The
shared whiteboard tools such as MBone’s wb, Cooltalk in Netscape 3.0, and several public-
domain programs are examples of such editors.

A much richer document structure for group editing is provided by the Dolphin sys-
tem [Str94], whose interface is shown in Figure 5.1. Dolphin provides a hypermedia docu-
ment structure, in which users can not only draw shapes and type in text, but also create nodes
and links, where nodes can represent substructures within a document and links can be used
to jump from one part of a document to another related part of the document. Recent experi-
ments with Dolphin have shown that such hypermedia-based document structure can lead to
more effective brainstorming than the standard shared whiteboard tools [Str94].

Supporting richer document structures is facilitated by richer support for object replication
because a document may be represented using a large number of objects with distinct types
(e.g. nodes, links, text, graphics), and not all objects may be shared among the entire group
at a given time. The use of object replication for view synchronization is discussed in Sec-
tion 5.8.3. In the case of Dolphin, the COAST system [Sch96] provides the necessary object
replication support.

5.8 OTHER DESIGN ISSUES

5.8.1 File Management

Several problems arise when users share document files in order to do group editing. First,
when a user requests a file be opened for editing, a group editor must determine whether
anyone else is currently editing that file and, if so, load from the active group session rather
than from the file. Second, a user should not be allowed greater editing access rights using a
group editor than the file system would allow. Third, care must be taken should several users
attempt to save a shared file at the same time.

In determining whether several users wish to edit the same particular file, it is not possible
to simply examine the path names of the files; because of network file systems, a file can
potentially be referenced by different paths. In DistEdit, this problem is solved as follows.
When a user attempts to open a file from within an editor, DistEdit searches in the directory
containing the file for an auxiliary file of the same name prefixed by ‘#de.’. For instance,
when opening /aprakash/de/testfile, DistEdit will search for the auxiliary file #de.testfile in
the directory /aprakash/de. This auxiliary file contains a unique identifier to be used as the
group session name for the particular file. If no such file exists, DistEdit creates it so other
users will be able to join the session. If the file exists, DistEdit attempts to join the session
identified in the file.

Another solution to the file path problem is for the group editor to provide its own small
file-server where files belonging to groups are stored. The group editor can then ensure that
their file system presents a common view of files to all users. Several PC-based editors,
such as ShrEdit [McG92], use this solution, primarily because network file systems were
not commonly available in PC environments.

A group editor needs to be designed to enforce access control. Enforcing access control
is more important than in single-user editors because a user can potentially modify not only
his own documents, but also documents owned by other users in the same group session. The

128 PRAKASH

access control permissions may be inherited from the file system or the group editor can be
designed to provide its own access control policies.

The normal file save routines of single-user editors can basically be used as-is in group
editors. There is, however, a potential problem. If multiple users were to save slightly different
versions (due to network message latency) at approximately the same time, care has to be
taken that the resulting file saved is not corrupted owing to parallel save operations.

5.8.2 Screen Updates

The screen update code in group editors needs to be carefully designed with the following
goals:

� Minimize full screen redraws on updates: Full screen redraw of the user-interface is the
simplest strategy for displaying updates to the document, but can be annoying to users.
We experienced this problem when converting xedit to a group editor using the DistEdit
toolkit. Xedit’s screen update code handled local updates well, but remote updates caused
flickering because an assumption was made in the original Xedit code that updates can only
occur at the user’s cursor position. Changing the cursor position, applying a remote update,
restoring the cursor position, and then displaying the screen caused flickering. Xedit’s as-
sumption was acceptable for a single-user version of Xedit, but caused us problems when
making it a group editor. A similar problem occurs in most shared-X systems when expose
events on one client’s window cause the X server to redisplay the windows of everyone
in the group [Abd91]. We did not have this problem with converting Emacs to a group
editor using DistEdit, primarily because the single-user version of Emacs was already
well-designed to handle updates from multiple windows into the same document buffer.

� Manage cursor/pointer position and scrolling: To the extent possible, applying updates
from remote sites should not cause a user’s cursor/pointer position to change or the display
to scroll. If a user’s window starts scrolling because of updates in earlier parts of a doc-
ument by other users, the user is likely to find the behavior annoying — especially if the
document parts that are changing are not even in the user’s display.

5.8.3 Use of Object-Replication

The shared state of some group editors can sometimes be naturally represented using multiple
encapsulated objects such that not all objects are necessarily of interest to all users. Toolkits
such as DistView [Pra94b] and COAST [Sch96] provide support for managing multiple repli-
cated objects in such editors. These toolkits require applications to be built using techniques
similar to the Model–View–Controller paradigm; the application consists of model objects
and view objects. Model objects represent the underlying application data, such as the docu-
ment state, that must always be kept consistent at all sites. View objects usually correspond
to the visual representation of the model objects using user-interface widgets, such as win-
dows, scrollbars, etc. Using these toolkits, an application, such as an editor, can provide both
synchronization of document state and that of the views of that state. To allow simultaneous
work on the same model object, the model object is replicated at the various sites. If a subset
of users wish to get identical views of model objects in their windows, they can also replicate
a view object so that their views are consistent.

GROUP EDITORS 129

A1 A2 A1

I1

I2

I3 I4

Window 1

Window 2 Window 3

Site A Site B

Figure 5.10 The state of a multi-user application at sites A and B before sharing of Window 1 in a
DistView-based application. A1 and A2 are application objects, and I1, I2, I3, and I4 are interface
objects

A1 A2

I1

I2

I3 I4

Window 1

Window 2 Window 3

Site A Site B

A1 A2

I1

I2

Window 1’
(Replicated)

Figure 5.11 The state of the multi-user application at sites A and B after the user at site B imports
Window 1 in the DistView-based application. Appropriate objects necessary for sharing windows effi-
ciently are replicated and maintained consistent on subsequent updates

Figures 5.10 and 5.11 illustrate the use of an object replication infrastructure in DistView
to facilitate synchronized views of the underlying document. Figure 5.10 shows the objects at
two sites when they are not sharing any window (though they are sharing data corresponding
to object A1). Figure 5.11 shows the objects that are automatically replicated upon demand
after Window 1 is exported by the user at Site A and imported by the user at site B for exact
view synchronization. Concurrency control techniques, discussed in Section 5.4, are then used
to keep object copies consistent as windows/data are interacted with by the users.

130 PRAKASH

5.8.4 Transactions

Concurrency control, transformations, and undo algorithms are greatly simplified if a group
editor uses only a small set of core update primitives. However, any other editing action to be
provided by an editor then must be mapped to a sequence of these operations.

In single-user editors, treating a group of simple operations as one larger, user-level action
is important primarily for implementing undo; a user, upon doing an undo operation, usually
expects all the changes associated with the last single-user-level action to be undone, rather
than just some of them.

In a group editor, grouping operations into a larger action is also important for undo. In
addition, it is an important issue from the perspective of atomicity because users may expect
the operation to behave as a single atomic (indivisible) action even when concurrent updates
are being applied by other users.

Supporting the undo of multi-operation actions requires that operations on the history list
be tagged with a transaction-id so that all operations belonging to a transaction can be undone
together. DistEdit uses this scheme. An issue remains as to whether to allow partial undo of a
transaction when a complete undo is not possible (say, due to inability to acquire locks or due
to conflicts with subsequent updates), but this is largely a policy issue and either choice can
be implemented in a straightforward manner.

Supporting atomicity of actions in group editors requires addressing several problems. One
problem is that transaction boundaries can sometimes be difficult to determine. The simplest
solution is to treat each user’s interaction that generates an update as a request for a trans-
action. However, consider a case where a user is doing a free-form drawing by pressing and
moving a mouse. In such a case, the updates are generated continuously on every mouse-move
event. However, the user may reasonably expect the entire action of drawing while the mouse
is pressed to be a single action from the perspective of undo and atomicity. Another example is
an interactive global find and replace string operation in a text editor. Find/replace commands
are generated between every interaction, but the user may expect the entire sequence to be
a single action for undo purposes. A good design principle is to normally treat each user’s
interaction that generates a command as a transaction, but if a different choice of transaction
boundaries is made for the purpose of undo, to use the same choice for the purpose of defining
atomicity.

Another problem in implementing atomicity is that the operations that constitute the trans-
action may have to be executed before the transaction is complete, for example, in order to
provide feedback to a user who is doing free-form drawing in a graphical document or a
text-search and replace operation throughout a text document. This can be a problem because
the editor may not be able to determine in advance whether the transaction will successfully
complete. An operation in a transaction could fail owing to the inability to acquire locks, for
instance. A solution to the problem is to execute the transaction optimistically on the local
copy first, determine all the locks that are needed as the transaction is executed, and then do
a local undo in the normally rare case that the transaction fails for concurrency control rea-
sons [Kni90]. The undo required for this is simpler than a group undo because it applies only
to the user’s local copy of the document.

GROUP EDITORS 131

5.9 FUTURE WORK

Group editors are likely to continue to evolve in the future. Many of the basic concepts in the
design of group editors, such as doing concurrency control and undo, and providing collab-
oration awareness, have been explored in various editors. However, they have usually been
explored in different editors, many of which are research prototypes. Group editors still have
not yet evolved to the point where any single group editor provides all the features described
in this chapter. Nevertheless, successful use has been reported from even prototype group ed-
itors, which indicates that group editors can become widely used, once they are available as
standard tools on common computing platforms and sufficiently robust for everyday use.

Group editors need to better support both synchronous and asynchronous collaboration in
the future. The support for persistence of shared objects and sessions in the DistView/CBE
system [Lee96] and in the TeamRooms system [Ros96b] helps support asynchronous activity.
For asynchronous collaboration, additional collaboration awareness may need to be provided
to late joiners, so that they know what activities have taken place since they last participated.
Providing support for on-line session recording and replay [Man95] are steps in that direction,
but need to be abstracted out so that users can get a higher-level context about the work they
have missed.

We believe that group editors will be much better integrated with other tools used by users.
In particular, group collaboration environments are likely to consist of not only group ed-
itors, but also other groupware-oriented versions of applications such as Internet browsers,
audio/video/text conferencing tools, data visualization tools, etc. The various groupware tools
need to be provided in an integrated environment with a shared session management, global
context information, and a seamless transfer of information from one tool to another. We are
beginning to see some trends in that direction in several recent university projects such as
wOrlds [Tol95], Collaboratory Builder’s Environment at the University of Michigan [Lee96],
and the GroupKit and TeamRooms work at the University of Calgary [Ros96a, Ros96b]. Com-
mercial efforts by Microsoft and Netscape to integrate groupware tools in their browsers, by
IBM/Lotus to extend Lotus Notes to support synchronous collaboration, and by JavaSoft to
provide a collaboration toolkit based on Java, are steps in a similar direction.

REFERENCES

[Abd91] Abdel-Wahab, H.M. and Feit, M.A., XTV: A framework for sharing X window clients in
remote synchronous collaboration. In Proceedings, IEEE Tricomm ’91: Communications for
Distributed Applications and Systems, April 1991.

[Abo92] Abowd, G. and Dix, A., Giving undo attention. Interacting with Computers, 4(3):317–342,
1992.

[Bae93] Baecker, R.M., Nastos, D., Posner, I.R. and Mawby, K.L., The user-centered iterative design of
collaborative software. In INTERCHI’93 Conference Proceedings, pages 399–405. Addison-
Wesley, 1993.

[Ben93] Benford, S.D. and Fahlén, L.E., A spatial model of interaction in large virtual environments.
In Proceedings of the European Conference on Computer-Supported Cooperative Work (EC-
SCW’93), pages 109–124. Kluwer, 1993.

[Ber94] Berlage, T., A selective undo mechanism for graphical user interfaces based on command
objects. ACM Transactions on Computer-Human Interaction, 1(3):269–294, 1994.

[Bir87] Birman, K.P. and Joseph, T.A., Reliable communication in the presence of failures. ACM
Transactions on Computer Systems, pages 47–76, February 1987.

[Bir90] Birman, K. et al, The ISIS System Manual, Version 2.0, April 1990.

132 PRAKASH

[Cha84] Chang, J.M. and Maxemchuck, N.F., Reliable broadcast protocols. ACM Transactions on
Computer Systems, 2(3):251–273, Aug. 1984.

[Cho95] Choudhary, R. and Dewan, P., A general multi-user undo/redo model. In Proceedings of
the Fourth European Conference on Computer-Supported Cooperative Work, pages 231–246.
Kluwer Academic Publishers, September 1995.

[Dew91] Dewan, P., Flexible user interface coupling in collaborative systems. In Proceedings of the
ACM CHI’91 Conference on Human Factors in Computing Systems, pages 41–48, April 1991.

[Dew99] Dewan, P., Architectures for collaborative applications. In Beaudouin-Lafon, M. (Ed.), Com-
puter Supported Cooperative Work, Trends in Software Series 7:169–193. John Wiley & Sons,
Chichester, 1999.

[Ell88] Ellis, C., Gibbs, S.J. and Rein, R., Design and use of a group editor. In G. Cockton (Ed.), Engi-
neering for Human–Computer Interaction, pages 13–25. North-Holland, Amsterdam, Septem-
ber 1988.

[Ell89] Ellis, C., Gibbs, S.J. and Rein, R., Concurrency control in groupware systems. In Proceedings
of the ACM SIGMOD ’89 Conference on Management of Data, pages 399–407. ACM Press,
1989.

[Fis88] Fish, R., Kraut, R., Leland, M. and Cohen, M., Quilt: A collaborative tool for cooperative
writing. In Proceedings of ACM SIGOIS Conference, pages 30–37, 1988.

[Fol74] Foley, J.D. and Wallace, V.L., The art of natural graphical man–machine conversion. Proceed-
ings of the IEEE, 62(4):4622–471, April 1974.

[Gre94] Greenberg, S. and Marwood, D., Real-time groupware as a distributed system: concurrency
control and its effect on the interface. In Proceedings of the ACM Conference on Computer-
Supported Cooperative Work, pages 207–217, 1994.

[Gre99] Greenberg,S. and Roseman, M., Groupware toolkits for synchronous work. In Beaudouin-
Lafon, M. (Ed.), Computer Supported Cooperative Work, Trends in Software Series 7:135–
168. John Wiley & Sons, Chichester, 1999.

[Gri76] Grief, I., Seliger, R. and Weihl, W., Atomic data abstractions in a distributed collaborative
editing system. In Proceedings of the 13th Annual Symposium on Principles of Programming
Languages, pages 160–172, 1976.

[Han71] Hansen, W.J., User engineering principles for interactive systems. In AFIPS Conference
Proceedings, Vol. 39, pages 523–532. AFIPS Press, 1971.

[Hay94] Hayne, S., Pendergast, M. and S. Greenberg, S., Implementing gesturing with cursors in group
support systems. Journal of Management Information Systems, 10(3):43–61, 1994.

[Ish99] Ishii, H., Integration of shared workspace and interpersonal space for remote collaboration.
In Beaudouin-Lafon, M. (Ed.), Computer Supported Cooperative Work, Trends in Software
Series 7:83–102. John Wiley & Sons, Chichester, 1999.

[Kar93] Karsenty, A. and Beaudouin-Lafon, M., An algorithm for distributed groupware applications.
In Proceedings of the 13th International Conferenceon Distributed Computing Systems, pages
195–202. IEEE Press, 1993.

[Kni90] Knister, M. and Prakash, A., DistEdit: A distributed toolkit for supporting multiple group
editors. In Proceedings of the Third Conference on Computer-Supported Cooperative Work,
pages 343–355, Los Angeles, California, October 1990.

[Kni93] Knister, M. and Prakash, A., Issues in the design of a toolkit for supporting multiple group
editors. Computing Systems – The Journal of the Usenix Association, 6(2):135–166, Spring
1993.

[Lee96] Lee, J.H., Prakash, A., Jaeger, T. and Wu, G., Supporting multi-user, multi-applet workspaces
in CBE. In Proceedings of the ACM Conference on Computer-Supported Cooperative Work,
pages 344–353, 1996.

[Mac99] Mackay, W.E., Media Spaces: Environments for informal multimedia interaction In
Beaudouin-Lafon, M. (Ed.), Computer Supported Cooperative Work, Trends in Software Se-
ries 7:55–82. John Wiley & Sons, Chichester, 1999.

[Man95] Manohar N.R. and Prakash, A., The session capture and replay paradigm for asynchronous
collaboration. In Proceedings of the Fourth European Conference on Computer-Supported
Cooperative Work, pages 149–164. Kluwer Academic Publishers, September 1995.

[McG92] McGuffin, L. and M. Olson, G., ShrEdit: A shared electronic workspace. Technical Report
CSMIL No. 45, University of Michigan, Ann Arbor, 1992.

GROUP EDITORS 133

[Neu90] Neuwirth, C.M., Kaufer, D.S., Chandhok, R. and Morris, J.H., Issues in the design of com-
puter support for co-authoring and commenting. In Proceedings of the Third Conference on
Computer-Supported Cooperative Work, pages 183–195, Los Angeles, California, October
1990.

[New91] Newman-Wolfe, R.E. and Pelimuhandiram, H.K., MACE: A fine-grained concurrent editor.
In Proceedings of the ACM/IEEE Conference on Organizational Computing Systems (COCS
91), pages 240–254, Atlanta, Georgia, November 1991.

[Pra92] Prakash, A. and Knister, M., Undoing actions in collaborative work. In Proceedings of the
Fourth ACM Conference on Computer-Supported Cooperative Work, pages 273–280, Toronto,
Canada, October 1992.

[Pra94a] Prakash, A. and Knister, M., A framework for undoing actions in collaborative work. ACM
Transactions on Computer–Human Interaction, 1(4):295–330, December 1994.

[Pra94b] Prakash, A., and Shim, H., DistView: Support for building efficient collaborative applica-
tions using replicated objects. In Proceedings of the Fifth Conference on Computer Supported
Cooperative Work, pages 153–164, Toronto, Canada, October 1994. ACM Press.

[Rei91] Rein, G.L. and Ellis, C.A., rIBIS: A real-time group hypertext system. International Journal
of Man–Machine Studies, 34(3): 349–367, 1991.

[Res96] Ressel, M., Nitsche-Ruhland, D. and Gunzenhäuser, R., An integrating, transformation-
oriented approach to concurrency control and undo in group editors. In Proceedings of the
ACM Conference on Computer-Supported Cooperative Work, pages 228–297, 1996.

[Rod96] Rodden, T., Populating the application: A model of awareness for cooperative applications. In
Proceedings of the ACM Conference on Computer-SupportedCooperative Work, pages 87–96,
1996.

[Ros96a] Roseman, M. and Greenberg, S., Building real time groupware with GroupKit, a groupware
toolkit. ACM Transactions on Computer–Human Interaction, 3(1):66–106, March 1996.

[Ros96b] Roseman, M. and Greenberg, S., TeamRooms: Network places for collaboration. In Pro-
ceedings of the ACM Conference on Computer-Supported Cooperative Work, pages 325–333,
1996.

[Sch96] Schuckmann, C., Kirchner, L., Schümmer, J. and Haake, J.M., Designing object-oriented
synchronous groupware with COAST. In Proceedings of the ACM Conference on Computer-
Supported Cooperative Work, pages 30–38, 1996.

[Ste96] Steinmetz, R., Human perception of jitter and media synchronization. IEEE Journal of Se-
lected Areas in Communications, 14(1):61–72, January 1996.

[Str94] Streitz, N.A., Geißler, J., Haake, J.M. and Hol, J., DOLPHIN: Integrated meeting support
across local and remote desktop environments and liveboards. In Proceedings of the ACM
Conference on Computer-Supported Cooperative Work, pages 345–357, Chapel Hill, North
Carolina, October 1994.

[Str97] Strom, R., Banavar, G., Miller, K., Prakash, A. and Ward, M., Concurrency control and view
notification algorithms for collaborative replicated objects. In Proceedings of the 17th Interna-
tional Conference on Distributed Computing Systems, pages 194–204, Baltimore, MD, USA.
IEEE Computer Society Press, 1997.

[Tol95] Tolone, W., Kaplan, S. and Fitzpatrick, G., Specifying dynamic support for collaborative work
within wOrlds. In Proceedings of the 1995 Conference on Organizational Computing Systems,
pages 55–65, August 1995.

[Tol96] Tollmar, K., Sandor, O. and Schömer, A., Supporting social awareness @work: Design and ex-
perience. In Proceedings of the ACM Conference on Computer-Supported Cooperative Work,
pages 298–307, 1996.

[Vit84] Vitter, J.S., US&R: A new framework for redoing. IEEE Software, pages 39–52, October
1984.

6

Groupware Toolkits for
Synchronous Work

SAUL GREENBERG and MARK ROSEMAN

University of Calgary

ABSTRACT

Groupware toolkits let developers build applications for synchronous and distributed
computer-based conferencing. This chapter describes four components that we believe
toolkits must provide. A run-time architecture automatically manages the creation, inter-
connection, and communications of both centralized and distributed processes that com-
prise conference sessions. A set of groupware programming abstractions allows develop-
ers to control the behavior of distributed processes, to take action on state changes, and to
share relevant data. Groupware widgets let interface features of value to conference par-
ticipants be added easily to groupware applications. Session managers let people create
and manage their meetings and are built by developers to accommodate the group’s work-
ing style. We illustrate the many ways these components can be designed by drawing on
our own experiences with GroupKit, and by reviewing approaches taken by other toolkit
developers.

6.1 INTRODUCTION

Building groupware for synchronous, distributed conferencing can be a frustrating experience.
If only conventional single-user GUI toolkits are available, implementing even the simplest
systems can be lengthy and error-prone. A programmer must spend much time on tedious
but highly technical house-keeping tasks, and must recreate interface components to work
in a multi-user setting. Aside from the normal load of developing a robust application, the
programmer of groupware must also attend to the setup and management of distributed pro-
cesses, inter-process communication, state management and process synchronization, design
of groupware widgets, creation of session managers, concurrency control, security, and so on.

Computer Supported Cooperative Work, Edited by Beaudouin-Lafon
c
 1999 John Wiley & Sons Ltd

136 GREENBERG and ROSEMAN

Consequently, a variety of researchers have been exploring groupware toolkits. Their pur-
pose is to provide tools and infrastructures powerful enough to let a programmer develop
robust, high-quality groupware with reasonable effort. Some in-roads have been made, but we
are far from a complete solution. Realistically, most of today’s groupware toolkits are best
seen as breakthrough research systems used either to explore particular architectural features
of groupware toolkits, or as platforms to build experimental groupware prototypes. While they
have not reached the maturity of single-user GUI toolkits, these pioneering efforts have laid a
foundation for the next generation of toolkit design.

This chapter examines the technical foundations of groupware toolkits. The toolkits we
consider are those that construct real-time distributed multi-point groupware applications,
where two or more people in different locations would be able to visually share and manip-
ulate their on-line work. Typical applications produced by these systems would be electronic
whiteboards, games, multi-user text and graphics editors, distributed presentation software,
textual chat systems, and so on. The discussion is heavily influenced by our experiences with
our own groupware toolkit called GroupKit [Ros96a, Ros92, Gre94b] as well as the issues
raised by other researchers doing similar work.

The chapter highlights four critical features that such toolkits should provide to reduce
implementation complexity:

� Run-time architectures can automatically manage processes, their interconnections, and
communications.

� Groupware programming abstractions can be used by a programmer to synchronize inter-
action events and the data model between processes as well as the views presented across
displays.

� Groupware widgets can let programmers add generic groupware constructs of value to
conference participants.

� Session managers, crafted by programmers, can let end-users create, join, leave and man-
age meetings.

An important omission from this list are the audio and video links necessary for the inter-
personal communication channel between conference participants. This is a large area in it-
self. For simplicity, we will assume that audio and video are handled out of band, where
toolkits can include hooks to bring up other audio/video systems. However, we do point the
reader to Chapter 4 in this book [Ish99], which provides an excellent example of an inte-
grated audio/video/computational space. It should go without saying that future toolkits must
incorporate audio and video as first-class building blocks.

6.2 RUN-TIME ARCHITECTURES

Real-time distributed groupware systems are almost always composed of multiple processes
communicating over a network. Because this can be complex to create, we feel strongly that
toolkits should provide not only programming facilities for creating groupware, but also the
run-time architecture for managing the run-time system. In this section, we will concentrate
only on the tension between centralized vs. replicated architectures, and its impact on the
design of toolkits. In Chapter 7 in this book [Dew99], Dewan continues this theme by revis-
iting the issues and by explaining further architectural differences possible in collaborative
applications.

GROUPWARE TOOLKITS FOR SYNCHRONOUS WORK 137

6.2.1 Centralized vs. Replicated Architectures

Groupware researchers have long argued the merits of centralized vs. replicated architectures
[Ahu90, Gre90, Lau90a, Lau90b, Pat91, Gre94a, Wil95, Hil94, Pat94, Dou96, Gra96a].

� Centralized architectures use a single application program, residing on one central server
machine, to control all input and output to the distributed participants. Client processes
residing at each site are responsible only for passing requests to the central program, and
for displaying any output sent to it from the central program. The advantage of a centralized
scheme is that synchronization is easy — state information is consistent since it is all
located in one place, and events are always handled from the client processes in the same
order because it is serialized by the server.

� Replicated architectures, on the other hand, execute a copy of the program at every site.
Thus each replica must coordinate explicitly both local and remote actions, and must attend
to synchronizing all copies so they do not get out of step.

Because of their simplicity in handling concurrency and in maintaining a single state model,
centralized architectures for groupware have had many advocates [Ahu90, Gre90, Lau90a,
Wil95, Hil94, Gra96a], and one may wonder why a replicated approach would ever be con-
sidered. The main issues are latency, bottlenecks, and heterogeneous environments. First, a
centralized scheme implies sequential processing, where user input is transmitted from the
remote machine to the central application, which must handle it and update the displays (if
necessary) before the next input request can be dealt with. If the system latency is low, this is
not a problem. But if it is high, the entire system will become sluggish. While sluggishness
is annoying when others’ actions are delayed, it is devastating when the system is unrespon-
sive to a person’s own local actions, especially in highly interactive applications. Second, the
central system can become a performance bottleneck. Highly interactive and graphical appli-
cations can push even the fastest CPUs to their limits when several screens must be updated.
Similarly, the relaying of all activities to and from a single process can create a traffic jam in
some environments. Third, centralized architectures will have problems dealing with hetero-
geneous environments, as it is unlikely that a single process can update properly remote clients
running on (say) a Windows95 and a Macintosh environment, as they all have a different look
and feel.

A replicated scheme, on the other hand, implies parallel processing, where the handling
of interactions and screen updates can occur in parallel at each replication. If done properly,
communication is efficient as replicas need only exchange critical state information to keep
their models up to date. While remote activities may still be delayed, a person’s local activities
can be processed immediately. Process bottlenecks are less likely — each replica is responsi-
ble for drawing only the local view, unlike the central model which must update the graphics
of all screens. Consequently, heterogeneous environments are easily handled, for the com-
munication protocol can act as a device-independent graphics layer, and views can be drawn
using the native look and feel.

The cost of replication is increased complexity. We are now programming and synchro-
nizing a distributed system, and must handle issues such as concurrency control. Different
replicated toolkits handle this in a variety of ways. For example, Share-Kit [Jah95] has no di-
rect concurrency control, and it must be programmed in from scratch if a programmer requires
it. Others do provide concurrency capabilities. DistEdit [Kni90] uses atomic broadcasts. Ob-
jectWorld’s shareable objects have the ability to detect messages that have arrived out of order,

138 GREENBERG and ROSEMAN

and allow programmers to do non-optimistic locking [Tou94]. GroupKit [Ros96a] can force
serialization for some actions by funneling selected activities through one of the replicated
processes.

Somewhere in-between are semi-replicated hybrid architectures that contain both central-
ized and replicated components. For example, Patterson [Pat96] advocates a centralized noti-
fication server, whose sole job is to maintain a shared state, to respond to state change requests
by clients, and to notify others when the state has changed. It would be up to the replicas to
decide what the view should look like, and to update the display accordingly.

6.2.2 Impact on Toolkit Design

System designers often argue that a good toolkit will hide implementation and architectural
concerns, leaving the programmer to concentrate on the semantics of the task. Yet architec-
tures cannot be completely hidden in groupware toolkits, for the type of architecture may
have profound impacts on the way programmers code their systems, and on the system per-
formance. For example, centralized systems often have performance limitations that must be
well understood, so that they can be mitigated by the application programmer. Similarly, repli-
cated architectures are distributed systems, and programmers must be concerned with issues
such as concurrency control, communications, and fault tolerance.

The run-time architecture also affects the programming paradigm style. For example, many
toolkits separate the underlying data abstraction (i.e. the data model) from the way a graphical
view of that data is generated on the display [Kra88, Hil92] (discussed further in Section 6.3).
Figure 6.1 illustrates this. The abstract data model here is an array with three numbers, and
the view is generated separately from this abstraction. Views of the abstract model may differ.
In this case, two participants view the data as a bar chart, and the third participant sees it as a
pie chart. Whenever a value in the data model is changed, the views are regenerated to keep
themselves consistent with it. In terms of the run-time architecture, the way the abstraction and
views are dealt with depend upon how they are distributed across the system. For example,
we could have the data abstraction and view generation done wholly by a central process.
Alternatively, the abstraction may be centralized, and the mechanisms to create the views
replicated. Or perhaps all components are replicated. Whichever variation is used, the abstract
data model should be kept consistent across the entire groupware system, and synchronization
must be maintained between the model and the individual views generated from it. This means
that the infrastructure to support a separate abstraction and view, as well as the nature of the
programming API provided by the toolkit, are highly dependent on the nuances of the run-
time architecture.

A good toolkit will provide programmers with high-level constructs to deal with all the
issues mentioned above, but not mask them [Dou95, Dou96, Gra96a, OGr96]. To illustrate
this point, the rest of this section will show why programmers need to know about concurrency
control, synchronization of abstract models and views, communications, and fault tolerance.

6.2.2.1 Concurrency Control

Greenberg and Marwood [Gre94a] argue that no generic concurrency control scheme can han-
dle all groupware applications, simply because the user is an active part of the process. For
example, conservative locking and serialization schemes that block processing until concur-
rency can be guaranteed can have deleterious effects on highly interactive user actions owing

GROUPWARE TOOLKITS FOR SYNCHRONOUS WORK 139

Figure 6.1 An example of an abstract data model, and views generated from the model

to processing delays and latency, while optimistic schemes have problems when on-going
events have to be undone. They also argue that some conflicting interactions are best left to
the users to solve by social means, implying that some feedback of conflicting actions be
shown within the interface.

Because of this, toolkits should provide a variety of concurrency control schemes and feed-
back mechanisms, and programmers must explicitly decide which of them to deploy when
designing the application. Note that this argument becomes moot when latency is not perceiv-
able, since the users would not notice any effects of concurrency control. In this case, either
a centralized approach and its implicit serialization of events, or a replicated approach using
hidden concurrency control, would work well.

Many groupware researchers have investigated concurrency control. While it is beyond the
scope of this chapter to do a comprehensive survey, readers are referred to the surveys by
Greenberg and Marwood [Gre94a], and the earlier work of Ellis and Gibbs [Ell89]. Further
discussions of consistency and concurrency control are found within Chapters 5, 8 and 7 in
this book [Pra99, Dou99, Dew99].

6.2.2.2 Synchronization

As mentioned earlier, specific architectures usually lend themselves to particular ways of sep-
arating the underlying abstract data model from the graphical views generated from it. A
centralized system keeps both model and view in the same place, so synchronization is easy.
In contrast, replicated architectures maintain copies of both the data state and the view at
all sites. In-between is Patterson’s [Pat96] Notification Server, which keeps the abstract data
model in a central server, with replicas deciding how to display the view of that information
when state changes are transmitted to them.

At the toolkit level, this division of model and view as well as its distribution across pro-
cesses is usually visible to the programmer — the programming abstractions provided are
used by them to update the abstract model or the view, and to synchronize replicas when

140 GREENBERG and ROSEMAN

needed. Similarly, the way the toolkit provides the abstractions to process user events and
to synchronize models and views often depends upon the way the model and the views are
distributed in the architecture. This topic will be taken up again in more detail in Section 6.3:
Programming Abstractions.

6.2.2.3 Communication

Inter-process communication can be a complex task, especially when efficiency is a concern.
Centralized models are particularly vulnerable to communications bottlenecks, as the server
must not only handle input from the client, but update all displays as well. Replicated archi-
tectures can be more efficient, for the events sent across the network can be short messages
containing semantic changes to state. At the toolkit level, the programmer would rarely want
to deal with all the annoyances of setting up communications connections. However, they
should have the means to decide what to communicate between processes for efficiency pur-
poses, and also the means to decide priorities.

For example, consider a drawing application containing telepointers, where the telepoint-
ers are not supplied as a widget. In terms of what to communicate, the complete telepointer
graphics need not be shipped. Instead, a message can be sent specifying the pointer shape,
with subsequent messages sending out a pointer id and its x-y coordinates. In terms of pri-
ority, when a pointer is moved the programmer should be able to specify that only that last
pointer location need be transmitted if there is a communications bottleneck, and that this
should have a lower priority than (say) a drawing message.

6.2.2.4 Fault Tolerance

Because almost all groupware systems are distributed in one way or another, fault tolerance
becomes a concern. At the toolkit level, the programmer should be able to determine the
system’s response to particular faults. These include degradation or complete loss of commu-
nications between processes, excessive delays, and so on. This implies that the toolkit must
have a notification mechanism that indicates faults to the program. It also implies that the
programmer is aware of the faults that are inherent in the particular architectural design.

6.2.3 Examples

6.2.3.1 WScrawl: A Centralized Architecture that Leverages X Windows

WScrawl [Wil95] is a multi-user sketchpad built using the X Window System. While WScrawl
is not a toolkit, the author describes how his program leverages the communications and
display capabilites of X Windows, as well as its client/server architecture [Sch86]. X Windows
allows a programmer to open several displays, to read input from each workstation, and to
write graphics to the screen. Groupware such as WScrawl is created by tracking the display
and input stream for each user, all within a single program. Each stream is monitored for input
events. For every input event (such as a mouse move that initiates a draw line action), the event
is processed, and all displays can be updated accordingly.

For example, the pseudo-code below handles a trivial conference of two users, each using
separate displays named Display1 and Display2, where the conference just draws a point on
each display [Wil95]:

GROUPWARE TOOLKITS FOR SYNCHRONOUS WORK 141

display[1] = XOpenDisplay ("Display1");
display[2] = XOpenDisplay ("Display2");
for (i=1; i<=2; i++) {

XDrawPoint (display[i], 20, 100);
XCloseDisplay(display[i]);

}

6.2.3.2 Rendezvous: A Centralized Architecture

The Rendezvous groupware toolkit [Hil94, Pat90, Pat91, Hil92] is heavily modeled on the idea
of maintaining a single abstract data model that is shared by everyone. As mentioned earlier,
multiple views of that model can be drawn differently on each person’s display. Rendezvous
places both the single abstraction and the view models on a single processor. Its developers
claim that the single abstraction always contains the correct state of the application. Conse-
quently, all copies or view updates derived from this abstraction will be correct. The problem
is that Rendezvous is slow, because all views run off the same processor. Its designers suggest,
but have not implemented, a semi-replicated approach that keeps that shared abstraction at a
central site, with views being replicated at other sites.

6.2.3.3 The Notification Server: A Centralized Component of a Hybrid Architecture

Patterson, one of the authors of Rendezvous, revisited the idea of a semi-replicated hybrid
architecture [Pat96]. He is now constructing a centralized “Notification Server” that could be
provided as a toolkit component in an otherwise replicated architecture. Its job is to provide
a central service for managing common state information, akin to the shared abstraction seen
in Rendezvous. While the natural use of the server is to centralize the abstract data model, the
choice of what state information to centralize is ultimately up to the designer.

The Notification Server contains two kinds of objects: Places and Things.

� Places identify what common states are accessed by which applications. Clients who enter
a particular place are notified about any state changes in that place.

� Things are the actual objects that maintain state, and are essentially property–value pairs
extended to contain attributes that specify access control and types of notifications trig-
gered (e.g. on creation, change or deletion).

What is important here is that the server has no understanding of application semantics. Vir-
tually any state can be represented, as long as it can be described as a property–value pair. It
is left up to the replica how to deal with state changes upon notification. Patterson argues that
this centralized Notification Server simplifies concurrency control because locking is done in
one place through Thing’s attributes, and that serialization is a natural consequence of cen-
tralization. He also argues that the availability of a consistent, centralized state makes it easier
to update newcomers — participants who have just entered a conference that is already in
progress. Finally, this dedicated server model implies that attention can be devoted to making
it efficient and robust — in Patterson’s words, “a lean, mean notification machine”.

6.2.3.4 GroupKit: A Mostly Replicated Architecture

The GroupKit groupware toolkit [Ros96a, Gre94b] includes a mostly replicated run-time
infrastructure. It actively manages the creation, location, interconnection, and teardown of

142 GREENBERG and ROSEMAN

Figure 6.2 An example of GroupKit’s run-time architecture and process model

distributed processes; communications setup, such as socket handling and multicasting; and
groupware-specific features such as providing the infrastructure for session management and
persistent conferences. Its infrastructure consists of a variety of distributed processes arranged
across a number of machines. Figure 6.2 illustrates an example of the processes running when
two people are communicating to each other through two conferences ‘A’ and ‘B’. The three
large boxes represent three different workstations, the ovals are instances of processes running
on each machine, and the directed lines joining them indicate communication paths. Three
types of GroupKit processes are shown: a single registrar, session managers, and conference
applications.

� The registrar (top box in Figure 6.2) is a centralized process that acts as a connection point
for a community of conference users. Its address is “well-known” in that other processes
know how to reach it. This is the only centralized process required by GroupKit’s run-time
infrastructure.

� The session manager is a replicated process, one per participant (side boxes). It provides
both a user interface and a policy dictating how conferences are created or deleted, how
users are to enter and leave conferences, and how conference status is presented (see Sec-
tion 6.5: Session Management). When session manager processes are created, they connect
to the registrar. The registrar maintains a list of all conferences and the users in each con-
ference. It thus serves as an initial contact point to locate existing conference processes and
their addresses.

� Finally, a conference application is a GroupKit program (e.g. shared editor, game) invoked
by the user through the session manager. Conference applications typically work together
as replicated processes, in that a copy of the program runs on each participant’s worksta-
tion. They are connected via peer to peer communication channels. Two conferences, each
with two distributed replicas, are shown in Figure 6.2.

GroupKit programmers build both session managers and conference applications, and the
two are separate from one another. Programmers are aware that they are building distributed
applications, and must attend to issues such as concurrency control, fault-tolerance, and syn-

GROUPWARE TOOLKITS FOR SYNCHRONOUS WORK 143

chronization. The programming abstractions let the programmer choose and mix several styles
of coding: view synchronization through multicast RPCs, or state synchronization of a repli-
cated abstract data model (see Section 6.3: Programming Abstractions). The toolkit provides a
few simple concurrency control schemes for the programmer to choose from, mostly available
within the shared data model. Communications are mostly hidden away; while it is possible
to massage communication events for efficiency, this is mostly done by working around the
system rather than with it. Fault tolerance is done by primitive events that notify a program-
mer when participants have “left” the conference and when a conference has “died”. However,
they are not notified nor can they easily handle performance degradation.

This run-time infrastructure is maintained entirely by GroupKit. The conference application
code does not need to take any explicit action in process creation or communication set-up.
Instead, the application may just ask to be notified through an event when particular session
activities occur. The conference processes that comprise a conference session can also coordi-
nate with each other through the high-level programming abstractions provided by GroupKit,
as discussed in Section 6.3.

6.2.3.5 Clock: A Flexible Architecture

The main goal of the Clock language and ClockWorks programming environment [Gra96] is
to support the development of groupware applications at a very high-level, hiding all details
of the underlying implementation architecture. This high level has two consequences. First,
programmers do not need to be concerned with the details of distribution, networking and
concurrency control. Second, implementations of Clock are free to use any implementation
architecture, as long as the semantics of the Clock language are preserved. (Unlike other
languages for groupware development, Clock has precisely defined semantics, independent of
any implementation [Gra95].)

The abstract architecture of Clock programs is developed using the visual ClockWorks
programming environment. This abstract architecture captures the structure of Clock pro-
grams, but does not specify how the program will be implemented in a distributed context.
The abstract architecture language is based on separating the abstract model from its views,
similar to Rendezvous [Hil92] and the Model–View–Controller (MVC) paradigm used in
Smalltalk [Kra88]. Because of its high-level, the architecture language supports rapid de-
velopment and easy modification of groupware programs [Gra96b].

Abstract architectures can be mapped into a variety of implementation architectures. By
locating the complete architecture on a server machine and using the X Window System to
post windows on different client machines, a centralized architecture can be obtained. By
locating the shared components of the Clock architecture on a server machine and replicating
private components on client machines, a semi-replicated hybrid architecture is obtained. By
replicating both shared and private components, a replicated architecture can be obtained.
Currently, Clock programs can be implemented as either centralized or semi-replicated.

There are several advantages with the Clock approach to flexible implementation architec-
tures. Since the run-time system is completely responsible for implementing network com-
munication and concurrency control, complex optimizations may be built into the system that
would be too hard to develop on a per-application basis [Gra96a]. Also, programmers can eas-
ily experiment with what kind of architecture is most appropriate for their application without
having to extensively modify the program. The primary disadvantage of the Clock approach is
that programmers give up control over precisely how different components are going to com-

144 GREENBERG and ROSEMAN

municate. For example, the Clock semantics demand that concurrency control be pessimistic,
which is not practical over networks with very bad latency.

6.2.4 Discussion

There is no real answer to whether a centralized or replicated scheme works best for group-
ware. Rather, it is a set of tradeoffs that revolves around the way they handle latency, the ease
of program startup and connection, programming complexity, synchronization requirements,
processor speed, the number and location of participants expected, communication capacity
and cost, and so on. For example, a centralized system would likely work just fine for a very
small group of users (e.g. pairs), given a high-bandwidth, low-latency network and an applica-
tion that makes only modest demands of the processor. Replicated systems are probably better
for larger groups, for slower networks, and for applications that demand local responsiveness.

Because these situations are neither static or universal, no single solution will suffice. Per-
haps what is required is a “dynamic and reactive” groupware architecture, where the deci-
sion of what parts of the architecture should be replicated or centralized can be adjusted
to fit the needs of particular applications and site configurations. We have already seen that
Clock components can be configured to run as centralized or semi-replicated objects [Gra96a].
O’Grady [OGr96] takes this one step further in his design of GEN, a prototype groupware
toolkit based upon distributed objects that allows a high degree of run-time configuration.
GEN not only allows application designers to chose whether individual objects are central-
ized or replicated, but also allows designers to create their own strategies for data distribution
and concurrency control. For example, GEN was altered to allow for object migration, where
centralized objects are automatically moved to the site that uses them the most frequently. In
parallel work, Dourish’s chapter in this book presents his design of Prospero, a groupware
toolkit that also allows decisions on data distribution and other aspects to be made on the fly
[Dou95, Dou96, Dou99]. Essentially, toolkits such as GEN and Prospero are designed to be
highly flexible. Not only can developers choose between a variety of strategies, but they can
also extend the toolkit to cover situations not envisaged by the original toolkit creators.

6.3 PROGRAMMING ABSTRACTIONS

Groupware toolkits must provide programmers with abstractions for coordinating multiple
threads and distributed processes, for updating a common abstract data model, and for con-
trolling the view derived from that model. The actual abstractions supplied usually depend
upon the run-time architecture (as described in Section 6.2), as well as the schemes used to
share state information.

Patterson [Pat94] argues that the degree to which abstract data models are separated from
the views generated from them leads to several different shared state architectures, with con-
sequences to the programming abstractions provided.

1. In an unshared system, neither data nor view model are shared. It is up to the programmer
to maintain the underlying data models (if any exists), the graphical views, and the links
between the views and the model (if any).

2. In a shared model, the data model is shared by the entire system. Programming abstrac-
tions allow one to access and change the shared model, and to specify how the (possibly
different) unshared views are to be created from the shared model.

GROUPWARE TOOLKITS FOR SYNCHRONOUS WORK 145

Figure 6.3 Using multicast RPCs for a simple chat application

3. In a shared view, both views and models are shared. Programming abstractions are avail-
able to change the view or the model, with changes automatically propagating from one to
the other.

This section describes several programming abstractions that are now common: multicast
remote procedure calls, events and notifiers, shared data, and shared data and views. Each
lends itself to the three architectures mentioned above.

6.3.1 Multicast Remote Procedure Calls

With replicated processes, replicas can communicate, share information, and trigger common
program execution through multicast remote procedure calls (RPCs). As with conventional
RPCs, a programmer specifies the procedure and arguments that should be executed in remote
processes. It is multicast because several processes can be designated in a single call.

Through this simple yet powerful abstraction, any unshared system can be synchronized.
For example, traditional callbacks to a user’s input can be replaced by a multicast RPC
that causes the resulting action to be performed in all processes. The following pseudo-code
illustrates this by showing how the simple text chat system shown in Figure 6.3 can be imple-
mented. The main window contains the dialog transcript, and is common across all displays.
Each participant types their text into their private text input field at the bottom. Whenever a
person presses the “transmit” button, their name and the text they composed are sent to all
others for insertion into the transcript.

Set this_user to the name of the local user
When transmit button is pressed

Set message to the contents of the input field
Multicast to everyone:

Insert into your chat box "this_user: message"
Clear the input field

In the above example, there is no data model. Only the view is synchronized by explicitly
manipulating the widgets in the view. Data can be synchronized as well by multicast RPCs,
although it is the programmer’s responsibility to do all the housekeeping and to generate the
view from the data model.

146 GREENBERG and ROSEMAN

6.3.1.1 Examples

Several systems use multicast RPCs as their sole programming abstraction. Share-Kit [Jah95]
uses C and the Unix RPC mechanism to build its multicast layer; its programmers must regis-
ter a procedure and its argument formats as an RPC and use special keywords to invoke them.
The Conference Toolkit [Bon89] uses a routing table to let developers specify the routing of
data between application instances; that is, how commands from one replica are directed to
other replicas. The Notification Server [Pat96] provides a “back door” that allows program-
mers to channel multicast messages between clients; these messages could be constructed in
a way that simulates multicast RPCs.

GroupKit [Ros96a, Gre94b] simplifies multicast RPCs by allowing RPCs and arguments to
be specified in the same way as normal procedure calls, and by hiding routing and commu-
nications details. To do this, GroupKit’s run-time system tracks the addresses and existence
of other application processes, and decides how to multicast the RPCs to some or all confer-
ence processes. This means that the programmer does not have to track details such as the
file descriptors, socket management, and so on. GroupKit provides three forms of RPCs, and
each differs in who the messages are sent to. The first, called gk toAll, multicasts the pro-
cedure to all conference processes in the session, including the local user. This results in the
same procedure being executed everywhere. The second, called gk toOthers, multicasts
a command execution to all other remote conference processes in the session except the lo-
cal process that generated the call, which is useful when local actions differ somewhat from
remote ones. The third form directs the command to a particular conference process. This is
valuable for handling special cases, such as updating a new arrival to an on-going conference
about the current state of the application. Additionally, GroupKit’s RPCs are non-blocking.
Once the request for an RPC invocation is made, the local program continues its execution
without waiting for a reply from remote processes. This ensures that conference processes are
not delayed or blocked in the event of network latency or crashes on remote machines.

As an example, we implemented the simple text chat system shown in Figure 6.3 in Group-
Kit (which extends the Tcl/Tk scripting language by John Ousterhaut [Ous94]) using the
gk toAll RPC. The complete code is shown below, excluding a few minor bits that for-
mat the widgets on the display. What is important to realize is that only a few lines of code
are required to make this program group-aware: gk initConf initializes the runtime archi-
tecture for the conference; gk defaultMenu includes GroupKit’s menu widget, [users
local.username] retrieves the name of the local user, and gk toAllmulticasts the RPC
to insert the user’s name and text into the chat box. All other lines are just the standard Tcl/Tk
code necessary to create the interface.
gk_initConf $argv # Initialize the conference

#== Create widgets
gk_defaultMenu .menubar # Add the default groupkit pulldown menu bar
listbox .chat # The shared chat box is actually a listbox
entry .input # Users type their text into this entry box
button .b -text Transmit \ # Create a button labelled ’Transmit’

-command "broadcastLine" # and attach a callback to it

#== Not shown: code to format widgets on the display

#== This callback multicasts an RPC to all replicas (using gk_toAll)
#== along with this user’s name and text
proc broadcastLine {} {

gk_toAll doAddLine \ # Multicast the doAddLine RPC + arguments

GROUPWARE TOOLKITS FOR SYNCHRONOUS WORK 147

[users local.username] \ # 1st argument: the user’s name
[.input get] # 2nd argument: the text

.input delete 0 end # Now clear the input field
}

#==This is executed as an RPC at all sites.
#==It inserts the name and text into the chat box
proc doAddLine {name text} {

.chat insert end [concat $name ": " $text]
}

While simple, GroupKit’s multicast RPC model provides a powerful yet flexible approach
to distributed programming. The programmer does not have to know the addresses of other
conference processes or track process creation and destruction as people enter and leave the
session. The calls work the same way whether one user or twenty users are in the conference
session.

6.3.2 Events and Notifiers

A second programming abstraction allows a programmer to synchronize changes to either
views or models by specifying interesting events and how others are notified when these
events occur. Because events can be tied to anything, they can serve both unshared and shared
systems.

An event provides a way for conference applications to track when various things happen.
Events can be generated automatically by the run-time architecture, such as when participants
join or leave the conference session, or from (say) communications failures. They can also be
generated directly from the programmer in application-specific circumstances. Either way, the
programmer can take action on a specific event by attaching a notifier to it, which typically
executes a callback whenever the event occurs (notifiers are also known as handlers in some
systems).

6.3.2.1 Examples

Patterson’s Notification Server [Pat96], described previously in Section 6.2, illustrated an ar-
chitecture that supports notification. Here, events are simply changes in the state of the under-
lying data (“Things”). Notification is controlled by the attribute field of the Thing, and occurs
automatically whenever a state changes.

GroupKit contains an event/notifier mechanism as well as events automatically maintained
and generated by the run-time infrastructure [Ros96a]. Events are typically used to handle
arriving and departing participants, updating latecomers, synchronizing distributed processes,
and noticing changes to shared data. Events consist of an event type and a set of attribute/value
pairs that provide information about the event. While in some ways similar to Patterson’s
Notification Server, state information is replicated rather than centralized. Programmers trap
particular events by attaching a notifier, with desired actions specified through callbacks that
are automatically executed when the event occurs.

GroupKit’s run-time infrastructure automatically sends three different event types to confer-
ence processes. The first two event types are generated when users join and leave the session,
as a conference process may want to take special action when this happens. For example, the
code fragment below tells everyone that a new participant has arrived by printing a message

148 GREENBERG and ROSEMAN

on all screens. The first line attaches a notifier to a “newUserArrived” event, which is au-
tomatically generated by GroupKit when a new user joins the conference. This will trigger
execution of the subsequent lines.

gk_bind newUserArrived { # Attach code to this event
set new_user_name [users remote.%U.username] # Get the new person’s name
puts "$new_user_name just arrived!"} # Print message to the screen

The third event automatically generated by GroupKit is used to handle latecomers to con-
ferences that are already in progress. When a latecomer arrives, its conference process is
brought up to date by one of the other conference processes in the session, usually by sending
it the existing state of the conference. Details of how to update the newcomer is left up to the
programmer by having them create an appropriate callback.

Finally, application developers can generate their own custom events. This can be useful
in more complex applications, where a change being handled in one part of the program can
generate an event to notify other parts of the program (or other processes) of the change. For
example, a programmer can create a shared data model and use events to generate views from
it. Changes to the model’s state can be attached to events, with notifiers created to update the
view accordingly. Different views are handled by attaching different callbacks to the notifiers.

A variety of other toolkits use some type of event/notification scheme; e.g. Rendezvous
[Hil92], Chiron-1 [Tay95], and Weasel [Gra92]. However, these are typically tied to directly
linking the shared views with a data model, discussed next.

6.3.3 Shared Models and Views

While multicast RPCs and events can be used to coordinate conference replicas, they do
demand more housekeeping as the application becomes complex. Consequently, several
groupware toolkits provide programming abstractions to maintain and update a shared data
model, and some means for attaching a view to the model.

The idea of separating a data model from its view originated in Smalltalk’s Model–
View–Controller [Kra88], later extended to groupware [Pat91, Hil92, Gra92, Tou94]. In most
implementations, the system maintains a consistent shared data model (i.e. by handling con-
currency and synchronization), and either notifies processes of changes to the data or auto-
matically updates views whenever changes occur.

6.3.3.1 Examples

GroupKit provides a shared data model called an environment, a dictionary-style data struc-
ture containing keys and associated values [Ros96a]. While instances of environments run on
different processes, the run-time system makes sure that changes to one instance are prop-
agated to other instances. What makes GroupKit’s environments powerful are that changes
to an environment’s state can be tracked as events that trigger notifiers (as discussed previ-
ously). The programmer can bind callbacks to an environment, and receive notification when
a new piece of information is added to it, when information is changed, or when information
is removed. Corresponding actions are then triggered at all sites.

This scheme can generate different views from the same data abstraction. Events can be
monitored by the interface code, and the view adjusted to reflect the state of the data model
contained in the environment. For example, the code fragment below creates a shared environ-

GROUPWARE TOOLKITS FOR SYNCHRONOUS WORK 149

ment called “data”, which contains a field called “number”. A groupware button is displayed
that shows the current value of the number, incremented whenever any user presses the button.

gk_newenv -bind -share data # "Data" is a shared environment
button .button -command \ # Create a button. Whenever it is

[data number [expr [data number]+1] # pressed, increment "number", a
key in the "data" environment

data bind changeEnvInfo { # Update the view of the number in the
.button configure -text [data number]}# button whenever its value changes

data number 0 # Initialize "number" to 0

A programmer uses GroupKit’s environments to implement synchronized views and mod-
els. In contrast, the Rendezvous toolkit treats views, models and the links between them as
first-class citizens [Hil94]. The system encourages developers to create groupware applica-
tions using its powerful abstraction–link–view (ALV) model [Hil92], whose constructs are:

� a shared underlying data abstraction,
� a view of the abstracted entity that may differ for each user,
� a constraint (called a link) that automatically adjusts the view when the data abstraction is

changed.

Rendezvous differs architecturally from GroupKit, in that the data model and the prop-
agation of constraints are centralized. As well, constraints are more powerful than the
event/notifier scheme, because complex relationships are automatically maintained by the sys-
tem through a one-way constraint solver. The Clock system [Gra96b] also uses constraints to
link views with the underlying model.

A variety of other systems also have a strong notion of maintaining the relation between a
model and a view. The Chiron-1 user interface system has abstract data types (abstractions),
dispatchers (links) and views; however, a simpler event-based architecture rather than con-
straints are used to propagate changes [Tay95]. While Chiron-1 was not explicitly designed to
be a groupware toolkit, a multi-user Tetris game was developed to show the flexibility of its
architecture. In Weasel [Gra92], programmers use a special declarative language called RVL
to specify the relations between abstractions and views, how views are customized, and the
coordination required.

Populated virtual environments also use an abstract model/view paradigm. The model is
the 3-D abstraction, while the rendered views of the model are perspectives generated from a
particular (x; y; z) viewpoint into the model. The model is typically spatial. People enter the
spatial environment, where they are represented as “avatars” to others (icons or even video
images of themselves). They can move through the space and manipulate artifacts within it.
They are usually aware of the presence and (perhaps pseudo-) identity of others, can see where
others are attending, and can begin text or voice based communications with them. Examples
are DIVE [Car93] and Moondo [Intel].

6.3.4 Discussion

Programming abstractions such as the ones described above ease considerably a programmer’s
task of building groupware. For example, since multicast RPCs are a natural extension of the
way normal callbacks are used, novice GroupKit programmers were able to create simple
groupware applications with minimal training. The event/notifier and shared data abstractions

150 GREENBERG and ROSEMAN

are more elegant, but demand that the programmer learn a new coding style, for it usually
takes more planning and initial coding to separate the data model from its view.

However, groupware programming abstractions do not eliminate all coding complexity. The
programmer must consider the interaction between the processes that are being coordinated
by multicast RPCs, by events, and by shared data; unconsidered side effects can cause the
unexpected to happen. There is also a craft to using the programming constructs effectively.
For example, multicast RPCs usually demand that the programmer consider what local actions
should be taken and what variables should be set before the procedure and arguments are
multicast. The shared data abstractions have their own problems. When data model and views
are separated, the programmer has to handle exceptions that often occur when most, but not
all of the view is identical. When views intentionally differ (such as when one person sees
an array as a bar chart and the other as a pie chart, as in Figure 6.1), the programmer has to
make difficult interface design decisions that will allow people to interact over disjoint views.
In all cases, debugging can be hard when problems do occur, because the interaction between
conference processes can be non-deterministic and difficult to envisage.

6.4 GROUPWARE WIDGETS

Perhaps the greatest benefit of today’s graphical user interface toolkits is their provision of
tried and tested interface widgets. Programmers can typically configure and position them
in a few lines of code, perhaps with the help of an interface builder. When done properly,
pre-packaged widget sets provide a consistent look and feel to the interface. Because widgets
are often designed by interface experts, the everyday programmer can insert them into the
application with some assurance that they are usable.

Because many groupware applications will be graphical, groupware programmers have the
same need for widgets. The toolkit should therefore make it easy for programmers to add
groupware features to applications that conference participants will find valuable. However,
groupware widgets differ from normal widgets. They have different semantics; actions per-
formed on them must be reflected across displays; and novel widgets have to be designed that
address needs specific to groupware. In this section, we consider two classes of groupware
widgets: groupware versions of single-user widgets, and group-specific widgets that support
activities found only in group work.

6.4.1 Groupware Versions of Single-User Widgets

Some researchers have created multi-user analogs of conventional single-user widgets, such
as buttons, menus and simple text editors, and investigated how to make the sharing of wid-
gets between conference participants flexible enough to fit different applications and group
situations.

To highlight several issues, let us consider the problems we face when redesigning a button
widget to fit groupware. Buttons are simple devices in conventional interfaces. When a user
presses the button, its look changes to reflect that it is being selected. Upon release, the button
shape returns to normal and an action is executed. If the cursor is moved off the button during
a mouse press, the button reverts back to its original appearance and the release will have no
effect.

When the button is redesigned as groupware, several issues arise.

GROUPWARE TOOLKITS FOR SYNCHRONOUS WORK 151

1. When should feedback of one user’s actions be shown to their partners as feedthrough?
Should feedthrough be shown for every interface action (e.g. highlighting that matches
button presses and releases), or only for the final action (that the button press resulted in
an action)? Should feedthrough appear graphically identical to the local user’s feedback,
or should it be stylized to communicate only the essence of the other’s actions?

2. How does the button handle multiple and simultaneous access? Does it contain an idea of
ownership, so only one person is allowed to press it? If so, how is access control handled?
Or does the button implement turn-taking so that only one person can press it at a time,
and if so, how does it show other users that they cannot press the button? If simultaneous
access is allowed, what are the semantics of simultaneous presses, and how is feedthrough
displayed?

3. How are resulting actions handled? For example, are attached callbacks automatically
invoked in all replicas on one person’s button press, or must the programmer distribute
its effects explicitly?

4. What happens when people are viewing different parts of the display? If one person can-
not see the button because they have scrolled to another area, is feedthrough shown in a
different manner, and if so, how?

5. If different representations are used (e.g. two differing native look and feels because group-
ware is running across two different platforms), how can the interface syntax of one button
be translated to the perhaps different syntax of the other button?

These issues become much more problematic when we move to multi-user equivalents of
complex widgets that have a high interaction component, such as list boxes, text entry fields,
graphical canvases and so on. None of these problems has a trivial solution, and designers of
groupware toolkits have to make hard decisions on what to do in each case. Part of the design
space includes how much flexibility they can provide the programmer to allow them to make
their own application-specific decisions.

A few researchers have begun to address these issues by creating generic programming at-
tributes for groupware widgets. Several have concentrated on a widget’s coupling level and
access control. Others have tried to redesign conventional widgets to make them more appro-
priate to groupware settings.

6.4.1.1 Coupling

Dewan [Dew91, Dew92] defines coupling as the means by which interface components share
interaction state across different users. In tight coupling, state is shared by all aspects of the
interface component, and a person’s actions in one display results in immediate update on
another display. In loose coupling, one person’s actions propagate over to another display
only when a critical event is performed; the final state is the same, but intermediate states are
not seen. For example, a tightly coupled button would appear identical on all displays as it
was being pressed, moved across, and released. A loosely coupled button would only show
the release action, with intermediate feedthrough eliminated.

Dewan and Choudhary [Dew92] argue that flexible coupling is important for a variety of
reasons. First, groupware programs range from fully synchronous, to nearly synchronous, to
asynchronous; coupling is just another way of setting synchronicity. For example, we can
argue that the only difference between a real-time text program that shows characters as they
are being typed (text chat), vs. complete messages (e-mail) is their coupling level! Second,

152 GREENBERG and ROSEMAN

tightly coupled actions showing intermediary steps may be annoying to users in situations
where they are pursuing their own individual work. Alternatively, tightly coupled systems are
critical during highly-interactive exchanges between people [Tat91]. Third, loosely coupled
systems exchange state less frequently, which means there are less performance demands on
the system. Finally, coupling can control the degree that people work in private spaces, and
how and when they wish to make that space public.

Dewan and Choudhary [Dew92] implemented coupling in their Suite groupware toolkit by
allowing programmers and users to set coupling attributes that are associated with individ-
ual interaction entities (although these can be arranged in a multiple inheritance structure).
Attributes indicate the level of coupling, as well as how they should be applied selectively
to members of a group. Suite also divides interaction entities into disjoint coupling sets. For
example, the data state, the view state, and a format state can be coupled independently (the
latter allows the view of the data to be formatted in different ways across displays). Further-
more, action coupling can be set to determine how the commands (or callbacks) attached to
user actions are executed at other sites.

Reconsider the button example. The coupling levels can define: the way button presses are
tied to underlying data models by coupling data state; the level of feedthrough desired in
the view by coupling views; and how callbacks are invoked by coupling actions. Ideally, the
groupware programmer would consider coupling levels to be just another set of attributes that
can be configured when creating the button. The same idea can be applied to more complex
widgets, and Suite has several examples of how coupling can be applied to complex editing
and form-filling systems.

Coupling is available in other toolkits as well. The Rendezvous toolkit [Hil94] allows flex-
ible coupling because of the way views are separated from data. Because the links in Ren-
dezvous’ ALV model specify how views and models are synchronized [Hil92], different levels
of coupling can be specified by the programmer. The difference is that the programmer has to
code the way coupling is achieved, rather than simply set the attributes of a widget.

6.4.1.2 Access Control

Access control determines who can access a widget and when. Access control may be required
for several reasons. First, people may wish to have their own “private” widgets, where only
they can manipulate (or even view) them. An example is a text field in a groupware outliner,
where the person editing the field wishes to maintain ownership of it, perhaps just for the
duration of the edit or for the length of the session. Second, it may not make sense for users
to simultaneously manipulate some widgets. Perhaps only one person at a time should be able
to press a button, manipulate a scroll bar (to prevent “scroll wars”), or insert text into a field.
As with coupling, the demands for access control may be highly dependent on the particular
interface being constructed, and groupware programmers need to be able to control this.

Few groupware toolkits let programmers manipulate access control in a light-weight, fine-
grained fashion. If anything, they group it into concurrency control, with access being me-
diated by locks and other tedious mechanisms. The notable exception is again Suite. In it,
Shen and Dewan [She92] associate the fine-grained data displayed by a groupware applica-
tion with a set of “collaboration rights”, where the rights are specified by either programmer
or user through a multi-dimensional, inheritance-based structure. Collaboration rights include
read and write privileges, viewing privileges, and coupling. Through the inheritance structure,

GROUPWARE TOOLKITS FOR SYNCHRONOUS WORK 153

Figure 6.4 The Calliope multi-user editor, with permission from Alex Mitchell

access control can be specified at both a group and individual level. Sets of objects can be
clustered together, with specific access definitions overriding general ones.

Smith and Rodden’s [Smi93] “shared interface object layer” SOL, an architectural layer
rather than a toolkit, considers how shareable versions of single-user widgets such as buttons
and text entry fields can be created. They provide a set of generic access control mechanisms
that determine what people could do with these shareable objects. Settable options include
who can see the widget, who can use it, who can move it, and so on. The same group has
created a more generalized shared object service called COLA [Tre94].

6.4.1.3 Widget Redesigns

Most single-user widgets should be completely redesigned to fit their groupware settings,
because they would otherwise be too limiting. While there is no recipe for doing this, we can
illustrate by example several groupware redesigns of single-user widgets.

Our first example is the multi-user scrollbar, first seen in the SASSE text editor [Bae93].
It differed from conventional scrollbars in that two thumbs (the selectable box) are displayed.
Participants are allowed to scroll independently, and the thumbs’ positions would reflect each
person’s relative position in the document. While SASSE’s scrollbar was hard-wired into the
editor, GroupKit developers turned it into a real multi-user widget that can be attached to
any scrollable object in one or two lines of code [Ros96a, Gre94b]. As shown on the right
side of Figure 6.4, the right half of the scrollbar is a normal single-user scrollbar, allowing the
user to move within the document. To its left are vertical bars showing the relative locations of
each conference user, identified by a unique colour. The bar’s position and size is continuously
updated as participants scroll through the document or change their window size. Additionally,
the name of the bar’s owner is displayed as a popup by mousing over it, and a “Follow this
user” option allows participants to toggle the coupling status from independent scrolling to
linked scrolling.

Our second example is a multi-user text widget. Single-user text widgets are simple text ed-
itors, while a true multi-user text editor should have features that allow simultaneous editing.

154 GREENBERG and ROSEMAN

Mitchell [Mit96] used GroupKit [Ros96a] to create Calliope, a multi-user text editor. While
not packaged as a widget, Calliope does indicate how such a widget could behave. As seen
in Figure 6.4, Calliope provides a window displaying a shared text editor, and people can
scroll independently through the text through GroupKit’s multi-user scrollbars. Access con-
trol is user-selectable via a “sharing” menu option, and can range from the selection, word,
line, paragraph or document level. As a region is selected, the lock request is automatically
made. When another person attempts to select a locked region, the cursor changes to show
conflict (the lock icon in Figure 6.4). Calliope also has extra tools, such as the ability to attach
external notes to text for commentary that can be seen by others, to create private text which
is added to the shared view only when desired, and access to a shared whiteboard for brain-
storming activities. Text can also be queried to find who wrote it and when it was written, and
colour-coded to show authorship.

6.4.2 Group-Specific Widgets

While group-aware versions of single-user widgets should be a part of any groupware toolkit,
they are not enough. Toolkits should strive to provide novel widgets that support particular
aspects of group work. In this section, we show several examples of group-specific widgets
that are implemented or prototyped in GroupKit [Ros96a, Gre94b]. These include widgets for
participant status, telepointers, and awareness.

6.4.2.1 Participant Status

As people enter and leave a conference, other participants should be able to see their comings
and goings, much in the same way that we can see people arrive into a room. Because these
people may be strangers, it can be useful to find out some information about them. GroupKit
provides a rudimentary participants widget, illustrated in Figure 6.5, that can be included
in any application. It lists all participants in the current conference session (left side), and
the list is automatically updated as people enter and leave. When a participant is selected, a
“business card” containing further information about them is displayed. This could include
contact information (as shown), a picture of the person, and any other material that person
wished to pass on about themselves.

An experimental variation of this widget displays participants in several ways, dependent
on the information available about them: charicatures, still photos, and (if available) video
snapshots whose images are updated every ten to twenty seconds. The video snapshots im-
plement our version of the Portholes system [Dou92b]. These widgets also include the ability
to monitor the activity of participants, such as whether they are actively using their computer.
This is useful for facilitating contact between partners [Coc93, Gut96a].

6.4.2.2 Telepointers

Studies of small face-to-face groups working together over a shared work surface reveal that
gesturing comprises about 35% of the group’s activities [Tan91]. Gestures are a rich commu-
nication mechanism. Through them, participants indicate relations between the artifacts on
the display, draw attention to particular artifacts, show intentions about what they are about
to do, suggest emotional reactions, and so on. Many groupware systems now use telepoint-
ers (also known as multiple cursors) to provide a simple but reasonably effective mechanism

GROUPWARE TOOLKITS FOR SYNCHRONOUS WORK 155

Figure 6.5 GroupKit’s Participants widget

for communicating gestures [Hay94]. Unfortunately, modern window systems are tied to the
notion of a single cursor, and application developers must go to great lengths (and suffer per-
formance penalties) to implement multiple cursors. By supplying telepointers as widgets that
can be attached to a view with a few lines of code, a programmer’s burden is decreased sig-
nificantly, and they are more likely to include this important feature within their application.
For example, GroupKit programmers can add telepointers to an application with two lines of
code:

gk_initializeTelepointers
gk_specializeWidgetTreeTelepointer .canvas

GroupKit’s telepointers can partially handle displays where people may not see exactly the
same thing because widgets are laid out in different locations. Instead of tying a telepointer to
a window, a programmer can attach it to particular widgets and their children (this is the pur-
pose of line 2, which adds telepointers only to the “canvas” widget). The telepointer is always
drawn relative to the widget, rather than the application window. Similarly, we have applied
telepointers to groupware text widgets that may format their contents differently on different
displays. The telepointer in this case is tied to the position of the underlying text, rather than
the Cartesian coordinates of the window. To illustrate the value of this approach, we applied
these techniques to GroupWeb, a groupware web browser [Gre96e]. Because people have
different sized windows, the HTML text and images can be laid out quite differently across
participant’s displays. However, their telepointers are always on top of the correct character
or image.

An experimental version of GroupKit’s telepointers allows them to be overloaded with se-
mantic information to provide participants a stronger sense of awareness of what is going on,
with little consumption of screen real-estate. Because telepointers tend to focus participants’
attention, any information attached to them is probably noticed quickly. For example, we al-
low programmers to overload telepointers to indicate identity information (such as people’s
names), state information (such as what mode each participant is in), and action information
(such as what action a person is taking). Figure 6.6 illustrates an example of how a telepointer
can be overloaded with both action and identity information. The left window shows partici-
pant Carl’s display, where he is navigating through a pop-up menu. We see a second cursor on
the bottom of the display, which identifies its owner “Saul”. The right window shows Saul’s

156 GREENBERG and ROSEMAN

Figure 6.6 Overloaded telepointers, showing both action and identity information

display. Showing the complete menu that Carl has popped up on Saul’s display could be an-
noying, especially if Saul were working in the area immediately underneath it. Instead, Carl’s
telepointer image and labels are altered to indicate a menu selection is being made (the mode),
and what item is being selected (the action). In this case, the same semantic information of a
menu action is shown on other displays concisely and with little loss of meaning.

6.4.2.3 Workspace Awareness

In real-life working situations, we are kept aware of what others are doing, sometimes by
speech, and sometimes by seeing what others are working on through our peripheral vision
and through glances. This helps us coordinate our work. These cues may not be available in
the groupware channel, especially when people are allowed to have different viewports into a
large workspace. Consequently, workspace awareness widgets must be provided that inform a
participant about where other people are working in the shared work-surface and what they are
doing [Dou92a, Gut96a, Gut95, Gut96b]. We should mention that workspace awareness does
not have the same meaning as collaboration awareness (mentioned in this book in Chapter 7
by Dewan [Dew99] and in Chapter 5 by Prakash [Pra99]): workspace awareness concentrates
on how a person’s up to-the-moment awareness of what others are doing can be supported
by representations and extensions of the actual shared workspace, which is a more restrictive
definition.

An example of awareness widgets are radar overviews [Smi89, Bae93]. These displays
present a miniature overview of the document overlaid by colored areas that show the actual
viewport of each participant in the session. GroupKit contains several widget prototypes based
on this idea [Gut96a, Gut95, Gut96b]. The radar overview shown in Figure 6.7 is one example.
It includes an overview of a large shared workspace containing a concept map (a graph of
ideas). Viewport outlines, one for each participant, contain portraits identifying their owners,
and indicates what each can see. In addition, telepointers are displayed. The overview is tightly
coupled to the main view of the document (not shown), and any changes are immediately
reflected. A usability study has shown radar overviews to be an effective way for people to

GROUPWARE TOOLKITS FOR SYNCHRONOUS WORK 157

Figure 6.7 A miniature overview of a concept mapping system built in GroupKit, showing other’s
viewports, portraits, and telepointers. System created by Carl Gutwin, used with permission

maintain awareness of others in a spatial layout task [Gut96d]. They see changes as they
occur, they know where others are working, and telepointers in the overview are used for
deictic references.

We have developed a variety of other prototype widgets supporting workspace awareness.
Detail views are miniatures showing exactly what another can see [Gut95, Gut96b]. The
Headup Lens combines an overview with a person’s main viewing area as transparent lay-
ers, one on top of the other [Gre96c]. The Fisheye Lens uses a fisheye view with multiple
focal points to show where others are in the global context, and to magnify their area of work
on all displays [Gre96b]. These and other awareness widgets are illustrated in two videos
[Gre96a, Gut96c].

6.4.3 Discussion

The design of groupware widgets is still a young area. While many interface components exist
in groupware applications that have potential as widgets, much work remains to be done in
generalizing and packaging them as self contained widgets that are easily added to any appli-
cation. We need strong programming abstractions, such as the notions of coupling and access
control, to provide a programmer with the flexibility to specify a widget’s behavior in differ-
ent groupware settings. We need to redesign today’s single-user widgets into reasonable yet
powerful groupware counterparts. Finally, we need to create the next generation of groupware
widgets, which includes refining their design and testing their worth through usability testing.

On the technical side, there is the issue of how widgets can be created by toolkit developers.
Current tools are poor or non-existent. Rendezvous and Clock creators, for example, had
to build all their widgets from scratch from graphical primitives [Hil94, Gra96]. GroupKit
creators constructed a rudimentary “class builder” and were thus able to use and extend the
existing GUI widgets supplied by the Tcl/Tk toolkit [Ros96a]. However, the class builder is
awkward to use, and suffers run-time efficiency problems which can affect the performance
of highly interactive widgets.

158 GREENBERG and ROSEMAN

Finally, programmers of groupware could still benefit from interface builders as found in
conventional GUI toolkits, which greatly eases the task of widget placement and attribute set-
ting. Unfortunately, most groupware toolkits now available do not provide interface builders,
with the exception of Visual Obliq [Bha94]. Similar to most modern conventional toolkits,
groupware applications in Visual Obliq are created by designing the interface with an in-
terface builder and then embedding callback code in an interpreted language. The resulting
application can be run from within the interface builder for rapid turnaround time.

6.5 SESSION MANAGEMENT

Groupware developers often concentrate on building applications, such as multi-user sketch-
pads, games, and text editors. While it is important for developers to provide good groupware
once people are connected and working together, it is just as important to provide a com-
munity with “session managers” for actually establishing their groupware connections. We
firmly believe that toolkits must allow developers to construct or select from a large library
of session management interfaces in a flexible enough fashion to accommodate the diverse
requirements of different communities. Unfortunately, most of today’s toolkits force a single,
often rudimentary, session management interface onto its applications.

A session manager typically controls and presents an interface to the following tasks
[Ros94]:

� creating new conferences
� naming conferences
� deleting conferences
� locating existing conferences
� finding out who is in a conference
� joining people to conferences
� controlling access to conferences
� allowing latecomers
� allowing people to leave conferences, and
� deciding whether conferences persist when all users exit.

For example, the interface of the session manager could present these as explicit steps that a
user takes to begin and maintain the collaboration. These could also be implicit actions, where
(say) the act of jointly editing an artifact automatically initiates the collaboration [Edw94].

Being able to provide different interfaces for session management is an important aspect of
supporting the working patterns of a group. We believe that one of the obstacles to groupware
use is the difficulty of starting up a groupware session [Coc93]. The obstacle may be in terms
of usability (e.g. the system is difficult to initiate) or social (e.g. the policy the system imposes
is not acceptable to the group). Session management must be more than an afterthought added
to the applications, and should be tuned to the needs and collaboration patterns of the target
user group.

6.5.1 Policies and Metaphors for Session Management

Session managers can implement and provide a broad variety of policies to users, as illustrated
by the examples in this section.

GROUPWARE TOOLKITS FOR SYNCHRONOUS WORK 159

Figure 6.8 The Open Door session manager. Two conference sessions are shown, with three
participants present in the “Post-It” conference

6.5.1.1 Rudimentary Policy

When session managers are not attended to, users are forced to handle session manager aspects
themselves. That is, it is entirely up to the user to decide who to connect to, often by specifying
low-level addressing such as Internet host names and TCP/IP port numbers. An example of
this is the session manager for early versions of the NCSA Collage groupware system, which
presents a form asking the user to supply one’s login name, the IP address of the Collage
server, and the server port number.

6.5.1.2 Open Door

The basic session manager provided by GroupKit [Ros96a, Gre94b] offers an “Open Door”
permissive policy of creating and joining conferences, where people think in terms of confer-
ences and participants instead of IP addresses. Figure 6.8 shows an example. Each conference
contains a single groupware application (the application windows are not shown in the figure).
In the “Conferences” pane, the local person (Saul Greenberg) sees that two conferences are in
progress: “Post-It” and “Design Session”. By selecting one of them, he can then see who is in
a particular conference (the list in the “Participants” pane).

Conferences are entered in several ways: joins, invitations, and creation. First, Saul can join
a conference by double clicking any conference name. This adds him to the list of participants
and causes the particular application to appear on the display. Second, a person already in a
conference can invite Saul into the session via a menu option, and a dialog will appear on the
screen asking him if he wishes to join in. An example of this is shown in the figure. Third,
Saul can create a new conference via the Conference menu: when he selects from a list of
applications, a window running the application appears on the display and others are informed
of its availability through the Conferences pane. This session manager also handles departure,
and exiting attendees disappear from the Participants pane. When the last one leaves, that
person is asked if the conference application should persist; i.e. that its state should be saved
so it can be re-entered later with its contents intact.

160 GREENBERG and ROSEMAN

6.5.1.3 Rendezvous Points

A quite different policy provides common rendezvous points. People go to a “place”, and
are automatically connected to all others in that place. The best known example of these are
the popular Multi-User Dungeons (MUDs). When a person connects to a MUD via a well-
known Internet address, they enter one of several rooms where they can engage in a text-based
chat dialog with all others in the room. TeamRooms [Ros96b] carries the ideas of MUDs to
graphical groupware by a rooms-based metaphor. Users of a community can create virtual
meeting rooms, and stock them with groupware meeting tools. To create opportunities for
collaboration, anyone can see what rooms are available, who is around, what rooms they are
in, and how active they are. People can freely move between rooms. When they enter a room
they are joined to all the conferencing tools located in the room; when they leave the room,
any tools used in the room are left behind. If only one person is in a room, then it behaves as a
single-user system. If no one is in a room, the tools and groupware artifacts remain available
as they are treated as persistent conference sessions. This system could serve the needs of
collaborators working on many tasks over a period of time, allowing them to easily move
between tasks. It also serves as a meeting place, where people can see who is around in what
room, and converse with them after entering the room. We expect place-based systems such as
TeamRooms to have wide appeal, and other researchers are also pursuing this policy [Tol95].
For example, Lee et al [Lee96] are developing a general software architecture and API to such
systems.

6.5.1.4 Other Policies

Many other session managers are possible. For example, a facilitated meeting session man-
ager has been implemented in GroupKit, where a chairperson has complete control over what
applications are part of a meeting, and who can participate. Other policy examples follow the
model of telephone calls, or the way conference calls are established through a central switch-
ing point. A session manager can also be document-centric. For example, if a person opens
a file that is currently being edited by someone else, the groupware connection can be made
automatically. The point is that a developer requires the tools to modify packaged session
managers or create new ones that fit the community.

6.5.2 Building Blocks for Session Managers

Most toolkits provide only rudimentary and hard-wired session management facilities. Share-
Kit, for example, provides only basic connection facilities, although it does allow informa-
tion about participants and about the session to be transmitted to others upon connection.
Similarly, Rendezvous has a built-in session manager which they call a startup architecture
[Pat90]. There have been a few investigations into architectures for flexible session manage-
ment (e.g. Intermezzo [Edw94, Lee96]) but these are not really toolkits. Excepting GroupKit,
most toolkits do not let programmers build both applications and session managers, or do not
separate the two concepts.

Because few toolkits support session management as a first-class entity, we are a long way
from knowing exactly what primitives and API should be provided to the developer. In our
own experiences with GroupKit, we have developed flexible session management facilities
around the idea of open protocols [Ros93]. Briefly, the Registrar central server (Figure 6.2)

GROUPWARE TOOLKITS FOR SYNCHRONOUS WORK 161

provides a replicated data structure that tracks meetings and attendees, but specifies no pol-
icy for how the data structure is to be used. Session managers are clients to the Registrar,
and specify the policy by the selection of operations they perform. Maximum flexibility is
achieved by providing open access to the Registrar’s data structure via a protocol or interface
of small but powerful operations (e.g. add or delete conference). Clients may be different, as
long as they are well behaved with respect to each other and to the policy.

In terms of programming session managers, programmers can trap session manager events
and take actions upon them via callbacks. Different session managers will use these in dif-
ferent ways to create their policy. To ease the programmer’s chore, GroupKit also provides
default callbacks to handle routine operations. The programmer can override these when nec-
essary. Using these events, the programmer can create different access control mechanisms,
start new applications or end existing ones, and build the interface in a way that shows the
user what is going on. Examples of some of the events are described below:

� userRequestNewConf: the user has requested that a new conference be created
� newConfApproved and deleteConfApproved: the request for a new conference or termina-

tion of an existing one has been approved
� foundNewConf and foundDeletedConf: a new conference has been created, or an existing

one has been removed
� foundNewUser and foundDeletedUser: a user has entered or left a conference
� newUserApproved: the user’s admittance into the conference has been approved
� lastUserLeftConf : the last user in a conference has left
� conferenceDied: a conference process we created has terminated.

6.5.3 Discussion

Both good groupware applications and good session managers are needed for groupware to
succeed. Without good session managers, it is hard to make electronic contact and get group-
ware started; many opportunities for collaboration will likely fall by the wayside. We believe
that next-generation toolkits will, like GroupKit, include session management as an important
building block. At the very least, the toolkit should provide a reasonable set of stock session
managers that implement a broad range of policies. If adequate primitives are provided, the
programmer should be able to modify existing session managers and create new ones to fit
the particular needs of a work community.

It is even possible that session management toolkits can be developed that are completely
independent from the application component and its run-time architecture. As evidence, the
GroupKit session manager was recently repackaged as a stand-alone toolkit. Since then, it has
been adapted to work with the Clock groupware development tool [Gra96] to manage both
centralized and semi-replicated sessions. While minor code changes were required, it works
well in spite of the radical differences between the run-time system and underlying language
of Clock and GroupKit.

6.6 CONCLUSION

This chapter has presented four components that we believe toolkits must provide to group-
ware programmers. A run-time infrastructure automatically manages the creation, intercon-
nection, and communications of the distributed processes that comprise conference sessions,

162 GREENBERG and ROSEMAN

greatly simplifying a programmer’s job of managing a distributed system. Groupware pro-
gramming abstractions allow developers to control the behavior of distributed processes, to
take action on state changes, to share relevant data, and to generate views. Groupware widgets
let a programmer quickly add interface features of value to conference participants. Session
managers that let users create and manage their meetings are built by developers to accom-
modate the group’s working style. Examples were taken from a variety of different toolkits to
illustrate how these components can be provided in practice.

The class of groupware toolkits considered in this chapter consider only real-time dis-
tributed applications. This is just a subset of groupware, and many groupware toolkits ad-
dress disparate application domains. For example, ConversationBuilder [Kap92] and Strudel
[She90] are used for constructing speech act protocols. Oval is used to build semi-structured
messaging and information management systems [Mal92]. Lotus Notes, although not a pro-
gramming toolkit, lets people develop and tailor a wide variety of asynchronous applications
(Lotus Inc.). Even toolkits within the domain of real-time interaction handle different niche
problems. Dewan and Choudhary’s Suite toolkit [Dew92] applies only to highly structured
text objects and investigates how flexible access control mechanisms are incorporated into
them. Knister and Prakash’s [Kni90] DistEdit provides groupware primitives that could be
added to existing single-user text editors to make them group-aware. DistView, produced by
the same group, is oriented towards a fairly strict view-sharing approach to sharing window
components and underlying data via an object replication scheme [Pra94]. Smith and Rod-
den’s SOL considers design features for making single-user widgets shareable [Smi93].

The chapter also limited its discussion to four components. While we believe these are
fundamental building blocks, there are certainly other components that must be included in a
commercial, robust groupware toolkit. A few examples follow (see Urnes and Nejabi [Urn94]
for a further list of features).

� Security and privacy. Groupware could be a large security hole unless great care is taken
in determining that only the right people are allowed in a meeting, and that permissions to
execute actions at sites other than their own does not compromise the system. Similarly,
communication channels should be encrypted in case the conference deals with sensitive
information. These should all be supplied as part of the stock toolkit.

� Audio and video support. Most of the toolkits mentioned do not directly support audio and
video. Yet almost all real-time groupware requires at least audio. These can be provided out
of band, through telephones, videoconferencing systems, and media spaces (see Chapter 3
in this book [Mac99]). Still, there is a trend in application design to integrate audio, video,
and computational groupware. The ClearBoard system described in Chapter 4 [Ish99], for
example, allows participants to see through their computational space to a video image
that portrays correct eye gaze position and hand gestures relative to the surface (see also
[Ish92]). There is also the problem of synchronizing audio/video with actions in the com-
putational space, for even a few seconds of delay between the two can be disconcerting to
the group members. A further discussion on multimedia in groupware can be found in this
book in Chapter 8 [Dou99].

� Communication channel and networks. All groupware systems depend upon communica-
tion channels. Ideally, the underlying network will be tuned to support the performance
demands of groupware, and the API should reflect the programmer’s needs. Example ex-
tensions to standard networks are MBone [Mac94], an Internet multicast backbone that lets

GROUPWARE TOOLKITS FOR SYNCHRONOUS WORK 163

one send multimedia on wide-area networks such as the Internet, and Isis [Bir93], which
guarantees correct serialization of events over the network.

� Fault tolerance. As network loads increase and connections become less reliable, fault tol-
erance becomes increasingly important. Groupware toolkits must include facilities to allow
the application to degrade gracefully, to checkpoint failed conferences for later resumption,
and to seek alternate communication paths when a channel fails. Dourish also addresses
some of these issues in this book in Chapter 8 [Dou99].

� Versioning and downloading. In replicated architectures, problems arise when one site is
missing software or has a different version of it. The system should be able to check ver-
sions, and download software when necessary.

� Session capture and replay. Records of meetings are sometimes crucial. While capturing
video is straightforward, capturing computational actions is more difficult [Man95]. The
challenge remains on how to capture automatically the highlights of lengthy meetings in a
concise manner.

� Multi-user undo. Many single-user systems contain undo facilities. Yet undo in groupware
is a hard problem. While a few researchers have been working in this area [Pra92, Ber94],
we still have a long way to go before we can package undo facilities so that groupware
programmers can include it easily within their application. Chapter 5 in this book contains
a detailed discussion of the role of undo in a group editor [Pra99].

� Concurrency control. While mentioned as part of the run-time architecture, concurrency
control in groupware is a sub-field in its own right. Much work remains to be done crafting
appropriate tools, architectures, and abstractions that make concurrency control easy for
the programmer, while minimizing its impact on the end-user’s interface.

� Application domains. In all probability, some groupware toolkitswill have to be specialized
to handle the nuances of particular real-time applications domains. DistEdit, for example,
concerns itself only with text editing [Kni90]. Others will deal with the structured meetings
found in group support systems [Pen95], or with extending capabilities of existing single-
user systems; e.g. primitives to make the emacs text editor group-aware [Pat95].

� Alternate models. The separation of model and view is only one of the many ways that
groupware can be configured. For example, Karsenty and Beaudouin-Lafon [Kar95] have
defined the seven-layer SLICE model. Some of these layers are: an abstract document (the
model), a document layer (the displayed view), a direct manipulation layer (the means to
interact with the view); a view representation layer (to control how views are displayed);
and a cursor layer that tracks the mouse and shows telepointers. In Chapter 7 in this book,
Dewan considers other architectural models as well [Dew99].

� Development environments. All the toolkits mentioned have inadequate development en-
vironments. For example, debugging groupware is hard because it is a distributed system,
and we need appropriate debuggers. Interface builders are lacking. Appropriate tools for
testing are non-existent.

� The Web. The recent popularity of the World Wide Web, as well as the network and multi-
platform properties of the Java programming language, implies that the Web could be-
come the delivery vehicle for real-time groupware. While the Web, Java and the Internet
itself have particular features that lend themselves towards groupware (e.g. its ubiquity,
its client/server model, its telecommunications constructs), it also includes constraints that
may challenge the design of groupware toolkits (e.g. security, performance, session man-
agement styles). While the Web does provide incredible opportunities for groupware (some

164 GREENBERG and ROSEMAN

are surveyed in this book in Chapter 8 [Dou99]), we may find ourselves compromised by
its technical constraints and by the way it is commonly used.

While the next generation of toolkits are now being built, groupware systems still have a
long way to go to catch up to their single-user counterparts. We look forward to the day when
all toolkits will incorporate multi-user features. When that day comes, the artificial distinction
between constructing single and collaborative systems will disappear.

ACKNOWLEDGEMENTS

Carl Gutwin and Ted O’Grady participated in many discussions about what is required for
groupware toolkits, and helped influence the contents of this chapter. Prasun Dewan, Nicholas
Graham, and John Patterson reviewed versions of this manuscript. They contributed both con-
structive comments and further system description. Comments by anonymous referees helped
improve this document. Funding by the National Science and Engineering Research Council
of Canada and by Intel Corporation are gratefully appreciated.

REFERENCES

[Ahu90] Ahuja, S.R., Ensor, J.R. and Lucco, S.E., A comparison of applications sharing mechanisms
in real-time desktop conferencing systems. In Proceedings of the ACM COIS Conference on
Office Information Systems, pages 238–248, Boston, April 25–27, 1990.

[Bae93] Baecker, R., Nastos, D., Posner, I. and Mawby, K., The user-centered iterative design of
collaborative writing software. In Proceedings of ACM InterCHI’93 Conference on Human
Factors in Computing Systems, pages 399–405, Amsterdam, the Netherlands, April 24–29,
1993.

[Ber94] Berlage, T., A selective undo mechanism for graphical user interfaces based on command
objects. ACM Transactionson Computer-Human Interaction, 1(3):269–294, September 1994.

[Bha94] Bharat, K. and Brown, M., Building distributed, multi-user applications by direct manip-
ulation. In Proceedings of the ACM UIST’94 Symposium on User Interface Software and
Technology, pages 71–80, Marina del Rey, California, November 2–4, 1994.

[Bir93] Birman, K.P., The process group approach to reliable distributed computing. Communications
of the ACM, 36(12):37–53, December 1993.

[Bon89] Bonfiglio, A., Malatesta, G. and Tisato, F., Conference Toolkit: A framework for real-time
conferencing. In Proceedings of the EC-CSCW ’89 First European Conference on Com-
puter Supported Cooperative Work, pages 303–316, Gatwick, London, UK, September 13–
15, 1989.

[Car93] Carlsson, C. and Hagsand, O., DIVE – A platform for multi-user virtual environments. Com-
puters and Graphics, 17(6), 1993.

[Coc93] Cockburn, A. and Greenberg, S., Making contact: Getting the group communicating with
groupware. In Proceedingsof the ACM COOCS’93 Conferenceon Organizational Computing
Systems,, pages 31–41 Milpitas, California, November 1–4, 1993.

[Dew91] Dewan, P., Flexible user interface coupling in collaborative systems. In Proceedings of
the ACM CHI’91 Conference on Human Factors in Computing Systems, pages 41–48, New
Orleans, Louisiana, April 28–May 2, 1991.

[Dew92] Dewan, P. and Choudhary, R., A high-level and flexible framework for implementing multi-
user user interfaces. ACM Transaction on Information Systems. 10(4):345–380, 1992.

[Dew99] Dewan, P., Architectures for collaborative applications. In Beaudouin-Lafon, M. (Ed.),
Computer Supported Cooperative Work, Trends in Software Series 7:169–193. John Wiley
& Sons, Chichester, 1999.

GROUPWARE TOOLKITS FOR SYNCHRONOUS WORK 165

[Dou92a] Dourish, P. and Bellotti, V., Awareness and coordination in shared workspaces. In Proceed-
ings of the ACM CSCW’92 Conference on Computer Supported Cooperative Work, pages
107–114, Toronto, Canada, October 31–November 4, 1992.

[Dou92b] Dourish, P. and Bly, S., Portholes: Supporting awareness in a distributed work group. In
Proceedings of the ACM CHI’92 Conference on Human Factors in Computing Systems, pages
541–547, Monterey, California, May 3–7, 1992.

[Dou95] Dourish, P., Developing a reflective model of collaborative systems. ACM Transactions on
Computer–Human Interaction. 2(1):40-63, March 1995.

[Dou96] Dourish, P., Consistency guarantees: Exploiting application semantics for consistency man-
agement in a collaboration toolkit. In Proceedings of the ACM CSCW’96 Conference on
Computer Supported Cooperative Work,, Boston, Mass., November 16–20, 1996.

[Dou99] Dourish, P., Software infrastructures. In Beaudouin-Lafon, M. (Ed.), Computer Supported
Cooperative Work, Trends in Software Series 7:195–219. John Wiley & Sons, Chichester,
1999.

[Edw94] Edwards, W.K., Session management for collaborative applications. In Proceedings of
the ACM CSCW’94 Conference on Computer Supported Cooperative Work, pages 323–330,
Chapel Hill, North Carolina, October 22–26, 1994.

[Ell89] Ellis, C.A. and Gibbs, S.J., Concurrency control in groupware systems. In Proceedings of
the ACM SIGMOD International Conference on the Management of Data, pages 399–407,
Seattle, Washington, 1989.

[Gra92] Graham, T.C.N. and Urnes, T., Relational views as a model for automatic distributed im-
plementation of multi-user applications. In Proceedings of the ACM CSCW’92 Confer-
ence on Computer Supported Cooperative Work, pages 59–66, Toronto, Canada, October
31–November 4, 1992.

[Gra95] Graham, T.C.N., Declarative development of interactive systems. Volume 243 of Berichte
der GMD, R. Oldenbourg Verlag, Munich, July 1995.

[Gra96] Graham, T.C.N., Morton, C.A. and Urnes, T.. ClockWorks: Visual programming of
component-based software architectures. Journal of Visual Languages and Computing, Aca-
demic Press, July 1996.

[Gra96a] Graham, T.C.N., Urnes, T. and Nejabi, R. Efficient distributed implementation of semi-
replicated synchronous groupware. In Proceedings of the ACM UIST ’96 User Interface
Software and Technology, Seattle, Washington, November 6-8, 1996.

[Gra96b] Graham, T.C.N. and Urnes, T., Linguistic support for the evolutionary design of software ar-
chitectures. In Proceedings of the ICSE’18 Eighteenth International Conference on Software
Engineering, pages 418–427, IEEE Press, March 1996.

[Gre90] Greenberg, S., Sharing views and interactions with single-user applications. In Proceedings
of the ACM COIS Conference on Office Information Systems, pages 227–237, Boston, Mass.,
April 25–27, 1990.

[Gre94a] Greenberg, S. and Marwood, D., Real time groupware as a distributed system: Concurrency
control and its effect on the interface. In Proceedings of the ACM CSCW’94 Conference
on Computer Supported Cooperative Work, pages 207–217, Chapel Hill, North Carolina,
October 22–26, 1994.

[Gre94b] Greenberg, S. and Roseman, M., GroupKit. In ACM SIGGRAPH Video Review, Issue 108,
Videotape available from ACM Press, 1994.

[Gre96a] Greenberg, S. and Gutwin, C., Applying distortion-oriented displays to groupware. In Video
Proceedings of the ACM CSCW’96 Conference on Computer Supported Cooperative Work,
Boston, Mass., November 16–20, 1996. Videotape available from ACM Press.

[Gre96b] Greenberg, S., Gutwin, C. and Cockburn, A., Awareness through fisheye views in relaxed-
WYSIWIS groupware. In Proceedings of Graphics Interface’96, pages 28–38, Toronto, On-
tario, May 1996. Distributed by Morgan-Kaufmann.

[Gre96c] Greenberg, S., Gutwin, C. and Cockburn, A., Using distortion-oriented displays to support
workspace awareness. In A. Sasse, R.J. Cunningham, and R. Winder, (Eds.), People and
Computers XI (Proceedings of the HCI’96), pages 299–314, Springer-Verlag, 1996.

[Gre96d] Greenberg, S. Gutwin, C. and Roseman, M., Semantic telepointers for groupware. In Pro-
ceedings of OZCHI ’96: The Sixth Australian Conference on Computer–Human Interaction,
Hamilton, New Zealand, November 24–27, 1996.

166 GREENBERG and ROSEMAN

[Gre96e] Greenberg, S. and Roseman, M., GroupWeb: A WWW browser as real time groupware. In
ACM SIGCHI’96 Conference on Human Factors in Computing System, Companion Proceed-
ings, pages 271–272, Vancouver, Canada, April 13–18, 1996.

[Gut95] Gutwin, C., Stark, G. and Greenberg, S., Support for workspace awareness in educational
groupware. In Proceedings of the CSCL’95 Conference on Computer Supported Collabora-
tive Learning, pages 147–156, Bloomington, Indiana, October 17–20, 1995. Distributed by
Lawrence Erlbaum Associates.

[Gut96a] Gutwin, C., Greenberg, S. and Roseman, R., Supporting awareness of others in groupware.
In ACM SIGCHI’96 Conference on Human Factors in Computing System, Companion Pro-
ceedings, pages 205–215, Vancouver, Canada, April 13–18, 1996.

[Gut96b] Gutwin, C., Greenberg, S. and Roseman, M. (1996) Workspace awareness in real-time dis-
tributed groupware: Framework, widgets, and evaluation. In A. Sasse, R.J. Cunningham, and
R. Winder, (Eds.), People and Computers XI (Proceedings of the HCI’96), pages 281–298,
Springer-Verlag, 1996.

[Gut96c] Gutwin, C., Greenberg, S. and Roseman, M., Staying aware in groupware workspaces. In
Video Proceedings of the ACM CSCW’96 Conference on Computer Supported Cooperative
Work, Boston, Mass., November 16–20, 1996. Videotape available from ACM Press.

[Gut96d] Gutwin, C., Roseman, M., and Greenberg, S., A usability study of awareness widgets in a
shared workspace groupware system. In Proceedings of the ACM CSCW’96 Conference on
Computer Supported Cooperative Work, Boston, Mass., November 16–20, 1996.

[Hay94] Hayne, S., Pendergast, M. and Greenberg, S., Implementing gesturing with cursors in Group
Support Systems. Journal of Management Information Systems, 10(3):43–61, 1994.

[Hil92] Hill, R.D., The Abstraction-Link-View paradigm: Using constraints to connect user interfaces
to applications. In Proceedings of the ACM SIGCHI’92 Conference on Human Factors in
Computing Systems, pages 335–342, Monterey, California, May 3–7, 1992.

[Hil94] Hill, R.D., Brinck, T., Rohall, S.L., Patterson, J.F. and Wilner, W., The Rendezvous architec-
ture and language for constructing multi-user applications. ACM Transactions on Computer–
Human Interaction, 1(2):81–125, June 1994.

[Intel] Intel Corporation, Software available through the World Wide Web,
http://www.intel.com/iaweb/moondo/index.html.

[Ish92] Ishii, H. and Kobayashi, M., ClearBoard: A seamless medium for shared drawing and conver-
sation with eye contact. In Proceedings of the ACM CHI’92 Conference on Human Factors
in Computing Systems, pages 525–532, Monterey, California, May 3–7, 1992.

[Ish99] Ishii, H., Integration of Shared Workspace and interpersonal space for remote collaboration.
In Beaudouin-Lafon, M. (Ed.), Computer Supported Cooperative Work, Trends in Software
Series 7:83–102. John Wiley & Sons, Chichester, 1999.

[Jah95] Jahn, P., Getting started with Share-Kit. Tutorial manual distributed with Share-Kit ver-
sion 2.0. Communications and Operating Systems Research Group, Department of Computer
Science, Technische Universitat, Berlin, Germany, 1995. Available via anonymous ftp from
ftp.inf.fu-berlin.de/pub/misc/share-kit.

[Kap92] Kaplan, S.M., Tolone, W.J., Bogia, D.P. and Bignoli, C., Flexible, active support for collab-
orative work with conversation builder. In Proceedings of the ACM CSCW’92 Conference
on Computer Supported Cooperative Work, pages 378–385, Toronto, Canada, October 31–
November 4, 1992.

[Kar95] Karsenty, A. and Beaudouin-Lafon, M., Slice: A logical model for shared editors. In S.
Greenberg, S. Hayne and R. Rada, Editors, Groupware for Real Time Drawing, A Designer’s
Guide, pages 156–173, McGraw-Hill Europe, 1995.

[Kni90] Knister, M.J. and Prakash, A., DistEdit: A distributed toolkit for supporting multiple group
editors. In Proceedings of ACM CSCW’90 Conference on Computer Supported Cooperative
Work,, pages 343–355, Los Angeles, California, October 7–10, 1990.

[Kra88] Krasner, G.E. and Pope, S.T. (1988), A cookbook for using the model-view-controller user
interface paradigm in Smalltalk-80. Journal of Object Oriented Programming, 1(3):26–49,
August/September 1988.

[Lau90a] Lauwers, J.C. and Lantz, K.A., Collaboration awareness in support of collaboration trans-
parency. In Proceedingsof the ACM SIGCHI’90 Conferenceon Human Factors in Computing
Systems, pages 303–211, Seattle, Washington, April 1–5, 1990.

GROUPWARE TOOLKITS FOR SYNCHRONOUS WORK 167

[Lau90b] Lauwers, J.C., Joseph, T.A., Lantz, K.A. and Romanow, A.L., Replicated architectures for
shared window systems: A critique. In Proceedings of the ACM COIS’90 Conference on
Office Information Systems, pages 249–260, Boston, Mass., April 25–27, 1990.

[Lee96] Lee, J.H., Prakash, A., Jaeger, T. and Wu, G., Supporting multi-user, multi-applet workspaces
in CBE. In Proceedings of the ACM CSCW’96 Conference on Computer Supported Cooper-
ative Work,, Boston, Mass., November 16–20, 1996.

[Mac94] Macedonia, M.R. and Brutzman, D.P., MBone provides audio and video across the Internet.
IEEE Computer, 27(4):30–36, IEEE Press, 1994.

[Mac99] Mackay, W.E., Media spaces: Environments for informal multimedia interaction In
Beaudouin-Lafon, M. (Ed.), Computer Supported Cooperative Work, Trends in Software Se-
ries 7:55–82. John Wiley & Sons, Chichester, 1999.

[Mal92] Malone, T.W., Lai, K.Y. and Fry, C., Experiments with Oval: A radically tailorable tool for
cooperative work. In Proceedings of the ACM CSCW’92 Conference on Computer Supported
Cooperative Work, pages 289–297, Toronto, Canada, October 31–November 4, 1992.

[Man95] Manohar, N.R. and Prakash, A., The session capture and replay paradigm for asynchronous
collaboration. In Proceedings of the ECSCW’95 Fourth European Conference on Computer
Supported Cooperative Work, pages 149–164, September 1995.

[Mit96] Mitchell, A., Communications and shared understanding in collaborative writing. M.Sc.
Thesis, Department of Computer Science, University of Toronto, Canada, 1996.

[OGr96] O’Grady, T., Flexible data sharing in a groupware toolkit. M.Sc. Thesis, Department of
Computer Science, University of Calgary, Calgary, Alberta, Canada. November 1996.

[Ous94] Ousterhout, J., Tcl and the Tk Toolkit. Addison Wesley, Reading, Mass., 1994.
[Pat90] Patterson, J. F., Hill, R. D., Rohall, S. L. and Meeks, W. S., RendezVous: An architecture

for synchronous multi-user applications. In Proceedings of the CSCW’90 Conference on
Computer Supported Cooperative Work, pages 317–328, Los Angeles, California, October
7–10, 1990.

[Pat91] Patterson, J.F., Comparing the programming demands of single-user and multi-user applica-
tions. In Proceedings of the UIST’92 Symposium on User Interface Software and Technology,
pages 87–94, Hilton Head, South Carolina, November 11–13, 1991.

[Pat94] Patterson, J.F., A taxonomy of architectures for synchronous groupware applications. Paper
presented to the Workshop on Software Architectures for Cooperative Systems, held as part of
the ACM CSCW’94 Conference on Computer Supported Cooperative Work, 1994.

[Pat95] Patel, D. and Kalter, S.D., Commercializing a real-time collaborative toolkit. In S. Greenberg,
S. Hayne and R. Rada (Eds.), Groupware for Real Time Drawing, A Designer’s Guide, pages
198–208, McGraw-Hill Europe, 1995.

[Pat96] Patterson, J.F., Day, M. and Kucan, J., Notification servers for synchronous groupware. In
Proceedings of the ACM CSCW’96 Conference on Computer Supported Cooperative Work,
Boston, Mass., November 16–20, 1996.

[Pen95] Pendergast, M., GroupGraphics: Prototype to product. In S. Greenberg, S. Hayne and R. Rada
(Eds.), Groupware for Real Time Drawing, A Designer’s Guide, pages 209–227, McGraw-
Hill Europe, 1995.

[Pra92] Prakash, A. and Knister, M.J., Undoing actions in collaborative Work. In Proceedings of
the ACM CSCW’92 Conference on Computer-Supported Cooperative Work, pages 273–280,
Toronto, Canada, October 31–November 4, 1992.

[Pra94] Prakash, A. and Shim, H.S., DistView: Support for building efficient collaborative ap-
plications using replicated objects. In Proceedings of the ACM CSCW’94 Conference on
Computer-Supported Cooperative Work, pages 153–164, Chapel Hill, North Carolina, Octo-
ber 22–26, 1994.

[Pra99] Prakash, A., Group editors. In Beaudouin-Lafon, M. (Ed.), Computer Supported Cooperative
Work, Trends in Software Series 7:103–133. John Wiley & Sons, Chichester, 1999.

[Ros92] Roseman, M. and Greenberg, S., GroupKit: A groupware toolkit for building real-time con-
ferencing applications. In Proceedings of the ACM CSCW’92 Conference on Computer Sup-
ported Cooperative Work, pages 43–50, Toronto, Canada, October 31–November 4, 1992.

[Ros93] Roseman, M. and Greenberg, S., Building flexible groupware through open protocols. In Pro-
ceedings of the ACM COOCS’93 Conference on Organizational Computing Systems, pages
279–288, Milpitas, California, November 1–4, 1993.

168 GREENBERG and ROSEMAN

[Ros94] Roseman, M. and Greenberg, S., Registration for real time groupware. Research Report
94/533/02, Department of Computer Science, University of Calgary, Alberta, Canada, 1994.

[Ros96a] Roseman, M. and Greenberg, S., Building real time groupware with GroupKit, a groupware
toolkit. ACM Transactions on Computer–Human Interaction, 3(1):66–106, March 1996.

[Ros96b] Roseman, M. and Greenberg, S., TeamRooms: Network places for collaboration. In Proceed-
ings of the ACM CSCW’96 Conference on Computer Supported Cooperative Work, Boston,
Mass., November 16–20, 1996.

[Sch86] Scheiffler, R.W. and Gettys, J., The X-Windows system. ACM Transactions on Computer
Graphics, 5:79–109, 1986.

[She92] Shen, H. and Dewan, P., Access control for collaborative environments. In Proceedings of
the ACM CSCW’92 Conference on Computer Supported Cooperative Work, pages 51–58,
Toronto, Canada, October 31–November 4, 1992.

[She90] Shepherd, A., Mayer, N. and Kuchinsky, A., Strudel — an extensible electronic conversation
toolkit. In Proceedings of ACM CSCW’90 Conference on Computer-Supported Cooperative
Work, pages 93–104, Los Angeles, California, October 7–10, 1990.

[Smi89] Smith R. B., O’Shea T., O’Malley C., Scanlon E. and Taylor, J., Preliminary experiences with
a distributed, multi-media, problem environment. In Proceedings of the EC-CSCW ’89 1st
European Conference on Computer Supported Cooperative Work, Gatwick, UK, September
13–15, 1989.

[Smi93] Smith, G. and Rodden T., Using an access model to configure multi-user interfaces. In Pro-
ceedings of the ACM COOCS ’93 Conference on Organizational Computing System, pages
289–298, Milpitas, California, November 1–4, 1993.

[Tan91] Tang, J.C., Findings from observational studies of collaborative work. International Journal
of Man–Machine Studies, 34(2):143–160, 1991. Republished under the same title in Saul
Greenberg, editor, Computer Supported Cooperative Work and Groupware, Academic Press.

[Tat91] Tatar D. G., Foster G., and Bobrow D. G., Design for conversation: Lessons from Cognoter.
International Journal of Man–Machine Studies, 34(2):185–210, February 1991. Republished
under the same title in Saul Greenberg, editor, Computer Supported Cooperative Work and
Groupware, Academic Press.

[Tay95] Taylor, R.N., Nies, K.A., Bolcer, G.A., MacFarlane, C.A., Anderson, K.M. and Johnson, G.F.,
Chiron-1: A software architecture for user interface development, maintenance, and run-time
support. ACM Transactions on Computer-Human Interaction, 2(2):105–144, June 1995.

[Tol95] Tolone, W., Kaplan, S. and Fitzpatrick, G., Specifying dynamic support for collaborative
work within wOrlds. In Proceedings of the ACM COOCS ’95 Conference on Organizational
Computing System, pages 55–67, Mipitas, California, August 13–16, 1995.

[Tou94] Tou, I., Berson, S., Estrin, G., Eterovic, Y. and Wu, E., Prototyping synchronous group appli-
cations. IEEE Computer, 27(5):48–56, May 1994.

[Tre94] Trevor, J., Rodden, T. and Mariani, J., The use of adaptors to support cooperative sharing. In
Proceedings of the ACM CSCW’94 Conference on Computer Supported Cooperative Work,
pages 219–230, Chapel Hill, North Carolina, October 22–26, 1994.

[Urn94] Urnes, T. and Nejabi, R., Tools for Implementing Groupware: A Survey and Evaluation. Tech-
nical report CS-94-03, Department of Computer Science, York University, Toronto, Canada,
1994.

[Wil95] Wilson, B., WSCRAWL 2.0: A shared whiteboard based on X-Windows. In S. Greenberg,
S. Hayne and R. Rada (Eds.), Groupware for Real Time Drawing, A Designer’s Guide, pages
129–141, McGraw-Hill Europe, 1995.

7

Architectures for Collaborative
Applications

PRASUN DEWAN

University of North Carolina

ABSTRACT

The architecture of a collaborative application is characterized by the modules, layers,
replicas, threads, and processes into which the application is decomposed; the awareness in
these components of collaboration functions; and the interaction among these components.
It influences the function, fairness, fault tolerance, ease of modification, and performance
of the application, the amount of programming effort required to implement the applica-
tion, and the reuse of existing single-user code. This chapter presents a design space of ex-
isting and potential collaboration architectures and discusses the consequences of choosing
different points in this space.

7.1 INTRODUCTION

The architecture of a software application characterizes the components of the application,
the function implemented by each component, and the interaction among these components
[ShaG96, Kaz94]. It is an important issue in the design of the application since it influences
the performance, ease of modification, and other properties desired by users and programmers
of the application. It is also a difficult issue to resolve since decomposing a large problem
into smaller parts is a challenging task: there are a number of different ways in which this
decomposition can be done, and the consequences of choosing different decompositions are
not always apparent.

For these reasons, a new discipline of computer science has emerged to help programmers
choose architectures for software applications [ShaG96]. The architectural techniques devel-
oped so far either apply to general software applications or are tied to specific functionality
such as database management [ShaG96] and user-interface support [ShaG96, Bas93]. This

Computer Supported Cooperative Work, Edited by Beaudouin-Lafon
c
 1999 John Wiley & Sons Ltd

170 DEWAN

chapter addresses the domain of collaborative applications by describing the influence of col-
laboration support on the architecture of an application.

Five kinds of components of a collaborative application are considered: modules, layers,
threads, processes, and replicas. These components occur in both collaborative and non-
collaborative applications but the collaboration domain introduces special techniques for de-
composing an application into these components. The exact functionality of these components
is not identified, since it depends on application semantics. Instead, they are classified accord-
ing to whether or not they implement collaboration-specific functionality. Similarly, the exact
events communicated among these components are not identified. Instead, they are distin-
guished only by whether or not they carry collaboration-specific information.

The design space of collaboration architectures is characterized by presenting a generic
architecture that captures properties common to the points in this design space, and a set of
dimensions that represent the differences among these points. Different choices along each
of these dimensions are identified and evaluated by discussing their influence on properties
desired by programmers/users. Several generic properties are considered such as ease-of-
modification and performance that have been identified by previous work on software ar-
chitectures. In addition, the special case of reuse of existing single-user code, an important
goal in the design of collaborative applications, is considered.

To better explain the scope of this work, it is useful to identify what we are not addressing
here. We are not considering the functionality of a collaborative system, which is covered in
[Dew94a, Ols93] and the accompanying discussion on shared editors in Chapter 5 of this book
[Pra99]. Moreover, we are not describing tools/infrastructures for implementing collaborative
applications, some of which are surveyed in the accompanying discussions on toolkits and
infrastructures in Chapters 6 and 8 in this book [Gre99, Dou99]. The process of developing
a collaborative application is considered to consist of three main steps: 1) design the func-
tionality, 2) decompose the application into components, and 3) use tools for implementing
the components. We shall be looking at only step 2 of this process. Naturally, these steps are
not independent. For instance, the choice of the architecture may depend on the functionality
desired, and a tool is typically tied to a particular architecture. We will look at these relation-
ships but will not examine in depth the functionality and tools issues, per se. A preliminary
discussion of these concepts was presented at a conference [Dew95].

The remainder of this discussion is organized as follows. I first present a model of col-
laboration that defines the kind of collaborative applications considered. Next I describe the
generic collaboration architecture for implementing these applications. I then present the var-
ious dimensions along which collaboration architectures differ and discuss the tradeoffs to be
made in choosing different points along these dimensions. These dimensions are used to clas-
sify architectures supported by several existing collaboration tools, and I distill the discussion
about the tradeoffs by giving a set of architectural design rules that should be followed when
implementing collaborative applications, which are in the spirit of those given in [ShaG96]
for user-interface support. Conclusions and directions for future work complete the chapter.

7.2 COLLABORATION MODEL

To identify architectures of collaborative applications, we first need a model of collabora-
tion that characterizes the functionality supported by these applications. We use a collabora-
tion model based on the notion of generalized editing [Dew90, Dew92, Dew94a]. Figure 7.1

ARCHITECTURES FOR COLLABORATIVE APPLICATIONS 171

User 1 User 2

Application

Editing
Commands

Editing
Commands

Single−User
Semantics

Collaboration
Semantics

Active Rendering Active Rendering

Figure 7.1 Editing-based collaboration model

illustrates the model. According to this model, an application can be considered an editor of
semantic objects defined by it. A user interacts with the application by editing a rendering 1

of these objects using text/graphics/multimedia editing commands. Thus, interaction with an
interactive application is similar to interaction with a text or graphics editor. The difference
is that a rendering is “active” that is, changes to it can trigger computations in the application
and conversely, it can be modified in response to computations invoked by the application.

As shown in Figure 7.1, each user perceives a different rendering of the semantic objects.
However, the actions of the users are not isolated — they are linked by the application to
facilitate and control collaboration among them. For the purposes of this discussion, we will
divide the semantics of a collaborative application into single-user semantics, which define
the feedback users receive in response to commands entered by them or actions taken by the
application autonomously (in response to internal state changes or messages from other ap-
plications); and collaboration semantics, which define the feedback users receive in response
to commands entered by others.

This is a simple but general model of collaboration. It models the single-user semantics of a
variety of contemporary single-user and collaborative applications. A text/graphics editor can
be considered an editor of a text/graphics file; a language-oriented editor can be considered
an editor of a program syntax tree; a spreadsheet can be considered an editor of a matrix that
responds to an editing of an entry in the matrix by updating related entries; and a debugger
can be considered an editor of a debugging history that responds to the insertion of a new
command in the history by computing the command and appending the output to the history.

It also models the collaboration semantics of a variety of contemporary collaborative appli-
cations. A “same-time” (“different-time”) application is an editor that links (does not link) its
renderings in real-time; a “same-place” (“different-place”) application is an editor that creates
(does not create) all renderings at the same site; a WYSIWIS 2 (non-WYSIWIS) application is

1 On the suggestion of one of the referees, I use the term “rendering” here instead of “display” in order to include
non textual/graphical presentations of objects such as audio/video renderings of data.

2 What You See Is What I See [Ste87].

172 DEWAN

User 1 User 2

(Semantics)

(Base)

Layer L

Input Output

(Branch Point) (Branch Point)
Layer R

Layer R + 1

Layer R

Layer 1
(Workstation)

Layer 1
(Workstation)

Layer 2 Layer 2

Figure 7.2 Generic architecture

an editor that ensures that the renderings are identical (different); and a workflow application
is an editor that responds to editing commands by initiating the next step in the workflow.

Thus, at some level of abstraction, any collaborative application can be considered a gener-
alized editor. 3

7.3 GENERIC ARCHITECTURE

Figure 7.2 shows a generic collaboration architecture for implementing the model described
above. It is a generalization of the architecture Patterson proposed at the CSCW’94 work-
shop on “distributed systems, multimedia and infrastructure support in CSCW” [Dew94b]
that makes fewer assumptions about collaborative applications. As we shall see later, this
architecture can be instantiated to multiple specific architectures.

The architecture assumes that a user’s input/output is processed by a hierarchy of layers.
A lower-level layer (that is, a layer closer to the user) manages objects that are interactors
of objects in the immediately higher-level layer. I will refer to the latter as abstractions of
the former. An interactor of an abstraction creates a presentation of the abstraction, which
contains a transformation of the information in the abstraction (e.g. a text field representing
an integer, or a bitmap representing a text field) plus some additional information serving
as “syntactic sugar” (e.g. a label field or a window scrollbar). Thus, perceptible renderings of
abstractions are created by applying the presentation operator successively to their interactors,
and the interactors of these interactors, and so on. An abstraction can have a variable number
of interactors, which may change dynamically as users create or delete renderings of the
abstraction.

3 We refer to generalized editors that perform editing commands without computing additional application-specific
side effects as simply editors. These applications are addressed in depth in Chapter 5 of this book [Pra99].

ARCHITECTURES FOR COLLABORATIVE APPLICATIONS 173

The layers communicate with each other using events. Often, this term implies that the
communication is sent asynchronously by the sender to the receiver. However, we will use it
here in a more general sense and allow the information to be retrieved synchronously from the
sender by the receiver. We divide events of a collaboration application into interaction events
and collaboration events based on whether they support single-user or collaboration seman-
tics. An interaction event may be an output event or an input event depending on whether it is
sent to a lower- or upper-level layer.

Abstractions send output events to their interactors and receive input events from the latter.
Output events received by objects from their abstractions may be transformed into lower-level
events before they are sent to their interactors. Conversely, input events received by objects
from their interactors may be transformed into higher-level events before they are sent to their
abstractions. Not all input events received by interactors need to be sent to their abstractions
— in particular, events that request manipulation of local syntactic sugar. Moreover, not all
output events transmitted down by interactors are triggered by output events received from
their abstractions. These include not only those events that change local syntactic sugar but
also those that generate local echo/feedback in response to requests for changing the higher-
level state in the abstraction.

A collaboration event may be a copy or extension of an interaction event or it may be an
entirely new kind of event. It may be sent not only to a lower-level and upper-level layer but
also a cross layer, that is a layer in an another branch, as shown in the figure.

Some levels in this architecture are shared while others are versioned or replicated. A
shared level is associated with a single, shared layer that processes the input/outputof multiple
users of the application, while a versioned or replicated level is associated with a private
layer for each user of the application, which processes the input/output of only that user and
collaboration events concerning the user. An object in a private layer is private while an object
in a shared layer is shared by multiple users. We refer to the collection of all private objects
of a user and the shared objects accessible to the user as the interaction state of that user.
All levels below a private level are constrained to be private levels and all levels above a
shared level are constrained to be shared levels. Thus, the architecture defines a tree of layers
rather than a general graph. We refer to this tree as a protocol tree in analogy with the related
networking concept of a protocol stack. We refer to the lowest shared layer as the base, the
highest versioned layers as branch points, the base and all layers above it as the stem, and a
branch point and all the layers below it as a branch of the architecture. Moreover, we refer to
all private layers at a certain level as peers or replicas of each other.

An abstraction may have interactors in zero or more replicated layers. We refer to the dif-
ferent interactors of an abstraction as replicas, peers, or versions. In general, they can create
different logical presentations of the abstraction. However, in most current collaboration ar-
chitectures, they create different physical replicas (for different users) of the same logical
presentation. It is for this reason, we have used the term “replica” for a peer interactor and
layer, though strictly speaking, the term “version” is more general. In the rest of the discus-
sion, we will use these terms interchangeably. It is important to note that an interactor in a
layer may not have a peer interactor in a peer layer, since not every layer creates an interactor
for an abstraction in the layer above.

Abstractions and interactors may not only transform interaction events but also control the
interaction by checking access rights, consistency, and other constraints. Unlike the Smalltalk
Model–View–Controller paradigm [Kra88] but like the abstraction-view paradigms supported
by InterViews [Lin89], Rendezvous [Hil94], PAC [Cou87], and several other frameworks,

174 DEWAN

we do not treat the transformation and control components as separate objects. Similarly,
unlike the Clover model [Sal95], we do not differentiate among the different collaboration
functions implemented by an abstraction or interactor, clubbing them all in one multi-function
object. Furthermore, unlike the PAC model, we do not capture the structure of a hierarchical
abstraction or interactor, modelling it as a single unit. We do not assume that an abstraction
or interactor is actually implemented as a programming language object. Similarly, we do not
assume that an architectural event is actually implemented as a programming event. It may
be sent in response to the evaluation of a programming constraint or some other higher-level
computation that is not explicitly aware of events. Programming issues are beyond the scope
of this discussion since we are focusing here only on architectural issues.

The bottom-most layers in this architecture are the workstation (operating system and hard-
ware) layers managing the screen and input devices attached to a workstation. The workstation
layers are usually replicated to allow the collaborators to use different workstations. A notable
exception is MMM [Bie91], which allows a single workstation layer to be shared by multiple
users concurrently manipulating the same screen using different input devices. We refer to
the topmost layer in the architecture as the semantic layer and the abstractions in this layer
as semantic objects. Unlike a lower-level object, a semantic object is not itself an interactor
for another object. However, like an interactor, a semantic object in a replicated layer may
have peers or replicas in peer layers. Peer semantic objects are (the highest-level) computer
representations of the same user-level abstract object.

Not all application modules are layered in the protocol tree shown in the figure. We refer
to such modules as external modules. The layers and modules in a collaboration architecture
include both applicationcomponents implemented by the application programmer, and system
components provided by an infrastructure or tool. When characterizing the “architecture” of
a collaboration tool, we will, in fact, be characterizing those aspects of the architectures of
clients of the tool that are defined by the tool. An individual client may refine this architecture
by adding further layers and modules.

7.4 DESIGN SPACE

The generic architecture given above defines a design space of collaboration architectures that
differ in the way they resolve several important issues:

� Single-User Architecture: What is the architecture for implementing single-user seman-
tics?

� Concurrency: Which components of the application can execute concurrently?
� Distribution: Which of these components can execute on separate hosts?
� Versioning/Replication: Which of these components are replicated?
� Collaboration Awareness: Which of these components are collaboration aware, that is,

implement collaboration semantics?

Specific answers to these questions cannot be given here, since they would depend on par-
ticulars of the application. Instead, general constraints or approaches for resolving these issues
are presented along with the consequences of using these approaches.

In the discussion, we consider two decompositions of a collaborative application: by com-
putation and concurrency unit. The first one, used in Figure 7.2, assumes that an application is
divided into one or communicating modules, a module may be composed of one or more lev-

ARCHITECTURES FOR COLLABORATIVE APPLICATIONS 175

Computation Units Concurrency Units

Application

LevelLevel

LayerLayer

(Replica)
Layer

(Replica)

Application

Thread Thread Thread

Process Process

Module Module

Figure 7.3 Decomposing an application by computation and concurrency units

els, and each level consists of one or more replicated layers. In the rest of the discussion, we
shall often use the terms “level” and “layer” interchangeably, especially when a level consists
of a single layer. The second one assumes that an application is decomposed into one or more
distributable processes, and each process forks one or more concurrent threads. The differ-
ence between a process and a thread is that the former is a heavyweight unit of concurrency,
associated with its own address space, which can be created on different hosts. In contrast, all
threads within a process share a common address space and host, though they may execute on
different processors on the host. Figure 7.3 shows the two decompositions of an application.
As shown later, these two kinds of decompositions are not independent in the architectures
presented below.

7.4.1 Single-User Architecture

The single-user architecture or basis of a multiuser architecture describes those aspects of the
latter that implement single-user semantics. In this discussion, of course, we are concerned
mainly with those aspects that influence/are influenced by collaboration semantics. We con-
sider single-user architectures here because the design of the collaborative aspects is often
dependent on the basis.

Strictly speaking, the basis is a view of a collaboration architecture that may not have
an independent existence. In practice, however, collaboration architectures are designed by
extending existing single-user architectures. A large variety of single-user architectures have
been devised in the context of single-user user-interface software. We will focus here only
on those that are known to have formed the bases of existing collaboration architectures.
Our architectural descriptions are a set of assumptions regarding the nature of a single-user
architecture. Thus, they apply to a family of architectures rather than a specific architecture.

The most general architecture is one that makes no assumption about the nature or number
of application layers. By making no assumptions about an application, we can cover arbitrary
applications, but cannot reason about any of them. The architecture of these applications can
be described as a single level of Figure 7.2 that contains arbitrary abstractions/interactors.

176 DEWAN

Window

User

Model

View

Widget

Screen

Figure 7.4 Common user-interface layers

It is possible to subclass this architecture in several ways depending on the assumptions we
make about the kinds of user-interface layers used. Four main kinds of general layers have
been identified so far: window, widget, view, and model [Mye95, Kra88], which would have
increasing levels in a layered architecture that includes them (Figure 7.4).

An architecture that supports one of these levels does not necessarily have all the potential
levels below it. For instance, a view layer may be implemented directly on top of the worksta-
tion without defining a widget layer. We can distinguish among these architectures by defining
a layering degree, L, which gives the number of software layers in the architecture. For in-
stance, TeamWorkStation [Ish90] has a layering degree of 2, since it assumes workstation and
application layers (see also Chapter 4 in this book [Ish99]); XTV [Abd94], Rapport [Ens88],
Shared X [Gar94], and MMConf [Cro89] have layering degrees of 3, since they assume an
additional window layer; GroupKit [Ros96] has a layering degree of 4, since it assumes an
additional widget layer (see also Chapter 6 in this book [Gre99]); and Suite [Dew92], Weasel
[Gra92], and Clock [Gra96] have a layering degree of 5, since they assume an additional view
layer. The application layers in all cases may be further subdivided into other layers. The lay-
ering and other degrees we associate with a tool (infrastructure) give the minimum degrees of
client applications that use the tool. As we shall see later, the layering degree of an architecture
bounds its awareness, replication, concurrency, and distribution degrees.

It is possible to further specialize these architectures by classifying them according to the
specific instances of the abstract layers used in their implementation. For instance, an early
version of GroupKit was based on InterViews widgets [Lin89] while the current one is based
on Tk widgets [Ous94]. However, we will not distinguish among these specific instances,
since from the architectural point of view, these differences are not important.

ARCHITECTURES FOR COLLABORATIVE APPLICATIONS 177

7.4.2 Collaboration Awareness

We discuss now different approaches to transforming a single-user layering to a multiuser
one.

One approach is to keep the exact same set of layers and add collaboration functionality
to one or more of these layers. This approach is used in many existing architectures includ-
ing Shared X, which extends the X Window server, and Suite, which extends the view layer.
However, it supports limited reuse of existing software since it requires changes to the layers
that are made collaboration-aware. Moreover, all implementations of a layer must be changed
even if they provide the same interface. It also supports limited modifiability in that a single-
layer implements both the single-user and collaboration semantics. (These problems may be
reduced, but not eliminated, if these layers are coded in an object-oriented programming lan-
guage, since the changes may be localized in high-level classes and automatically inherited
by unchanged lower-level classes.) Finally, it is not viable if the source code of the layer to be
changed is not available.

Another approach is to put a pseudo-layer between two existing layers of the single-user ar-
chitecture. To each of these two layers, the pseudo-layer provides an extension of the interface
the other one provided. As a result, it accepts all of the input and output events sent to it by the
layers below and above it, respectively. Depending on the nature of the interface between the
two existing layers, the addition of the pseudo-layer may require recompiling and/or relinking
of the existing layers. However, unlike other approaches, it does not require changes to the
original layers. Moreover, it allows the same pseudo-layer to be added between multiple im-
plementations of the two layers, as long as these implementations provide the same interface.
It also supports increased modifiability since a pseudo-layer does not have to be changed in
response to changes in the implementations of the original single-user layers. This approach
is supported in XTV, which inserts a pseudo-layer between an X server and client, and COLA
[Tre94] and DistView [Pra94], which add pseudo-layers at higher-levels (see also Chapter 5
in this book [Pra99]).

The pseudo-layer approach has two main drawbacks: First, all communication between the
two layers of the original architecture must now pass through an extra layer, which may reside
in a separate address space. For instance, in XTV, all communication between an X server and
client must pass through a pseudo X server. Second, a pseudo-layer may need to duplicate the
data structures and code of the original layers. For instance, an X pseudo-server that allows
only certain windows to be shared must recreate the window tree hierarchy maintained by the
X server.

Adding a pseudo-layer does not change the layering degree of the architecture, since the
layer is not a “real” layer in that it does not transform its input or output. A pseudo-layer
can be considered as logically belonging to the next lower layer, and should be replicated,
threaded, or distributed with this layer.

Which levels of the architecture should be made collaboration-aware; that is, at which levels
must collaboration-awareness be added to existing layers or new pseudo-layers introduced?
One approach is to localize these modules at a single level. Assuming this approach is used,
we need to choose the collaboration-aware level. There are several advantages of choosing
a lower level. First, a lower level is typically common to a larger number of applications. 4

For instance, the X Window System is used by both Suite and non-Suite applications, while
the Suite view layer is used only by the subset of X applications that are Suite applications.

4 This is not always the case since a higher-level layer might be ported to multiple lower-level layers.

178 DEWAN

Direct Modification

1−User Layer

M−User Layer

Pseudo−Layer

1−User Layer

Pseudo Layer

1−User Layer Awareness Level

Figure 7.5 Modifying a 1-user layer vs. adding a new pseudo-layer

As a result, adding collaboration-awareness at a lower level typically provides collaboration
support for a larger number of applications, since it is available not only to direct clients of
the layer but also clients of higher-level layers implemented on top of this layer. Second, a
lower-level layer can give users earlier feedback than higher-level layers. In general, there
is a delay between the time information is received by a lower-level layer and the time it is
transmitted to a higher-level layer. For instance, a widget layer may transmit edits to a form
item to the higher-level layer only when the user completes the item. Hence, the lower-level a
collaboration-aware layer is, the earlier it can distribute a user’s edits to others and point out
access and concurrency control violations. Earlier feedback allows users to collaborate more
synchronously and reduces the amount of work that may have to be undone. Finally, under this
approach higher-level layers are not required to process interaction events from lower-level
layers (see below), which makes them more modular and portable since they are dependent
on handling fewer kinds of events from lower levels.

On the other hand, there are two important, related advantages of adding collaboration sup-
port at higher-levels. First, coupling, locking, access control, and other collaboration functions
can operate on units that are more meaningful to the user/programmer. For instance, unlike a
window layer, a view layer can separately lock the different views displayed in a window. Sec-
ond, a higher collaboration-aware level can, if it is replicated, typically, provide more degrees
of sharing among peers at that level. To explain why, we make the following two observations.
The sharing of peer interactor objects implies the sharing of the next-level abstraction objects,
assuming that abstractions are kept consistent with their interactors. However, the sharing of
an abstraction does not imply sharing of its interactors, since the peer interactors may trans-
form the shared abstraction in different ways and add different kinds of syntactic sugar. Thus,
a collaboration-aware layer can allow a) no sharing between peer abstractions, b) sharing of
peer abstractions without sharing of lower-level interactors, and c) sharing of lower-level in-
teractors if appropriate input events can be solicited from the lower-level layers. For instance,
Suite can allow a) no sharing between peer views, b) sharing of peer views without sharing
of the windows displaying them, and c) sharing of peer windows by soliciting all X events. In
contrast, a lower collaboration-aware level cannot allow sharing of higher-level abstractions
without sharing of their interactors at this level.

In the higher-level case, sharing of lower-level interactors is achieved, at the cost of in-
creasing the interaction awareness in the higher-level layer; that is, the awareness of interac-

ARCHITECTURES FOR COLLABORATIVE APPLICATIONS 179

Degree LDegree 1

Degree 2

Workstation−Awareness Application−Awareness

Window−Awareness
Partitioned−Awareness

Figure 7.6 Approaches to collaboration-awareness

tion events of lower-level layers. For instance, to allow sharing of lower-level interactors such
as windows, multi-user Suite is forced to handle several low-level X events such as window
movement and resize events, which single-user Suite was unaware of.

We associate a collaboration architecture with an awareness degree, which is the level
of the highest layer that is collaboration-aware. The value of this degree ranges from 1 in
TeamWorkStation, which provides all collaboration support at the workstation level; to 5 in
DistView, which requires the model layer to be collaboration-aware.

Since there are benefits of adding collaboration-awareness at both lower and upper levels,
it is useful to consider an approach that partitions this awareness among multiple layers. Such
an approach could offer the benefits of both the lower-level and higher-level approaches. In
particular, it can offer logical collaboration units, flexible sharing, and low interaction aware-
ness. However, unlike the localized approach, this approach would require providers of multi-
ple modules to address collaboration, coordinate their activities, and often implement similar
functionality (such as remote invocation) multiple times. This approach is offered in MMConf
by making both the window and application layers collaboration-aware, and in Suite, by al-
lowing both the view and application layers to be collaboration-aware. Figure 7.6 illustrates
the various approaches to collaboration awareness.

7.4.3 Versioning and Replication

The versioning/replication architectural dimension determines the base and branch points in
the generic architecture of Figure 7.2. As mentioned before, all layers below a base are repli-
cated. We can thus associate an architecture with a replication degree, which is the level of
the branch point. Two extreme approaches to replication are the centralized and replicated
approaches. The former creates no replicated level while the latter creates no base level. In
between these two approaches, several semi-replicated approaches are possible, which choose
different levels for the base layer. Thus, the replication degree of an architecture withL levels
is in the range 0 to L (Figure 7.7).

180 DEWAN

Degree 0
Semi−Replicated

Hybrid
Degree L−1 Degree L

Centralized

Replicated

0 < Degree < L

Figure 7.7 Replication approaches

There are important advantages of choosing a higher replication degree. As we shall see
later, the replication degree of an architecture bounds its distribution and concurrency de-
grees. Thus, a higher replication degrees allows more distribution and concurrency benefits
(discussed later). Moreover, a higher replication degree allows more divergence in the interac-
tion states of the users since fewer levels are shared. For instance, if the view level is shared,
then all users are constrained to see the same views of models. A higher degree of replication
allows but does not force more divergence since it is possible for peer objects to share state
via collaboration events, as mentioned in the previous section.

On the other hand, replicating a level requires a mechanism for keeping the peer layers at
that level consistent. If these layers are meant to be exact replicas, then often a tool can auto-
matically provide this mechanism. Automatic consistency among the objects in exact replicas
is typically achieved by executing the same set of operations on these objects (see Chapter 5
in this book [Pra99]). For instance, if a user presses a button widget, then this operation is
also invoked on all peers of the widget that are meant to be exact replicas. However, multiple
invocations of an operation lead to several problems:

� Inefficiency: They can lead to serious efficiency problems if the operation is an expensive
one.

� Access bottleneck: They may try to simultaneously access a central resource (such as a file)
thereby causing an access bottleneck.

� Incorrect writes: They may modify the same central resource, thereby causing the same
value to be written multiple times. The access and write problems would be eliminated in
a system that replicated all resources.

ARCHITECTURES FOR COLLABORATIVE APPLICATIONS 181

� Incorrect side effects: They may send mail, print documents, and perform other side effects
multiple times.

The last two problems can be averted in collaboration-aware peer layers that ensure (based,
for instance, on user identities) that only one of these layers performs the write and other side
effects.

Not all layers perform operations with one or more of these properties. Typically, it is
the topmost layer — the one containing semantic objects — that performs such operations.
Therefore, several systems adopt a special case of the semi-replicated architecture that keeps
the semantic layer centralized and the lower-level layers replicated. We refer to this architec-
ture as the hybrid architecture. Given an application with L levels, the replication degree of
the hybrid architecture for this application is L � 1.

Since replication has both important advantages and disadvantages, there is substantial vari-
ation in the replication degrees of collaborative applications. Another cause for this variation
is the variation in the level of the collaboration tools used for automatically implementing
replication. A collaboration tool can either replicate all or none of the layers in its client.
Since there are important disadvantages of replicating the topmost layer, typically the tool
will replicate its layers but not those of its client. As a result, tools at different levels will offer
different replication degrees.

Systems supporting the hybrid architecture include Rendezvous, Suite, Weasel and Clock.
Systems that offer full replication include GroupKit and GroupDesign [Kar93], while the
only one known to offer pure centralization is MMM. TeamWorkStation supports a replica-
tion degree of 1. A window-based architecture such as XTV and Rapport that centralizes its
client has been traditionally called a centralized architecture [Lau90]. However, under our
terminology, it is a semi-replicated architecture with degree 2, since the workstation and win-
dow layers are replicated. Because of the replication degree supported by them, MMM/Team
Workstation/XTV/Suite cannot allow screen/windows/views/models to diverge. GroupKit and
GroupDesign allow all of these layers to diverge, but require collaboration-awareness to solve
the problems with invoking the same operation on multiple replicas.

7.4.4 Concurrency

Decomposing an application into multiple threads is important in single-user applications
since it allows these threads to execute simultaneously on a multiprocessor system. It is par-
ticularly important in multimodal applications where the devices for different I/O modes such
as audio, video, mouse, and keyboard can be managed by different threads. The multi-user
case offers additional opportunities and reasons for creating multiple threads. Typically, the
users of a collaborative application can input and output data concurrently. Thus, the dif-
ferent branches created for these users are potential concurrency units that can be executed
simultaneously by different processors of a multiprocessor system. Even in a single-processor
system, creating separate threads for these branches is important. It supports fair (preemptive)
scheduling among these threads by ensuring that a computation triggered in a branch by the
actions of a user does not lock out other users for an unbounded time.

However, there are reasons why a complete branch may not be associated with its own
thread. The system support needed to create threads may not be available to programmers.
Moreover, programmers may not be willing to put the effort required to create and synchronize
threads. A collaboration tool can automate this task for the layers it knows about but not those
in its clients. Similarly, it may not be possible to assign a thread to a layer without requiring

182 DEWAN

Semi−Concurrent Concurrent
Degree 0 Degree R0 < Degree < R

Sequential

Figure 7.8 Concurrency approaches. The rectangular boxes are layers and the ellipses are threads

changes to the layer since the syntax and semantics of an invocation in the same or different
thread may be different. Thus, the goal of increasing the concurrency may conflict with the
goal of reuse since the former may require changes to source code of an existing layer.

As a result, different architectures may take different approaches to concurrency depending
on how they tradeoff the benefits of concurrency with its drawbacks. To capture differences
among these architectures, we associate them with a concurrency degree, which is a measure
of how many layers in a branch execute in their own thread. An architecture has concurrency
degree, C, if no layer at or below level C shares a thread with a stem layer or a layer in a
different branch. Different layers in a branch may, and typically do, share a common thread.
The concurrency degree of a collaboration architecture ranges from 0 to R, where R is its
replication degree. We refer to architectures with concurrency degree 0 and R as sequential
and concurrent architectures, respectively, and the remaining architectures as semi-concurrent
architectures (Figure 7.8). A sequential architecture must be a centralized architecture. In a
non-centralized architecture, the workstation level is guaranteed to be replicated. A replicated
workstation level (but not other levels) must be distributed, by definition, since a level is
distributed if it resides on multiple workstations. Furthermore, we assume that distributed
layers execute concurrently. Hence no non-centralized architecture is sequential.

All collaboration tools known to the author offer the concurrent approach. Of course, the
replication degrees in these systems may be different, as mentioned before, which causes
variations in the concurrency offered by them. For instance, the concurrency degree in Ren-
dezvous and Suite is 4 and in XTV it is 2. In all existing replicated architectures it is the same
as the layering — and hence replication — degree.

The above discussion identifies a simple approach to introducing concurrency in a collabo-
rative application: assign all branch layers below some levelC to a separate thread. A concur-
rent architecture created using this approach does not necessarily offer the maximum possible
concurrency, which would require an approach that identifies all portions of the application
that could potentially execute concurrently and assigns each of these to a separate thread. We
refer to such an approach as the maximal-concurrent approach. This approach is highly appli-
cation dependent and either requires the programmer to identify the threads, which has proven
to be a tedious, error-prone, and difficult task in general, or the system to automatically per-
form this task, which in general is impossible. Unlike the maximal-concurrent approach, our
approach does not process concurrently the actions in a branch or stem invoked by a single-
user (such as concurrent mouse and key clicks by the same user), or the actions in the stem

ARCHITECTURES FOR COLLABORATIVE APPLICATIONS 183

invoked by different users (such as concurrent key clicks by two independent users handled by
a central layer). However, it does allow the computation of the local feedback in the branches
of different users to be performed concurrently.

Note that the notion of the concurrency degree applies to all collaboration architectures
including those that assign threads based on approaches other than the one given above. How-
ever, it does not capture all concurrency differences among these architectures. For instance,
as mentioned above, a concurrent architecture may or may not be a maximal concurrent ar-
chitecture.

7.4.5 Distribution

Once the threads of an application have been identified, they must be assigned to process
address spaces, which in turn must then be assigned to hosts. Assigning different threads
to multiple address spaces increases fault tolerance since fatal errors in one thread do not
necessarily cause the whole application to fail. This is particularly important in the multi-user
case, since users would like to be protected from the errors of others. If the replicas created
for different users are assigned to different address spaces, then a fatal error in one replica
would not necessarily cause the other replicas to crash.

Distributing different processes to different hosts also allows an address space to be close
to the resources it is accessing the most. Again, this is particularly important in the multi-
user case, since the replicas created for different users need to access different and possibly
widely separated workstations. By executing replicated layers on a local workstation, no re-
mote communication is required to generate the local feedback computed by these layers.
Moreover, events transmitted from these workstations are high-level events generated by the
local layers rather than low-level events generated by the workstation. Typically, a higher-level
I/O event contains less data and is communicated less frequently than a lower-level one, and
thus generates less traffic on the network. For instance, communicating committed changes to
an integer value communicates less data than communicating incremental changes to a slider
representation of it.

On the other hand, distributing portions of an application on different workstations is not
without drawbacks. The distributed parts of the application are not guaranteed to see the same
environment, which can cause problems. For instance, problems would occur if the applica-
tion uses a file name that is not valid at all sites unless the application is site-aware. Moreover,
synchronizing distributed replicas is a difficult problem. Often an event received by a layer
must also be sent to remote replicas to satisfy consistency constraints among them. To en-
sure good response times for the local users, such events must be processed immediately by
the local layers without trying to ensure a global ordering among them. As a result, the dis-
tributed replicas may get inconsistent unless application-specific techniques [EllG89] are used
to transform or abort received events, or the events are guaranteed to commute.

As a result, different architectures take different approaches to distribution depending on
how they tradeoff its communication benefits with its drawbacks. To capture differences
among these architectures, we associate an architecture with a distribution degree, which is
analogous to its concurrency degree. It is a measure of how many layers in a branch can exe-
cute on the local host. An architecture has distribution degree, D, if no layer at or below level
D shares an address space with a stem layer or a layer in a different branch. Different layers
in a branch may, and typically do, share a common address space. The concurrency degree
of a system is always higher than its distribution degree since distributed modules execute

184 DEWAN

Single−Site

Degree 0

Distributed

Degree C
Semi−Distributed

0 < Degree < C

Figure 7.9 Distribution approaches. Ellipses are threads and rectangles are hosts

concurrently. However, it is not the same, since a particular address space can execute multi-
ple threads concurrently. Thus, the distribution degree of a collaboration architecture ranges
from 0 to C, where C is its concurrency degree. We refer to architectures with distribution
degree 0 and C as single-site and distributed architectures, respectively, and the remaining
architectures as semi-distributed architectures (Figure 7.9). A single-site architecture must be
a sequential architecture since distributed modules execute concurrently. Like the maximal-
concurrent approach, it is possible to imagine a maximal-distributed approach that dynam-
ically assigns each application module to the workstation accessing it the ‘most’. However,
such an approach [Jul88] is still a subject of research and requires application-specific support.
Our notion of a distribution degree does not distinguish between those distributed architecture
that offer maximal distribution and those that do not.

The distributed approach determines only how the application is decomposed into pro-
cesses and not how these processes are assigned to hosts. Depending on the workstation and
network speed, it may, in fact, be sometimes beneficial to execute branch layers on a fast re-
mote workstation. The higher the distributiondegree of an architecture, the more the flexibility
in reducing the communication costs.

Not all communication costs go down when a replica is executed on a local host. In partic-
ular, the cost of communicating with remote higher-level and peer layers goes up. However,
assuming that information gets abstracted as it flows upwards and that a collaboration or input
event received by a layer triggers a lower-level output event, the overall communication cost
is reduced. To better understand the logic behind this conclusion, consider Figure 7.10, which
shows the difference between placing replicas, A and A0, on local and central hosts. Consider
how an input IA, to layer A, is processed by the various layers in the architecture. Layer A
produces some local feedback, OAL, sends a collaboration event, CA, to its peer, and an input
event, IB, to the higher-level layer. The higher-level layer, in turn, produces feedback TOB
(which is the total feedback consisting of feedback of B and all of the layers above), which,
in turn, is transformed to TOA by layer A. On receiving CA, layer A0 produces coupling
feedback CAO, and sends an input event IB0 to B0. Layer B0, in turn, produces total feedback
TOB0, which, in turn, is transformed by A0 to TOA0.

Consider the local and central placement schemes shown in Figure 7.10. The difference
between them is in the placement of the replicas — under local placement, replicas A and A0

are placed on the local workstations, while under central placement, they are placed on the
central site. In the local case, events IA, TOA, CAO, TOA0, OAL are transmitted locally, and

ARCHITECTURES FOR COLLABORATIVE APPLICATIONS 185

A A’

IA

B

IB

B’

IB’

User 1 User 2

OAL

CA

Local Placement Central Placement

CAO

TOB

TOA’

TOB’

TOA

A A’

IA

B

IB

B’

IB’

OAL

CA

CAO

TOB

TOA’

TOB’

TOA

User 1 User 2

Figure 7.10 Local and central placement of replicated layers

events IB, TOB, CA, TOB0, and IB0 are transmitted across the network, while in the central
case, the converse is true. If we assume that information gets condensed when it is processed
by a higher-level layer, then the following relationships hold among the size of these events:
IA > IB, TOA > TOB, CAO > CA, TOA0 > TOB0. Also, if we assume that a higher-level
event triggered by an input event is smaller than any lower-level event also triggered by the
same input, then OAL > IB0. These relationships imply that more information is transmitted
locally in the first case.

We have ignored, above, peer collaboration events sent to B0 and other layers above A0. In
both cases, such events will be communicated locally. However, under local placement, the
resulting output sent to the remote user will be higher level — the output of B 0 rather than
A0 — thereby further reducing the communication cost. We have also ignored collaboration
events sent to cross layers. For similar reasons, they also favor local placement of modules.

Most existing architectures offer the distributed approach, that is, distribute all of their
concurrent threads. A notable exception is the Rendezvous architecture, which offers a distri-
bution of degree of 2 but a concurrency degree of 4. In this architecture, all layers except the
X Window layers execute at a central site. However, at the central site, the layers in different
branches execute in separate threads. The Clock system provides a hybrid approach, allowing
the same application program to have degrees 2 to 4, depending on whether it centralizes the
replicated widget and view layers.

We have assumed that every collaboration event sent to a peer layer results in an output
event. This may not be true for constraint-based systems such as Rendezvous, Weasel, and
Clock, which may need several collaboration events to be exchanged before the constraint
evaluation can fire the output events. It is perhaps for this reason that Rendezvous does not
use a distributed architecture, though preliminary performance results from Weasel and Clock
show advantages of using such an architecture even in a constraint-based environment.

7.5 EXTERNAL MODULES

Not all collaboration modules can be added to existing single-user layers or new pseudo-
layers. It may also be necessary to create new external modules that do not belong in the
protocol tree, for several reasons (Figure 7.11):

186 DEWAN

Sess. Mgmt.

Create
Delete

Protocol
Tree

Distrib.
Branch

Distrib.
Branch

Site 1 Site 2

Central
Module

Central Site

Central
Stem

Site−Spec.
Module

Site−Spec.
Module

Central SiteSite 1 Site 2

Protocol
Tree

Interaction−
Aware

Collab. Aware
External Modules

Branch
Message
Server Branch

Announce E1

Announce E2

Register P

Announce E2

Session Management

Centralization

Site−Specific Processing

Inter−Branch SeparationInteraction−Collaboration Separation

Figure 7.11 Reasons for adding external modules

� Session Management: In a collaborative system, session management modules are needed
to create/delete the protocol tree of an application when a session with an application is
started/terminated. In the single-user case, the operating system is responsible for creat-
ing/deleting interactive sessions, but in the multi-user case, special, possibly application-
specific, protocols are necessary for session management [Ros96]. Since these protocols
create/delete protocol trees, they cannot be implemented within the tree itself, and thus
must be provided by external modules.

� Centralization: Replicated collaboration-aware layers may need to communicate with cen-
tral modules to keep central resources such as locks or ensure global ordering of messages
communicated among these layers. These modules can be implemented in the stem of
the protocol tree, which is the approach taken in Suite. However, this approach cannot be
taken if the architecture is fully replicated or if it cannot have any collaboration-aware stem
layers. In these cases, the central modules must be external to the protocol tree.

� Site-Specific Processing: Centralized collaboration-aware layers may need to communi-
cate with modules that must be located at a particular site for efficiency or other reasons.

ARCHITECTURES FOR COLLABORATIVE APPLICATIONS 187

Examples of such modules are those that access files, devices, or processes at a particular
site or keep information about the active users or sessions at a site. These modules can be
implemented in collaboration-aware branch layers at that site if such layers exist; other-
wise they must be modules external to the protocol tree. Systems that distribute replicas
create a site-specific server for creating and terminating processes at that site. Similarly,
Suite creates an audio server at each site to access the audio devices at that site [Rie93].

� Collaboration and Interaction Independence: For modularity reasons, it may be desirable
to separate the processing of interaction and collaboration events. As mentioned before,
pseudo-layers can be used to increase this separation since such layers are responsible only
for transmitting interaction events and not for transforming them. However, these layers
have the performance disadvantages mentioned before and support limited separation since
they must process both kinds of events. Similarly, within a layer, encapsulation may be used
to separate the interaction-aware and collaboration-aware objects. An approach providing
more separation is to process collaboration events in external modules, which can be shared
by multiple layers and branches.

� Inter-Branch Independence: It is useful to reduce the awareness a branch has about
branches created for other users. This increases the modularity of the system, and more
important, reduces the cost of connecting a branch to other branches. If every branch kept
track of every other branch it may need to communicate with, then branch awareness and
interaction awareness would be implemented by the same layers, and more important, a
branch would need to be informed each time a new branch is created that may need to
communicate with it. It may be more attractive to implement one or more (possibly repli-
cated) external message servers [Rei90], responsible for linking the replicated branches.
A message server receives message patterns from information clients indicating the kind
of messages they are interested in receiving, and announcements from information servers
announcing events in which information clients may be interested. The message server for-
wards an announcement from an information server to all information clients who have reg-
istered an interest in the announcement. This is essentially the approach taken in [Bon89].
A message server leads to more modularity and reduced connection cost, but increases the
“hop count” of inter-branch messages; that is, it increases the number of modules respon-
sible for processing inter-branch messages. The increased hop count is a serious problem if
the message server is centralized and the branches are distributed, since the message server
can become a central bottleneck. On the other hand, as mentioned before, such a central
agent may be necessary in any case to implement global ordering of distributed operations.

In many of the cases above, we have not defined the specifics of how the external modules
are connected to each other, threaded, distributed, or replicated. These issues can be resolved
in the same way they were resolved for the original modules. In fact, it is possible to create
a hierarchy of replicated, distributed, concurrent external modules. For instance, GroupKit
creates a central registrar that acts as a connection point and name server, with replicated local
session managers at all sites deciding the policy for how people enter groupware sessions.

7.6 RULES

Ideally, we would like to identify universal principles that should be followed in the design
of all collaboration architectures. However, as explained in the sections above, there are no

188 DEWAN

absolute rules in the design of these architectures. Therefore, what we offer, instead, is a
set of qualified rules summarizing the advantages/disadvantages of different architectural ap-
proaches. These can be used by developers of an application/tool to optimize the set of prop-
erties that are important for that application/tool.

� Layering: A higher degree of layering can support higher degrees of awareness and repli-
cation.

� Awareness: A higher degree of awareness leads to more flexible sharing and higher-level
units of collaboration, but supports less reuse, delays feedback, and increases interaction
awareness (if the partitioned approach is not taken).

� Replication: A higher degree of replication supports more divergence and a higher degree
of concurrency; but requires more layers to be kept consistent, and results in inefficiency,
access bottlenecks, and incorrect writes and other side effects.

� Concurrency: A higher degree of concurrency increases fairness, performance, and the
maximum degree of distribution; but reduces reuse, requires special system support, and
increases programming overhead.

� Distribution: A higher degree of distribution increases fault tolerance and reduces commu-
nication costs, but introduces problems of synchronization and heterogeneity.

� Partitioning: Partitioned collaboration awareness reduces interaction awareness; but re-
quires more programming effort and supports less reuse.

� Pseudo-Layer: The pseudo-layer approach supports more reuse and modularity; but offers
less performance and can result in duplication of effort.

� External Modules: External modules are necessary for supporting session management,
centralization, site-specific processing, collaboration and interaction independence, and
inter-branch independence; but increase the complexity of the system and can reduce per-
formance.

7.7 CLASSIFYING EXISTING SYSTEMS

Tables 7.1 and 7.2 describe architectures of several existing collaboration systems. Table 7.1
gives the layering and associated degrees supported by them. Since all of these systems are
collaboration tools, these values refer to the minimum values of these degrees, since some
clients may create additional layers, replicas, processes, and threads in the application. We
have assumed above that all view layers are built on top of widget layers so that a comparison
of the various degrees is more meaningful. Table 7.2 indicates the other properties supported
by them: pseudo-modules, partitioned awareness, and external modules to support session
management, centralization, site-specific computing, collaboration awareness, and message
servers. These tables show the similarities and differences among these tools. All systems
except MMM support multi-workstation collaboration. Among these systems, TeamWorkSta-
tion is workstation-based; XTV, Shared X, and MMConf are window-based; and Rendezvous,
Suite, Weasel, and DistView are view-based. MMM offers the pure centralized architecture;
MMConf, GroupKit, and DistView the replicated architecture; and TeamWorkStation, XTV,
Rendezvous, Weasel, and DistView the semi-replicated architecture. In all systems except
Rendezvous, the distribution degree is the same as the concurrency degree. From an architec-
tural point of view, there are no differences between Suite and Weasel.

ARCHITECTURES FOR COLLABORATIVE APPLICATIONS 189

Table 7.1 Layering and associated degrees of existing architectures

Lyr. Awr. Rep. Conc. Dist.
System Layers Deg. Deg. Deg. Deg. Deg.

MMM [Bie91] app/workst 2 2 0 0 0
TeamWorkStation[Ish90] app/workst 2 1 1 1 1
XTV [Abd94] app/win/workst 3 2 2 2 2
Shared X [Gar94] app/win/workst 3 2 2 2 2
MMConf [Cro89] app/win/workst 3 3 3 3 3
GroupKit [Ros96] app/wid/win/workst 4 4 4 4 4
Rendezvous [Hil94] app/view/wid/win/workst 5 5 4 4 2
Suite [Dew92] app/view/wid/win/workst 5 5 4 4 4
Weasel [Gra92] app/view/wid/win/workst 5 5 4 4 4
Clock [Gra96] app/view/wid/win/workst 5 5 4 4 2–4
DistView [Pra94] app/view/wid/win/workst 5 5 5 5 5

Table 7.2 Pseudo-layers, partioned awareness, and different kinds of external modules

System Pseudo Part. Sess. M. Central Site-Spec. Colab. Awr. Msg. Serv.

MMM N Y N N N N N
TeamWorkStation N N Y N N N N
XTV Y N Y N Y N N
Shared X N N Y N N N N
MMConf N Y Y N Y N N
GroupKit N Y Y N Y N N
Rendezvous N Y Y N N N N
Suite N Y Y N Y N N
Weasel N Y Y N N N N
Clock N Y Y N N N N
DistView Y Y Y N N N N

7.8 CONCLUSIONS AND FUTURE WORK

This work makes several contributions. It motivates the need for studying software architec-
tures of collaborative systems, describes a generic architecture that encapsulates architectural
properties common to a wide range of collaborative systems, identifies a set of issues that a
designer of a specific architecture must face, discusses and evaluates competing approaches
to addressing these issues, classifies existing systems according to the approaches they have
taken, and gives a set of architectural rules.

This work is related to the SAAM model for describing architectures of software systems
[Kaz94]. This model advocates:

1. a canonical decomposition of the functionality of the system
2. identification of the structure of the system, that is, the set of components of the system

and the communication among these components
3. identification of the functions performed by each component
4. selection of a set of abstract properties for evaluating the architecture
5. selection of a set of concrete tasks that have these properties, and

190 DEWAN

6. evaluation of the extent to which the architecture supports the abstract properties and con-
crete tasks.

This work has applied several of these steps. In particular, it has applied step 1 by decom-
posing the functionality of a collaborative application into interaction functions and collabo-
ration functions, 2 by identifying the layers, threads, and processes of a collaborative system,
3 by distinguishing between collaboration-aware and unaware layers, 4 by selecting function-
ality, performance, programming effort, reusability, and modularity as evaluation properties,
and 6 by evaluating how well each of these abstract properties are satisfied by an architecture.
It would be useful to extend this work by :

� identifying concrete tasks that have the evaluation properties and evaluating how well the
architecture supports these tasks

� doing a finer structural decomposition that identifies the components of the layers and the
external modules of the architecture, and

� doing a finer task assignment that distinguishes among layers based not only on whether
they perform interaction or collaboration functions but also on the set of collaboration
functions they perform.

The framework and associated terminology can be used for understanding, comparing, and
classifying existing collaboration systems. It can also be used to varying degrees to design new
systems. One method would be to take the set of approaches supported in an existing system
to develop a new system that addresses details not covered here differently. For instance, the
set of approaches used in XTV can be used to develop a shared window system based on
a different network single-user window system such as the Plan 9 window system [Pik90].
A more novel use of the framework would be to choose a new combination of the set of
the approaches described here. For instance, a new version of Suite can be developed that
supports a fully replicated architecture. This framework makes these tasks easier by telling
the designers which questions they have to answer, what choices are available, and what the
consequences of these choices are.

This work can be extended in many other ways. It would be useful to decompose a layer by
structure, as in the PAC model, and function, as in the Clover model. A first-cut at combining
this architecture with PAC and Clover has been published recently [Cal97]. It is also necessary
to identify other assumptions, issues, approaches, and criteria for comparing architectures. In
particular, it is useful to relax the assumption that all levels above a central level are also
centralized. In a single-workstation collaborative system such as MMM, it may be useful to
create different branches for different users. Moreover, in such a system, it would be useful
to capture, in the concurrency degree, the notion of assigning different devices to different
threads. This architecture was developed based on experiences with implementing multi-user
textual/graphical user-interfaces. It would be useful to test its applicability for multi-user au-
dio/video and 3-D virtual reality user-interfaces. It may also be useful to relax the assumption
that a layer is replicated/threaded/distributed as a whole, which does not apply to Shastra
[Anu93]. In Shastra, the semantic layer consists of two parts: one performs expensive compu-
tations while the other performs relatively inexpensive ones. The expensive part is centralized
but the inexpensive one is replicated and distributed since computation costs dominate in one
case and communication costs in the other. It would also be useful to consider migration and
caching of centralized components of collaborative applications [Gra96, Chu96] and their
impact on performance.

ARCHITECTURES FOR COLLABORATIVE APPLICATIONS 191

ACKNOWLEDGEMENTS

I am grateful for the in-depth comments of the referees. This research was supported in part
by National Science Foundation Grants IRI-9408708, IRI-9508514, IRI-9627619, and CDA-
9624662, and DARPA/ONR Grant N 66001-96-C-8507.

REFERENCES

[Abd94] Abdel-Wahab, H. and Jeffay, K., Issues, problems and solutions in sharing clients on multiple
displays. Internetworking: Research and Experience, 5:1–15, 94.

[Anu93] Anupam, V. and Bajaj, C., Collaborative multimedia scientific design. In Proceedings of
ACM Conference on Multimedia, pages 447–456, 1993.

[Bas93] Bass, L., Architectures for interactive software system: Rationale and design. Trends in
Software: Issue on User Interface Software, 1:31–44, 1993.

[Bie91] A. Bier, E.A. and Freeman, S., MMM: A user interface architecture for shared editors on
a single screen. In Proceedings of the ACM Symposium on User Interface Software and
Technology, UIST’91, pages 79–87, November 1991.

[Bon89] Bonfiglio, A., Malatesta, G. and Tisato, F., Conference toolkit: Framework for real-time
conferencing. In Proceedings European Conference on Computer-Supported Cooperative
Work, ECSCW’89, pages 303–316, 1989.

[Cal97] Calvary, G., Coutaz, J. and Nigay, L., From single-user architectural design to PAC*: a generic
software architecture model for CSCW. In Proceedings Human Factors in Computing Sys-
tems, ’97, pages 242–249, ACM Press, March 1997.

[Chu96] Chung G. and Dewan, P., A mechanism for supporting client migration in a shared window
system. In Proceedings of the ACM Symposium on User Interface Software and Technology,
UIST’96, pages 11–20, October 1996.

[Cou87] Coutaz, J., PAC, an object oriented model for dialog design. In Proceedings of Interact’87,
pages 431–436. North Holland, 1987.

[Cro89] Crowley, T. and Forsdick, H., MMConf: The diamond multimedia conferencing system. In
Proceedings of the IFIP WG8.4 Groupware Technology Workshop, August 1989.

[Dew90] Dewan, P. and Solomon, M., An approach to support automatic generation of user interfaces.
ACM Transactions on Programming Languages and Systems, 12(4):566–609, October 1990.

[Dew92] Dewan, P. and Choudhary, R., A high-level and flexible framework for implementing multi-
user user interfaces. ACM Transactions on Information Systems, 10(4):345–380, October
1992.

[Dew94a] Dewan, P., Choudhary, R. and Shen, H., An editing-based characterization of the design
space of collaborative applications. Journal of Organizational Computing, 4(3):219–240,
1994.

[Dew94b] Dewan, P., CSCW’94 workshops. In Proceedings of the ACM Conference on Computer
Supported Cooperative Work, CSCW’94, pages 1–4, October 1994.

[Dew95] Dewan, P., Multiuser architectures. In Proceedings of IFIP WG2.7 Working Conference on
Engineering for Human–Computer Communication, EHCI’95, pages 43–70, August 1995.

[Dou99] Dourish, P., Software infrastructures. In Beaudouin-Lafon, M. (Ed.), Computer Supported
Cooperative Work, Trends in Software Series 7:195–219. John Wiley & Sons, Chichester,
1999.

[EllG89] Ellis, C.A. and Gibbs, S.J., Concurrency control in groupware systems. In Proceedings of the
ACM SIGMOD ’89 Conference in Groupware Systems, May, 1989.

[Ens88] Ensor, J.R., Ahuja, S.R., Horn, D.N. and Lucco, S.E., The Rapport multimedia conferencing
system: A software overview. In Proceedings of the 2nd IEEE Conference on Computer
Workstations, pages 52–58, March 1988.

[Gar94] Garfinkel, D., Welti, W. and Yip, T., Shared X: A tool for real-time collaboration. Hewlett-
Packard Journal, pages 23–24, April 1994.

[Gra92] Graham, T.C.N. and Tore Urnes, T., Relational views as a model for automatic distributed im-
plementation of multi-user applications. In Proceedings of the ACM Conference on Computer

192 DEWAN

Supported Cooperative Work, CSCW’92, pages 59–66, November 1992.
[Gra96] Graham, T.C.N., Urnes, T. and Nejabi, R., Efficient distributed implementation of semi-

replicated synchronous groupware. In Proceedings of the ACM Symposium on User Interface
Software and Technology, pages 1–10, October 1996.

[Gre99] Greenberg, S. and Roseman, M., Groupware toolkits for synchronous work. In Beaudouin-
Lafon, M. (Ed.), Computer Supported Cooperative Work, Trends in Software Series 7:135–
168. John Wiley & Sons, Chichester, 1999.

[Hil94] Hill, H., Brinck, T., Rohall, S., Patterson, J. and Wilner, W., The RendezVous architecture and
language for constructing multiuser applications. ACM Transactions on Computer Human
Interaction, 1(2), June 1994.

[Ish90] Ishii, H. and Ohkubo, M., Design of a team workstation. Multi-User Interfaces and Applica-
tions, pages 131–142, 1990.

[Ish99] Ishii, H., Integration of shared workspace and interpersonal space for remote collaboration.
In Beaudouin-Lafon, M. (Ed.), Computer Supported Cooperative Work, Trends in Software
Series 7:83–102. John Wiley & Sons, Chichester, 1999.

[Jul88] Jul, E., Levy, H., Hutchinson, N. and Black, A., Fine-grained mobility in the emerald system.
ACM Transactions on Computer Systems, 1988.

[Kar93] Karsenty, A., Tronche, T. and Beaudouin-Lafon, M., GroupDesign: Shared editing in a het-
erogeneous environment. Usenix Computing Systems, 6(2):167–195, Spring 1993.

[Kaz94] Kazman, R., Bass, L., Abowd, G. and Webb, M., SAAM: A method for analyzing the prop-
erties of software architectures. In Proceeding of International Conference on Software En-
gineering, ICSE’94, pages 81–90, May 1994.

[Kra88] Krasner, G.E. and Pope, S.T., A cookbook for using the model-view-controller user inter-
face paradigm in Smalltalk-80. Journal of Object-Oriented Programming, 1(3):26–49, Au-
gust/September 1988.

[Lau90] Lauwers, J.C. and Lantz, K.A., Collaboration awareness in support of collaboration trans-
parency: Requirements for the next generation of shared window systems. In Proceedings of
Human Factors in Computing Systems, CHI’90, pages 303–312, ACM Press, April 1990.

[Lin89] Linton, M.A., Vlissides, J.M. and Calder, P.R., Composing user interfaces with interviews.
IEEE Computer, pages 8–24, February 1989.

[Mye95] Myers, B., User interface software tools. ACM Transactions on Computer–Human Interac-
tion, 2(1):64–103, March 1995.

[Ols93] Olson, G.M., McGuffin, L.J., Kuwana, E. and Olson, J.S., Designing software for a group’s
needs: A functional analysis of synchronous groupware. Trends in Software: Special Issue on
User Interface Software, 1:129–148, 1993.

[Ous94] Ousterhout, J.K., Tcl and the Tk Toolkit. Addison-Wesley, Reading, MA, 1994.
[Pik90] Pike, R., Presotto, D., Thompson, K. and Trickey, H., Plan 9 from Bell Labs. In Proceedings

of the Summer UKUUG Conf., pages 1–9, July 1990.
[Pra94] Prakash A. and Shim, H.S., DistView: Support for building efficient collaborative applica-

tions using replicated active objects. In Proceedings of the ACM Conference on Computer
Supported Cooperative Work, CSCW’94, pages 153–162, October 1994.

[Pra99] Prakash, A., Group editors. In Beaudouin-Lafon, M. (Ed.), Computer Supported Cooperative
Work, Trends in Software Series 7:103–133. John Wiley & Sons, Chichester, 1999.

[Rei90] Reiss, S.P., Connecting tools using message passing in the Field environment. IEEE Software,
7(4):57–66, July 1990.

[Rie93] Riedl, J., Mashayekhi, V., Schnepf, J., Claypool, M. and Frankowski, D., SuiteSound: Sys-
tem for distributed collaborative multimedia. IEEE Transactions on Knowledge and Data
Engineering, 5(4):600–609, August 1993.

[Ros96] Roseman M., and Greenberg, S., Building real-time groupware with GroupKit, a groupware
toolkit. ACM Transactions on Computer–Human Interaction, 3(1):66–106, 1996.

[Sal95] Salber, S., De l’interaction individuelle aux systèmes multi-utilisateurs. L’exemple de la com-
munication homme-homme-médiatisée. Thèse de doctorat, Université de Grenoble, France.
September 1995.

[ShaG96] Shaw, M. and Garlan, D., Software Architecture: Perspectives on an Emerging Discipline.
Prentice Hall, New Jersey, 1996.

ARCHITECTURES FOR COLLABORATIVE APPLICATIONS 193

[Ste87] Stefik, M., Foster, G., Bobrow, D.G., Kahn, K., Lanning, S. and Suchman, L., Beyond the
chalkboard: Computer support for collaboration and problem solving in meetings. Communi-
cations of the ACM, 30(1):32–47, January 1987.

[Tre94] Trevor, J., Rodden, T. and Mariani, J., The use of adapters to support cooperative sharing. In
Proceedings of the ACM Conference on Computer Supported Cooperative Work, CSCW’94,
pages 219–230, October 1994.

8

Software Infrastructures
PAUL DOURISH

Xerox PARC

ABSTRACT

Increasingly, personal computers and workstations come ready “out of the box” to partic-
ipate as nodes of a distributed computing network. Elements of distributed computing in-
frastructure, from network file systems and shared printers to high-speed connection back-
bones, are part of our everyday experiences as users of computers. This chapter discusses
software infrastructures for the design of CSCW applications. In particular, it is concerned
with how developments in distributed computing and user interface architecture can be ex-
ploited in applications that support collaborative activity. The chapter considers a variety
of currently-available infrastructure components and discusses how they can be used in
collaboration, before going on to suggest a new approach which revises the nature of the
relationship between infrastructure and applications.

8.1 INTRODUCTION

CSCW is a highly diverse discipline. From its very beginnings, it has drawn from psychology
and sociology as much as from computer science. In turn, within computer science, issues
from the areas of network communication and distributed systems have been as important as
those from user interface design and usability.

The focus of this chapter is software infrastructure in the design of CSCW systems. By
“infrastructure”, I mean those elements which lie below the level of the collaborative systems
themselves, but which can be exploited in the design of those systems. Explicitly collaborative
infrastructures, or collaboration toolkits, are discussed in Chapter 6 of this book [Gre99]. So,
many of the infrastructure components that will be discussed here have been (or are being)
designed outside the CSCW domain itself. This chapter will take a CSCW perspective on
these non-CSCW technologies, and discuss how they can be used in CSCW applications.

Computer Supported Cooperative Work, Edited by Beaudouin-Lafon
c
 1999 John Wiley & Sons Ltd

196 DOURISH

Later on, we will also consider implications both for the design of CSCW technologies and
the future development of software infrastructures.

8.1.1 Overview

This chapter is organized into two main parts.
First, in Sections 8.3–8.5, we will consider software technologies that provide infrastruc-

ture services which can be used in CSCW systems. This will cover both the general use of
particular types of infrastructure system, as well as discussing particular tools applicable to
CSCW.

The second part (Section 8.6 onwards) will outline new work on CSCW support based on
computational reflection. This approach provides a way for applications to become involved
in aspects of infrastructure, so that the infrastructure can be tailored to the specific needs
of particular applications. I have been developing this approach in the design of a prototype
CSCW toolkit called Prospero.

8.2 INFRASTRUCTURE ELEMENTS IN CSCW

The nature of CSCW software lends itself to the appropriation of other technological bases
as an infrastructure for collaboration. We will consider three particular areas here: first, dis-
tributed systems, which support network-wide computation; second, database systems and
related concerns in storage and replication; and third, user interfaces to distributed, network-
wide applications.

8.2.1 CSCW and Distributed Systems

CSCW software is inherently distributed, and so a variety of techniques and systems devel-
oped within the distributed systems community can be fruitfully adopted in CSCW. Aspects
of distributed systems technology which are relevant include shared distributed objects, mo-
bile services, replication mechanisms, global coordination, distributed naming schemes and
architectural considerations in data and application distribution.

As with most other elements of infrastructure discussed in this chapter, distributed system
technologies can be deployed as infrastructure at a variety of levels. On one level, distributed
system components can be used to provide a basic set of services on top of which CSCW
systems will be built. In these cases, the CSCW system is seen as an application of the dis-
tributed system infrastructure. Implemented at a different level, the CSCW system can be seen
as being itself a distributed system. In this approach, the distributed system technologies can
be directly incorporated into the collaborative application or environment.

8.2.1.1 Transparency in Distributed Systems

However, the observation that CSCW systems are distributed, and hence potentially amenable
to distributed system solutions, can be a misleading one. Whether CSCW applications are
implemented as distributed services or clients of those services, designers must take care not
to confuse the goals of distribution with those of collaboration.

Many distributed systems set out to achieve some form of transparency. Typically, the goal

SOFTWARE INFRASTRUCTURES 197

of transparency takes the form of attempting to hide from the user the consequence of some
aspect of distribution, while still realizing the benefits. Consider some examples below:

� Location transparency refers to isolating the application or client from the effects intro-
duced by the location of the computation.

� Concurrency transparency refers to isolating the application or client from the effects in-
troduced by the fact that their computation might, in fact, consist of multiple concurrently-
executing subprocedures which, together, can be regarded as a single computation.

� Replication transparency refers to attempts to hide the fact that what appears to be a single
data item may, in fact, be copied and reproduced at different points in a network.

� Failure transparency refers to attempts to hide from applications the consequences of a
potential failure at one point in the network, by attempting to recover using other resources
available in the distributed system.

In different settings, different forms of transparency can be invaluable in providing users
and applications with seamless access to an apparently unified large computational resource
which is, in fact, made up of discrete, connected units. However, these same features can be-
come problematic in the CSCW setting, since the goals of CSCW are different. For instance,
issues such as location and replication, which might be hidden by a traditional distributed sys-
tem, can often turn out to be significant for the ways in which a group will work, or even for
the nature of the work which they attempt to perform. Greenberg and Marwood [Gre94] dis-
cuss the ways in which concurrency management, for example, can interfere with the smooth
and natural flow of user interaction when a distributed systems layer makes concurrency con-
trol “transparent” to the CSCW application. They point out that the details which distributed
systems hide (by making them transparent) are ones which are highly significant for the coor-
dination of group tasks.

Distributed system techniques are important elements of CSCW infrastructure, and ex-
tremely valuable. Data replication allows fast, concurrent access in cases where it would oth-
erwise be impossible, and location transparency allows users to interact in mobile or fluid
settings. However, before these techniques are applied directly to collaborative systems, the
designer must develop a more detailed understanding of potential interactions between the
behavior of users and the action of the system. Certainly, collaborative activity is often dis-
tributed; but this does not imply that collaborative applications and distributed applications
are one and the same.

8.2.2 CSCW and Databases

Many features of CSCW applications make database technology an attractive candidate for in-
frastructure. Most programs are data-based, of course, but in particular CSCW systems often
involve sets of computations over an explicit data store (or collaborative workspace). Simi-
larly, database technologies have evolved to provide the means to coordinate and share data
across time and space. As such, many collaborative systems can benefit from techniques de-
veloped in database management, and the persistence which databases offer may be exploited
in supporting asynchonous working styles.

Most database systems support multiple users, but mapping the needs of collaborating
groups onto the multi-user facilities of an existing database technology can be problematic.
Multi-user databases are generally constructed so that they hide the activities of multiple users.
Database systems erect walls between simultaneous users, in order to render each user imper-

198 DOURISH

vious to the actions (or even the presence) of others. The goal is to present each user with
the illusion of a dedicated system. This is not simply an issue in how their interfaces are
constructed, but reaches down to the basic conceptual model. Even the transaction execution
model, for example, is explicitly designed to shield users from the effects of each other’s
actions, and to maintain the idea of a dedicated resource for each user.

The activities of others, then, are hidden and may become visible only through activity
within the data store itself; and that activity is organized as essentially single-user, so that
database consistency constraints can be maintained. However, a wide range of research stud-
ies in CSCW (typically going under the general term “awareness”) have emphasized the im-
portance of the visibility of others’ work as a resource for coordination. In Heath and Luff’s
seminal study of the activities in the control rooms of the London Underground, for instance,
they uncover a range of practices by which the controllers not only monitor each other’s ac-
tions in order to coordinate the work as a whole, but also ways that they explicitly make their
work visible to each other [Hea92]. Dourish and Bellotti [Dou92] observe similar issues at
work in experimental collaborative design tasks. This sort of mutual visibility of action is
hard to achieve in traditional databases. So while the database model might enable cooper-
ative work by allowing multi-user data access, it generally doesn’t support a collaborative
model of data management.

However, some database research work has focused on extending the database model in
ways which extend to collaborative settings. Extended transaction models such as nested
transactions (originally introduced by Davies [Dav73]) or multiple granularity concurrency
control [Gra75] have been developed. These extended models were driven by the require-
ments of domains such as computer-aided design or software development environments,
where transactions may last much longer, involve multiple participants, or be transferred
from one participant to another before being committed. At the same time, new techniques
for semantics-based concurrency control in database applications (such as those of Herlihy
[Her90] or Farran and Ozsu [Far89]) allow for greater parallelism in transaction execution,
and hence more flexibility in mapping collaborative actions onto a database kernel. In the
same way, aspects of database infrastructure may have to be extended for collaborative set-
tings. (A semantics-based technique, similar to those cited above but specifically designed
for CSCW applications, will be described in Section 8.6.4.2.) Barghouti and Kaiser [Bar91]
provide a comprehensive overview of these developments, which hold considerable promise
for the future role of database technologies in CSCW.

8.2.3 CSCW and User Interfaces

CSCW systems are generally interactive, and so the design of the user interface is critical to
their acceptibility and use. However, as in the domains discussed above, CSCW introduces
new challenges for user interface design.

In a single-user system, the user interface is responsible for presenting representations of
the system’s activity. For instance, the “hourglass” cursor indicates that the system is currently
performing some time-consuming operation in response to a user request; dialog boxes may
appear, asking for confirmation for requested actions (especially ones with potentially severe
consequences); user-initiated changes in system state are reflected in changes to the display
state of user interface objects (e.g. reversing black and white to indicate object selection).

Although these same mechanisms can be exploited in collaborative systems, we must, once
again, consider the implications of moving into a multi-user setting. There’s an important

SOFTWARE INFRASTRUCTURES 199

piece of context which allows these kinds of behaviors to make sense in traditional inter-
active systems; the fact that there’s only one user. This is particularly important because it
implies that there is a straightforward relationship between the user’s request and the system’s
response. Objects do not highlight themselves, but do so because they have been selected; dia-
log boxes asking for action confirmations do not appear at random, but in response to specific
user actions. By and large, the system need not explain why (for example) a dialog box has
appeared, because the user knows that it is in response to their recent activity. If something
happens in the interface, it must be as a result of either the user’s action or the system’s.

However, in collaborative systems, this assumption may no longer hold. There are now
multiple users to be considered, and actions which are observable in the interface may well
be the result of someone else’s activity, which may or may not be visible to other users. The
direct connection between the user’s activity and the system’s has been broken, and with it,
many of the assumptions on which user-interface design rests. So, as in the previous cases,
the needs of CSCW applications often force us to re-think the elements and functionality of
the traditional user interface.

That said, there have been cases where elements of current user interface systems have
been fruitfully exploited in collaborative systems. One particular line of work has been with
network-based interface architectures such as the X Window System and NeWS. These sys-
tems separate window clients (programs which use the window system to display results) from
window servers (which provide windowing functionality for particular screens or displays),
potentially across a network, using a hardware-independent protocol for drawing and window-
ing actions. This network independence immediately leads to the potential for multiplexing
the windowing protocol, and hence sharing a single client between a number of displays. A
number of systems of this sort have been developed, of which the best-known is probably
Shared X [Gar89]. Application replication via window sharing allows previously single-user
applications to be operated in a multi-user environment, albeit with certain restrictions to man-
age input streams. This is an extremely powerful approach, especially since it allows users to
carry on working with familiar, everyday applications.1

Other user interface toolkits, widgets and mechanisms have been extended to support col-
laborative working. This work has typically been done in groupware toolkits, which are dis-
cussed in Chapter 6 of this book [Gre99] and so will not be discussed further here.

We will now go on to look at some particular technologies which can be valuably exploited
as infrastructure for CSCW systems. For clarity, they will be addressed in three different areas:
communication; coordination; and storage.

8.3 COMMUNICATION

Most CSCW technologies depend critically on digital communication infrastructures. Indeed,
there have been claims that the most successful CSCW products are those which we might
think of as simply being communication systems (such as electronic mail, networked file ser-
vices or the World Wide Web). This section will explore the communication facilities which
underpin CSCW applications development, and recent advances in communication facilities
which are particularly relevant to collaboration.

1 The sad truth about many collaborative editors which have been developedby CSCW researchers is that, while they
might well be collaborative, they are rarely very good editors. This is another reason to value application-sharing
approaches.

200 DOURISH

8.3.1 Internet Multicast and the MBone

One infrastructure advance of the past few years which is particularly relevant for CSCW is the
development and widespread deployment of Multicast Internet Protocols, and the emergence
of the multicast backbone or “MBone”, a virtual Internet backbone for the distribution of
multicast data.

The original Internet Protocol (IP) [Pos81] is a unicast protocol. That is, it supports one-
to-one communication; each packet identifies a single receiver, and IP routes it precisely to
that host. Receivers are named by IP addresses, which identify particular hosts. (Actually,
IP addresses identify particular network connections, so that “multi-homed” machines with
multiple network connections will actually have multiple addresses, but the fiction that IP
addresses name hosts will be convenient here.)

In his thesis work at Stanford, Steve Deering developed mechanisms for IP multicast which
could be layered on top of the existing unicast internet architecture [Dee88]. In his model, a
set of addresses are recognized as naming “multicast groups” rather than single hosts. Using a
low-level protocol called the Internet Group Multicast Protocol (IGMP), hosts can add them-
selves to multicast groups, essentially declaring an interest in the data sent to that group.2 Any
packets sent to a group (by using the group address as the packet destination address) will be
routed to all hosts which have added themselves to the group. The IP multicast implementa-
tion is responsible for finding efficient distribution patterns for multicast data, so that packets
sent to multicast groups will traverse any particular network connection at most once.

Multicast IP is managed by extending the routing mechanism of the traditional IP mech-
anism. IP packets sent to unicast addresses are handled normally, but packets sent to the
multicast addresses will be processed specially. However, existing IP routing software and
hardware were developed without support for Deering’s new multicast model. The solution to
this bootstrap problem was to develop, along with the new multicast routing mechanism, a way
for multicast-aware routers to communicate with each other over traditional unicast channels.
This approach — called IP tunnelling — treats unicast connections (the “tunnels”) as simple
network links between multicast routers. The unicast channels that distribute multicast data
between multicast routers form a virtual internet over the existing Internet infrastructure. This
is the so-called MBone, and it allows experiments with internet-wide multicasting to proceed
before support for multicast protocols has migrated into the standard internet routing hardware
and software.

Deering’s original work was based on a multicast routing mechanism called DVMRP (Dis-
tance Vector Multicast Reverse Path). More recently, new routing mechanisms, such as MO-
SPF (Multicast Open Shortest Path First) [Moy94] and CBT (Core Based Trees) [Bal93] have
emerged as possible internet-wide routing mechanisms. However, the choice of routing pro-
tocol does not affect the basic multicast service model.

Multicast extends the one-to-one model of unicast routing to a many-to-many model. Any
member of a group can send data to the group, and any data sent to the group will be dis-
tributed to all participants. A multicast group can be thought of as a “software bus” allowing
arbitrary communication between all connected components (group members). Multicast IP,
then, provides a natural model for group communication in CSCW applications, and a num-
ber of widely-used multicast applications — the so-called “MBone Tools” — are collaborative
applications.

2 IGMP occupies roughly the same place in the IP multicast stack as ICMP (the Internet Control Message Protocol)
plays for unicast IP.

SOFTWARE INFRASTRUCTURES 201

8.3.1.1 Audio and Video Communication: vat, rat, nv and vic

The best known MBone tools are those which support the most common MBone activity —
videoconferencing. While videoconferencing is rarely classed as a collaborative technology
in itself, the long tradition of research in media spaces and video-mediated interaction (e.g.
[Bly93] and Chapter 3 in this book [Mac99]) mean that it could certainly be regarded as a
CSCW infrastructure component in its own right; but more pertinently here, it illustrates the
use of multicast mechanisms in supporting cooperative work.

Early MBone tools, vat and nv, support audio- and videoconferencing respectively using
multicast protocols. Audio and video sessions are made available as multicast groups, so that
any MBone-connected host can subscribe to the group and “tune in”. Since multicast is a
many-to-many (rather than one-to-many) distribution model, this allows any member of the
group to send multimedia data to all others.

However, the current Internet is a harsh environment for reliably delivering real-time data
such as audio and video. Different participants may be connected by different means, have
different levels of bandwidth available to them, and different latencies; and activity elsewhere
on the network can introduce congestion at different points in the network. Factors like these
make it difficult to provide continuous, timely streams of multimedia data uniformally across
a multicast group. To address these problems, many MBone tools support a model called
lightweight sessions [Flo95].

In TCP, reliable delivery is the responsibility of the sender. However, this approach does
not work in multicast situations for a variety of reasons. One of these is the scaling problem;
in a sender-based approach, the sender would be responsible for the different timeouts and
resends for hundreds or thousands of receivers. Another is the danger of “ACK implosion”,
as all the receivers acknowledge receipt of a packet. Instead, in the lightweight sessions ap-
proach, receivers are made responsible for managing reliable streams. In addition to the data
components, “session messages” are used to maintain a view of session membership, as well
as to provide other checkpointing mechanisms around which the data protocols can operate.
This approach to managing multicast sessions applies not only to the audio and video tools,
but also to artifact-based collaborative tools described in the next section.

In addition to the problem of reliability in multicast streams, there is also a need to en-
sure timely delivery of temporal streams such as audio and video. The network itself provides
no support for timely delivery. Instead, in the lightweight sessions model, incoming data is
buffered in the receiver, which then attempts to deliver it to the user in a timely manner. The
“playback point”, corresponding to buffering delay, is continually adapted to current network
conditions; closer to packet arrival time in the case of good network connectivity and perfor-
mance, and further from packet arrival time if network response is poor (thus allowing more
time for misordered packets to arrive and fill holes in the buffer).

Two newer tools, vic [McC95] and rat [Har95], are improved tools for video and audio
respectively, incorporating lessons gleaned from the widespread deployment and use of tools
like vat and nv over the MBone since 1990. They reflect greater understandings of network-
friendly approaches to compression and encoding, architectures for real-time streams man-
agement on the Internet, and the integration of user interface and network level concerns.

8.3.1.2 Collaboration Tools: wb and nte

The first widespread MBone tools, discussed above, were for audio- and videoconferencing.
More recently, tools directly supporting artifact-based collaborative work have appeared.

202 DOURISH

Wb [Flo95] is a shared whiteboard application from Lawrence Berkeley Labs (where vat
and vic were developed). Wb is commonly used not only for collaborative interaction, but also
as a presentation medium for Internet-broadcast talks. It presents a collaborative whiteboard
with multiple pages. Any multicast group member can create a page, and any can draw on
any page. Wb has been designed with a concern for scalability which is somewhat unusual in
real-time CSCW design, with the result that it can support hundreds of receivers distributed
across the Internet in a single session.

One particularly interesting aspect of wb, which emphasizes the way in which it combines
networking and CSCW technologies, is the mechanism used for late joining (allowing clients
to join a session which is already in progress). In general, wb uses a retransmission request
mechanism for wb clients (or trees of clients) to ask for lost packets to be delivered again.
Wb uses this same retransmission request mechanism to allow clients which join sessions
in progress to catch up with the session state. Essentially, a client which joins a session in
progress can be thought of as a client which has not successfully received any packets in
the session so far. So the standard retransmission request mechanism provides a way for late
arrivals to be brought up-to-date.

Wb provides collaborative access to drawings, and while text can be added to pages, it does
not provide a way to collaboratively edit that text. Nte [Han97] is a collaborative text editor
which uses multicast to support group collaboration over the Internet and MBone. Like wb,
nte employs the techniques of lightweight sessions and Application Layer Framing [Cla90] to
provide a high degree of scalability. Reliability and resilience to transient network failures in
the face of this scalability is achieved through a loose consistency model, and the exploitation
of natural redundancy; nte uses text lines as its basic data unit, but most characters are entered
on the same line as the previously-entered character, so successive data transmissions involve
inherent redundancy, which reduces the need for retransmissions.

8.4 COORDINATION

Along with communication, simply getting the data from one point to another or a set of
others, a critical concern for CSCW technologies is the coordination of distributed action.
While communication and coordination are two sides of the same coin, in this section we
look at approaches which focus more on the management of concerted action, rather than on
data transfer.

8.4.1 Group Communication: ISIS and Horus

Isis is a group communication system developed at Cornell University (and subsequently at
Isis Distributed Systems) [Bir94a]. Its design was originally aimed at the production of reli-
able, fault-tolerant systems. Isis provides a process group abstraction in which inter-process
communication can be directed towards groups rather than individual processes, as in the
internet multicast model described above.

The basis for group communication in Isis is a model called virtual synchrony [Bir87].
Message deliveries to the members of a group are virtually synchronous. In this approach,
message delivery is controlled so that there are no observable differences in the message ar-
rivals at process group members. The motivation behind this model is support for replication-
based fault-tolerance in distributed applications. Critical services are replicated as members

SOFTWARE INFRASTRUCTURES 203

of process groups rather than individual components. The system can continue to function
even though the individual members of a process group may fail; every member of the group
must fail before the group as a whole fails. Virtual synchrony ensures that all members of a
process group see the same pattern of network activity; in turn, this ensures that their state is
accurately replicated, so that they are each maintained in equivalence.

Althoughreplication for fault-tolerance was the original motivation behind the development
of group communication in Isis, it has been used by a number of researchers as the basis for
the development of CSCW systems, including the DistEdit toolkit [Pra99] (see Chapter 5 in
this book), the collaborative virtual reality system DIVE [Car93] and the COLA application
platform [Tre95].

Horus [Ren96] is a more recent group communication system designed by the researchers
who previously developed Isis. The primary research focus behind the development of Horus
is flexibility through micro-protocol configuration. Rather than providing group communica-
tion mechanisms as a monolithic protocol, Horus allows programmers to compose a series
of microprotocols which provide different functional elements, such as total ordering, reli-
able delivery, encryption and fragmentation and reassembly. In this way, the programmer can
configure the protocol stack to the specific needs of any particular application, eliminating po-
tentially costly features not needed in particular circumstances. These issues of configuration
and customization will be addressed in more detail later in this chapter (Section 8.6).

8.4.2 Coordination Languages

One particularly interesting set of coordination technologies which can be exploited in de-
veloping CSCW applications is coordination languages. The earliest explicit coordination
language is Linda [Gel85], originally developed at Yale in the mid-1980s. Linda comprises a
set of programming language extensions which provide coordination facilities for distributed
programming. Gelernter explicitly draws a distinction between the coordination language —
provided by the Linda facilities — and the computation language — a standard programming
language within which the Linda primitives are embedded. Early versions of Linda were em-
bedded in a variety of languages, including C and Lisp.

A number of other languages have emerged for explicitly distributed programming, in
which coordination mechanisms become programming language features, rather than library
extensions for process communication, and so on. Obliq is a simple but powerful language of
this sort, developed by Luca Cardelli at DEC’s System Research Center. Obliq is of partic-
ular interest here, since it has been used as the basis of a graphical builder for collaborative
applications, Visual Obliq [Bha94].

8.4.2.1 Linda

Linda was originally developed for parallel programming applications, although the loose
coupling of components which it provides also makes it suitable for styles of programming
more readily classed as “distributed” than as “parallel”. Linda comprises a set of program-
ming language extensions embedded in a traditional “computational” programming language
in order to provide the coordination facilities needed for distributed programming. Linda’s co-
ordination model is explicitly designed independently of underlying connection models and
topology, making it suitable for a wide range of parallel programming environments, from
distributed processing on a LAN to tightly-coupled shared memory parallel computers.

204 DOURISH

The Linda model augments the base language with access to an associatively-matched
shared tuple space. Any process can place data objects into the tuple space, and retrieve them
by associative pattern-matching. Tuples are added to the space using the out primitive, which
creates a tuple of its arguments and enters it into the space. Tuples can be retrieved using the
in primitive. Arguments to in can be marked as formals — that is, variables which should
be bound by the primitive, rather than used to specify patterns.

For example, consider the situation in which some process or processes have executed the
following statements:

out(5, i, ‘‘foo’’);
out(6, i, ‘‘bar’’);
out(7, ‘‘baz’’);

These place three tuples into the tuple-space. The first two are 3-element tuples in which the
second element has been initialized to the value of the variable i in the running process. Some
other process can now execute the primitive in(5, ?j, ‘‘foo’’). The question mark
before the variable j marks it as a formal. The Linda system will then search the tuple-space
for any 3-tuple with first element 5 and third element “foo”. If there are multiple matches,
then one will be selected at random and the variable j will be bound to its second element. If
there are no matches, then the primitive will block until one becomes available.3

The blocking behavior of in can be used to coordinate the activity of different processes. A
third Linda primitive,in?, is a non-blockingequivalent which returns true if there is currently
some tuple in the tuple space which matches, and false if there is none (rather than blocking
until it becomes available).

The fourth Linda primitive is eval. The argument to eval is a computational which,
when complete, returns a tuple which will be added to the tuple space. The computation is
spawned in parallel, and the original process continues immediately. For instance, in a “task
farm” approach, a single process might spawn a whole set of computations using eval and
then use in to wait for and collect the results.

Unlike the multicast mechanisms described earlier, Linda’s basic (in/out) communication
model transmits data to a single recipient (unless in? is used to read data without removing
it from the tuple space). However, the senders need not name recipients; instead, data are
simply placed in the tuple space and then retrieved by pattern matching. This feature makes
Linda an interesting basis for CSCW implementation, since it abstracts away from details such
as group membership, group naming and connectedness, as well as away from the topology
and communication mechanism which supports the Linda model itself. Like the multicast
model, Linda’s abstract communication model supports a receiver-independent “software bus”
architecture, distributed across multiple machines; but unlike multicast (or at least, current
multicast applications such as wb and nte), it provides a framework for CSCW application
programming which is independent of the underlying network service model.

8.4.2.2 Obliq

Obliq is not a coordination language in the same sense as Linda — that is, it is not a language
dealing simply with coordination issues and which can then be embedded in an existing lan-
guage for computation. Instead, it is a fully-functional object-oriented programming language

3 In statically typed base languages, type information may also be used as input to the tuple matching process.

SOFTWARE INFRASTRUCTURES 205

in its own right. However, it is a language specifically design for distributed object-oriented
computation, and one which has been used as the basis not only for collaborative applications,
but for a graphical builder for collaborative applications. As such, it merits attention here.

Obliq takes the basic object/message model of object-oriented programming and uses this
as a means to distribute communication across a network. Objects in Obliq are implemented
using the “Network Objects” mechanism of Modula-3 [Bir94b], and inter-object communica-
tion across a network becomes a natural expansion of the message-passing model of object-
oriented programming.

Obliq objects have state, and in the presence of network communication this raises a set of
potentially complex issues to do with the replication of objects and the consequent replication
of state. Obliq deals with this through a distributed scoping mechanism. First, it makes objects
static, and local to their own sites. Objects cannot move across network connections. Instead,
object references are made available to be communicated across network links. In combi-
nation with other language facilities, such as aliasing and object cloning, this allows object
migration facilities (for example) to be built up out of the state-safe primitives which Obliq
provides. In general, then, it is not objects which move around the network, but computations.
Computations run across the network either through invocations or through the transmission
of procedures and closures. Since Obliq is lexically scoped, all free variables in closures are
bound to references at their original site (using the network reference model).

8.4.2.3 Obliq as CSCW Infrastructure: Visual Obliq

One reason that it is particularly interesting to look at Obliq from the perspective of CSCW
infrastructure is that it has been used as the basis for a research project on the development
of CSCW technologies. The goal of the Visual Obliq project [Bha94] was to develop a direct
manipulation graphical interface builder for collaborative applications which was no more
complicated to use than familiar equivalent tools for single-user interfaces (such as NeXT’s
“Interface Builder”, or Sun’s “Guide”).

To the application developer, the Visual Obliq interface builder looks like a traditional
direct-manipulation interface builder. It provides a canvas, onto which the user can drag inter-
face components, which can be laid out according to the needs of the particular application.
Dialog boxes provide controls over the attributes of each component, so that aspects of their
appearance or behavior can be changed. Interfaces can be tested from within the builder, or
the builder can be used to generate code which implements the created design.

The interface designer can associate callback code, written in Obliq, corresponding to the
actions of the various components (e.g. pressing a button, or selecting a menu item). How-
ever, in addition to the pure Obliq language (which, of course, already embodies a model
of distributed programming), facilities are also provided which support collaborative activity.
The basic Obliq mechanisms — in particular, distributed lexical scope and network object
references — provide a rich but simple model of distributed processing which can be used to
support data migration, remote object access and distributed state.

8.5 STORAGE

Given the phenomenal growth of the World Wide Web (WWW) over the past few years, the
use of WWW as a basic infrastructure for CSCW development is clearly something to inves-

206 DOURISH

tigate. The combination of platform independence and Internet accessibility makes WWW
technology a clear infrastructure candidate.

8.5.1 CSCW and WWW

A variety of systems have exploited WWW in different ways. At GMD, the BSCW (Basic
Support for Cooperative Work) system [Ben95] uses WWW as a means to provide Internet-
accessible shared workspaces supporting group work. Projects such as Freeflow [Dou96c] use
WWW to provide platform-independent interfaces to network-based collaborative services
such as workflow systems. Mushroom [Kin95] uses WWW to provide a virtual shared space
for group interaction, while systems such as America On-Line’s “Virtual Places” augment
WWW with collaborative access over existing WWW-based document repositories.

The emergence and increasing interest in CSCW systems based on WWW technology
raises a number of questions for the future development of WWW, which is undergoing con-
siderable change. There are three components of WWW technology which are exploited in
the development of CSCW systems.

1. Shared document access. The basic hypertext access model provided by HTTP (the Hy-
perText Transmission Protocol for communication between WWW clients and servers)
provides for access to distributed document repositories across the Internet. Unified access
to a shared document repository can in turn support collaborative activities.

2. User interface management. HTML extends the basic document markup model with sup-
port for user interfaces constructed from basic widget components. It provides a platform-
independent basis for user interface management.

3. Unified access to services. Through the CGI mechanism, which makes external programs
accessible as WWW documents, WWW technology provides distributed access to network
services to participants across the Internet, independent of platform and location.

These mechanisms, independently and collectively, provide significant support for the cre-
ation of collaborative applications and, perhaps even more significantly, for their deployment.

8.5.1.1 BSCW

BSCW (Basic Support for Cooperative Work) is a Web-based collaborative system [Ben95].
BSCW maintains workspaces accessible to multiple participants over the Internet. Documents
can be stored in the workspace, making them available to other participants, and retrieved by
others. The workspace is a coordination point for the multiple users, as well as providing a
simple visualization of the document store.

BSCW provides an access control mechanism to maintain control over who can read and
write documents in the workspace. It also uses a general event mechanism to maintain users’
awareness of activities in the shared space. These mechanisms are all part of the BSCW server.
The Web is used to provide a network-accessible user interface and visualization environment,
as well as access to the document repository (workspace) itself.

8.5.2 SEPIA and CoVer

The World Wide Web is, of course, a distributed hypertext system. However, as suggested
in the previous section, most uses of WWW as CSCW infrastructure have not focused on it

SOFTWARE INFRASTRUCTURES 207

as a distributed hypertext system, but rather have exploited its facilities for shared access to
documents and platform-independent interface functionality. A number of other projects have
used hypertext more generally as a means to support collaborative working.

SEPIA [Str92, Haa92] is a collaborative authoring system developed at GMD which uses
hypertext and hypermedia to support collaboration in various ways. The basic hypertext model
provides a means to structure interactions. One component of SEPIA — the argumentation
space — is a collaborative argumentation system, similar to models such as IBIS. Argumen-
tation structures allow users to post issues (as hypertext nodes) and then annotate them with
argumentation (backing, agreements, comments, disagreements, and supportive argumenta-
tion). The various relationships between pieces of argumentation (such as “supports” or “re-
futes”) can be modeled as different forms of hypertext link. As the collaboration progresses,
the argumentation structure emerges as a hypertext document. In this way, then, the basic
hypertext model directly supports this form of collaboration.

Another component, the rhetorical space, exploits hypertext to represent and manipulate
the structure of the document being produced. Document sections are unpacked as hypertext
nodes, with the rhetorical organization of the document made visible as hypertext relation-
ships. Again, the basic hypertext model provides a decomposition of the task, and so supports
visualization of the collaborative process.

SEPIA uses a collaborative versioning system called CoVer [Haa93] which is also special-
ized to the need of collaboration. Activity over hypertext nodes causes new versions to be
created, and CoVer maintains the relationships between new and old versions. The version
mechanism provides a historical record of the actions of individuals and the evolution of the
document. It also allows concurrent versions to be created in the presence of simultaneous
work by multiple participants, as well as providing for their subsequent integration into a
single, unified document.

8.6 INFRASTRUCTURE AND SPECIALIZATION

In the first part of this chapter, we have seen a number of elements of CSCW infrastructure,
and technologies which can be used to provide infrastructure services to collaborative appli-
cations. In this second part, I want to take a different tack. Here, we will step back to consider
the issue of infrastructure provision more generally.

The focus in this section will be on what it means to provide infrastructure services, and
what is demanded of them by applications and application programmers. I will outline a set
of systematic problems introduced by conventional approaches to system structure, and in-
troduce a solution which has been developed and demonstrated by a prototype CSCW toolkit
called Prospero.

8.6.1 Layered Models

A critical assumption underlying the discussion of CSCW and infrastructure in the discus-
sion above concerns the separation of system components. At some point or other, we have
discussed a large number of components — networking services, distributed object services,
hypertext storage services, CSCW support, user interface and applications. We have relied,
implicitly, upon a standard model of the relationship between these components in which the
operating services assume the “lowest level”, the applications the “highest”, and other compo-

208 DOURISH

nents are ranged in between, organized in a “stack” separated into different “levels” each using
facilities offered by components lower in the stack, and offering services to the components
above.

This approach to structuring large software systerms is familiar, even commonplace — so
much so, in fact, that it can remain implicit in discussions such as those above without caus-
ing confusion. Perhaps one of the best-known layered models of this sort is the seven-layer
ISO Reference Model (ISORM) created as part of the Open Systems Interconnection stan-
dardization effort [Zim80]. The ISORM defines seven different levels of network processing
(Physical, Data, Network, Transport, Session, Presentation, and Application) layered on top
of each other and each depending on the services provided by the layers below. It is perhaps
because this influential model was developed in the context of data networking that, while
the layered approach is very common in all sorts of systems, it is particularly common in
describing networked and other distributed systems, including CSCW systems.

8.6.2 Abstraction and Mapping Dilemmas

The development of models such as the ISORM described above arises directly from the no-
tion of abstraction in software design. Abstraction is a basic tool which we use to manage
system problems — to break them down into components, to compose them into larger sys-
tems, and to separate issues of concern for independent analysis and solution. Abstraction
allows us to separate the details of an implementation from the means by which it will pro-
vide its functionality or set of services to other system components. It allows for a separation
of (and hence an independence between) the implementation of a system and the interface it
provides. Abstraction allows us to tackle large problems, to organize the work of large soft-
ware teams, and to reuse software. Our concern here is on the place of abstraction in CSCW
infrastructure.

A module, or system component, offers an abstraction at its interface, which sets the terms
in which other system components can make use of its services. The responsibilityof a compo-
nent is to allow other components to talk in terms of that abstraction, while the implementation
itself talks in other terms (perhaps those terms offered to it as a client of other system compo-
nents). For example, a window system provides abstractions such as windows and scroll bars,
while internally it deals with screen areas and pixels; a statistical package offers abstractions
such as distributions and means, while internally it deals with data arrays and functions; and
a programming language compiler offers abstractions such as function calls and arrays, while
internally it deals with stack frames and memory blocks. The job of the implementation (or
the job of the implementor) is to map these higher-level structures of the abstraction into the
lower-level structures available at the implementation. Since there are frequently a range of
ways in which some higher-level feature can be implemented, the implementor makes a set of
mapping decisions from higher to lower level. For instance, in implementing a simple records
system, an implementor might choose whether to store records as an array or a linked list.
Decisions like these — normally quite simple — occur throughout an implementation. They
are the work of programming.

However, these decisions — such as between arrays and linked lists — carry with them con-
sequences for the use of the abstraction by clients. Linked lists favor particular sorts of access
patterns at reduced storage cost, while arrays represent a different approach to the same trade-
offs. The programmer is, then, making a set of decisions which are informed by expectations
of likely access patterns; that is, expectations of the need of clients of the abstraction.

SOFTWARE INFRASTRUCTURES 209

The problems begin to emerge when multiple clients (different programs or system mod-
ules) wish to make use of the same abstraction and implementation. This is a common —
indeed, desirable — state of affairs. We would hardly exert much effort developing a window
system unless we expected it to be able to support more than one windowing application.
However, consider the case where the two applications wish to make quite different use of the
abstraction. One wishes fast access to any record, in unitary time; the other favors sequential
access to large, sparse sets of records. This is a mapping dilemma — the implementor must
make one decision or the other, but in doing so, favors one style of client over the other.

So the mapping decisions which the implementor makes can affect the performance and be-
havior of clients. What’s more, these decisions are invisible to the clients. Locked away behind
opaque abstraction barriers, mapping decisions cannot be seen by the client. This combination
of opacity and mapping dilemmas leads to mapping conflicts — occasions on which the client
code encounters problems because it presumed that a mapping decision has been made one
way, while in fact it has been made another.

These problems are endemic to the way abstraction is used in system design, and occur in
all areas of system development. Dealing with them is part of the daily experience of pro-
gramming, and mechanisms to cope with them are familiar to any programmer. For example,
the way in which some systems — such as databases and graphics systems — have to be
written carefully so as not to cause excessive paging behavior in the virtual memory system is
an example of the efforts which programmers have to exert in the face of mapping dilemmas.
However, rather than developing new programming strategies to cope with these situations,
the approach we will explore here takes a deeper look at the source of the problems and
opportunities for avoiding the mapping dilemmas altogether.

8.6.3 Open Implementation and Reflection

The problems with abstraction encountered in the previous section have been the motivation
for recent work in Open Implementations [Kic96]. An open implementation is one which
reveals aspects of its internal design in a principled way, so that these aspects can be examined
and controlled by clients of the abstraction. The clients can adjust their behavior according
to the details of the implementation which lies below the abstraction or, more radically, can
adjust the abstraction, tailoring it to their own particular needs.

One technique which has been particularly useful in open implementation is Computational
Reflection [Smi84]. The reflective approach was originally developed in the area of program-
ming language design, but it has much wider potential applications. The principle behind
computational reflection is that a system can embody a representation of its own behavior
which is “causally connected” to the behavior it describes. This causal connection defines a
two-way relationship between the representation and the behavior. Changes in the system’s
behavior will result in changes in the representation (so that the representation always pro-
vides an accurate view of the system’s behavior at any time); and, at the same time, any
change made to the representation will result in a change to the system’s behavior.

Early work with reflection took place in the domain of programming language design and
implementation. A reflective programming language might give programs access to a run-
time model of the language’s execution model. Programs written in that language have access
to, and control over, an operational model of the language’s semantics, portable across im-
plementations of that language. This can be used to extend language semantics (adding new
language features, such as procedure parameter mechanisms), or to adjust implementation de-

210 DOURISH

cisions to suit the needs of the client (specializing internal language implementation features,
such as data representation procedures). From the problems identified with abstraction in the
previous section, the argument is that this access can be used to see and control the mapping
decisions which have been made, and so avoid mapping dilemmas, where the needs of the
client and the (hidden) details of the implementation are in opposition.

Open implementations provide not only an implementation of a core set of abstractions, but
also an abstract view onto the inherent structure of the implementation. The interface to the
core abstraction is called the “base level interface” (or just the base interface), while access to
the abstract view of the implementation is provided through the “metalevel interface” (or just
meta-interface). The meta-interface provides the means to view and control the way in which
mapping decisions are made, so that applications can customize how the abstractions which
the system offers are provided. The separation of base and meta-interfaces results in a clean
separation between base code (which uses the base interface and implements the system)
and the meta-code (which uses the meta-interface to customize the implementation). This
separation results in more easily maintainable systems.

8.6.3.1 Reflection in CLOS

Let’s consider a more detailed example. One of the best-developed and most widespread re-
flective systems is the Common Lisp Object System (CLOS). CLOS is an object system for
Common Lisp, which is directly incorporated into the language (and which is now included
in the ANSI language specification). CLOS programmers can write object-oriented programs
using familiar object-oriented mechanisms such as classes, objects and methods (as well as a
few less familiar ones, such as multi-methods and method combination). These basic compo-
nents of the programming language constitute CLOS’s base level.

CLOS also offers a metalevel, which allows the internal details of the programming lan-
guage and its implementation to be tailored to the needs of specific applications. The CLOS
implementation offers a view of its own internal mechanisms — for instance, the creation of
new instances, or the search for method code when a generic function is invoked.4 This model
of internal action is structured as a CLOS progam; essentially, CLOS is defined as if it, itself,
were a CLOS program. Representations of the internal structures of CLOS, such as classes
and methods themselves, are presented as CLOS objects. So, any particular class is available
in CLOS as an instance of the predefined class standard-class. Newly defined classes
are, by default, instances of standard-class (that is, standard-class is their meta-
class); and operations over classes (such as finding their superclasses, allocating instances or
adding methods) are represented as methods on standard-class.

This metalevel arrangement allows CLOS programmers to “reach into” the implementation
and change aspects of it to suit their own needs. Since standard-class is a normal CLOS
class, it can be subclassed like any other. New methods defined on the subclass will override
those already defined. Since the methods defined on standard-class are the internal
behaviors of the object system, those internal behaviors will be replaced for any class whose
metaclass is the new programmer-supplied metaclass, rather than standard-class. The
programmer has changed how aspects of the language behave.

This mechanism can be used for a wide range of purposes:

1. The reflective mechanism can be used to make efficiency improvements for particular cases.

4 A generic function occupies the place in CLOS of a virtual function in C++ or a message in Smalltalk.

SOFTWARE INFRASTRUCTURES 211

For instance, a programmer might wish to make changes to the way the language imple-
ments instance allocation and slot lookup, perhaps to support “sparse” objects which define
many slots (instance variables) but only use a small number.

2. The reflective mechanism can be used to effect compatibility changes, such as how the
conflict resolution mechanism works for multiple inheritance. This can be used so that
legacy code from a different object system can still be supported.

3. The reflective mechanism can be used to extend the base language’s functionality. For
instance, we might wish to provide a constraint mechanism which looks to the programmer
like normal slot lookup.

The reflective approach allows these sorts of modifications to be done within the scope of
the language, rather than being performed on a particular implementation, which would be
inherently non-portable.

It is important to note that what CLOS offers at the metalevel is a representation of its in-
ternals, in terms of a CLOS program. In other words, there is a level of interpretation between
the representation at the metalevel and the details of the actual implementation which lie be-
low. After all, the structure of the CLOS metalevel is part of the definition of CLOS, and must
be portable across different implementations. The details and performance optimizations of
specific implementations, such as the uses of partial evaluation in the PCL implementation
[Kic90], play no part in the metalevel representation. So while aspects of the implementation
— or views of specific mapping decisions — are offered at the metalevel, this is at least one
step removed from the details of the implementation code itself. The essence of open imple-
mentation design is to give principled access to aspects of the implementation; access that is
organized around the metalevel designer’s expectations of future needs.

Open implementation techniques developed largely in the domain of programming lan-
guages, although recently they have been applied to other systems, including window systems
[Rao91], distributed systems [Oka94] and databases [Bar96]. My own recent work has fo-
cused on the use of these same principles and techniques in the CSCW context, leading to the
development of a reflective CSCW toolkit called Prospero.

8.6.4 Prospero: Open Implementation and CSCW

The problems described above, problems of opaque interfaces, abstractions and mapping con-
flicts, are endemic to the way we use abstraction in systems design. As a result, they occur in
all the various domains to which system design principles are applied. In CSCW, we can see
a number of manifestations.

For instance, consider the problem of data replication. Toolkits for building collaborative
applications will often provide a “shared data object” abstraction, which allows different
clients to process and manipulate data, with the effects being propagated across a network
to other interfaces. This is clearly an extremely valuable abstraction for collaborative applica-
tions, and one which we would certainly wish to exploit and build upon. However, we have to
consider what implementation decisions are being masked by the shared data abstraction.

One set of decisions focus on data replication. Is the user data object to be replicated, so
that copies of it exist at each likely access site, or is there one central copy on which actions
are performed? If there is a single copy, where is it located? If there are multiple copies, how
are conflicts managed? The goal of the abstraction is to hide exactly these sorts of decisions
— ones which are unnecessary for the maintenance of the abstraction itself. However, these
decisions are critical when it comes to using the abstraction. Data replication and conflict

212 DOURISH

management decisions have significant implications for the ways in which the abstraction can
be used to support collaboration. For instance, if there is a single copy of the data item, then
the access latency for widely distributed users may increase beyond the level necessary for fast
interactive response. On the other hand, if there are multiple copies, then conflict management
and resolution strategies may begin to have effects which are reflected at the interface. Users
may have to obtain locks on data, for instance, and there may be pauses while these are
obtained; or actions may be subsequently “undone” in order to maintain overall consistency.
(These issues are discussed in detail by Greenberg and Marwood [Gre94] and in Chapter 5 of
this book [Pra99].)

Prospero is a prototype toolkit for collaborative applications which uses open implemen-
tation to give the application developer control over how the toolkit will provide its support
[Dou95a, Dou96a]. In particular, Prospero provides mechanisms for data distributionand con-
currency control which not only support particular styles of CSCW application, but also al-
lows application programmers to reach into the toolkit and customize those mechanisms to
the needs of specific applications.

8.6.4.1 Data Distribution and Divergence

Traditional approaches to data distribution in CSCW are concerned with issues such as cen-
tralization versus replication, or supporting synchronous versus asynchronous working. How-
ever, as discussed earlier, distinctions like these begin to affect the ways in which applications
can be built on top of toolkits, and in which those applications can be used in collaborative
working.

The standard approach is to manage access over potentially distributed data by mapping the
activities of multiple users onto a single stream of activity. Techniques such as dividing access
across asynchronous sessions, establishing total orderings over simultaneous distributed activ-
ities, or serializing access at a single central data store, are all ways of mapping the activities
of multiple users into a single, unified stream.

The establishment of a single stream out of multiple, potentially simultaneous sources of
activity is the focus for a number of mapping decisions critical of significance to collaborative
activity. The distribution mechanism which Prospero offers is explicitly based on multiple
streams of activity, around which it manages distributed data and distributed action in terms
of divergence and synchronization [Dou95b].

Actions which arise in the course of collaboration — creating objects, editing them, chang-
ing attributes, or whatever — are each associated with some particular stream. Streams nor-
mally correspond to different individuals in each collaborative session, although this is not
a requirement of the model. Streams might represent session recorders, for instance, or be
proxies for remote groups, etc. When an action is added to a stream, the effect is to cause a
divergence between that stream’s view of the data store and the views of other streams, since
those streams have not yet seen the action take place. Periodically, streams are synchronized
to re-establish a shared view of the data store.

The model is defined independently of any particular period of synchronization, so that the
period can be varied in different applications. With a small period of synchronization, streams
will be synchronized frequently, after only small changes have been made. For instance, when
the period is fractions of a second, then the effect will be similar to that of traditional “syn-
chronous” applications, in which the activities of one user are reflected quickly in the views
or interfaces of others. However, when the period of synchronization is large, perhaps of the

SOFTWARE INFRASTRUCTURES 213

order of hours or days, then the effect is similar to that of traditional “asynchronous” applica-
tions, in which individuals work separately, coordinating their work and exchanging changes
less frequently.

Divergence and synchronization are made explicit in this model so as to open them up
for examination and change within the toolkit. Application programmers can gain control
over the means for adding actions to streams, and for establishing divergence. Similarly, the
programmer can gain control over the conditions under which synchronization takes place, as
well as the extent of synchronization required.

8.6.4.2 Consistency Guarantees

One traditional way of managing exclusion and hence maintaining data consistency in the face
of parallel user activity is the use of locks. Prospero extends the basic locking approach with
a new abstraction called consistency guarantees [Dou96b]. Consistency guarantees provide a
more flexible approach to managing data consistency, as well as supporting customization by
application programmers to define new models of consistency management specialized to the
semantics of individual applications.

The basis of the traditional locking mechanism is that the server (or lock-granting authority)
gives a guarantee of data consistency (the lock) in exchange for a characterization that the
client provides of upcoming activity (commonly, a description of the area over which the lock
should operate). The lock can be regarded as a guarantee of future consistency for two reasons:
first, because inconsistency could arise due to simultaneous activity if the locking mechanism
was not used; and second, because the server will grant the lock to only one client, ensuring
serial access.

The consistency guarantees mechanism which Prospero provides generalizes the locking
mechanism in two ways. First, clients can provide richer descriptions of upcoming activity.
These are called promises, specified in terms of the semantics of operations. Clients create
promises from sets of semantic properties (idempotency, monotonicity, destructiveness, etc).
These promises contain more useful information than the traditional read/write distinctions,
which allow the server to make more informed decisions.

The second generalization is in the form of the locks. Rather than returning normal locks,
Prospero servers return guarantees of achievable consistency when synchronization occurs.
(Although this discussion is framed in terms of client/server for familiarity, Prospero uses a
peer-to-peer model.)

A traditional lock guarantees absolute consistency. Prospero consistency guarantees, on the
other hand, may offer more limited forms of consistency (such as “syntactic consistency”, in
which multiple possible values for data items are collected together so that all participants
share a common view, although more work must be done later to resolve the situation).

Although the consistency guarantees approach loosens various restrictions of traditional
locking, there is still a significant problem with the promise/guarantee model. Because
promises must be given before action, there is a need to predict what user action will take
place, and then to restrict action to precisely what was promised. Especially in asynchronous
(or, rather, infrequently synchronized) working, this restriction can prove a serious limitation
to the styles of work which users can perform. To avoid this, Prospero allows clients to break
their promises. If a user “breaks a promise” — that is, engages in activity other than that which
was promised — then the guarantee no longer holds, although the system may still attempt to
incorporate the changes made. Particular client applications may or may not offer this facility

214 DOURISH

to their users; they may insist upon keeping to plan, or they may choose to warn users when
a promise may be broken. The framework as a whole, however, is designed to deal with these
sorts of situations.

8.6.4.3 Configuring Infrastructure in Prospero

Like other open implementations, there are two aspects to Prospero. The first is the default or
base level behavior — the basic mechanisms which programmers can use to develop appli-
cations. Programmers can use Prospero to develop CSCW applications in which user actions
are associated with streams of activity which are periodically synchronized with each other.
The default stream type, bounded-stream, allows a certain number of actions to be ac-
cumulated before it automatically forces synchronization with peer streams in the system.
Concurrency control is optimistic by default.

The second aspect is the metalevel control which the open implementation provides. In
Prospero, the relationships between actions, streams, divergence and synchronization mech-
anisms is made available through the provision of the system’s meta-objects and the generic
functions which relate them within a programming structure. So programmers can reach in
and modify the ways in which divergence is observed, or the triggers to synchronization, or
the nature of synchronization which will be performed. Similarly, the consistency guaran-
tees mechanism provides a programmatic way for application developers to express semantic
features of their programs, so that these can be incorporated into the consistency manage-
ment mechanism, effectively specializing internal toolkit behaviors to the characteristics and
requirements of particular applications.

Just as in the CLOS example provided earlier, this metalevel programming takes place
largely through the subclassing and specialization of the metaobject classes which the toolkit
reveals. This allows programmers to precisely direct their adjustments, in two ways. First,
it reduces the amount of metalevel programming they need to perform; most behaviors can
simply be inherited, rather than rewritten, and only the new behaviors must be described.
Second, it narrows their focus to the particular areas of the system requiring modification;
the generic dispatch mechanism of object-oriented programming allows multiple behaviors to
exist side-by-side.

These mechanisms have supported the development of widely different applications in
Prospero; synchronous and asynchronous, graphical and data-based, with centralized and
replicated data, and loose and strict consistency policies. These applications demonstrate
the way in which Prospero’s open implementation design allows application programmers
to avoid the mapping conflicts which emerge in traditional designs, and take control of the
infrastructure which supports them.

8.6.4.4 Example: The Bibliographic Database

Let’s consider a brief example to illustrate how Prospero is used to create collaborative ap-
plications and, at the same time, illustrate the new role of infrastructure under a reflective
approach. Longer and more detailed examples are provided in [Dou96a].

Consider creating a shared application for managing bibliographical entries. You might
read the store of references to browse them, look up specific entries, or to generate a set of
formatted references from the citations in a document. You might update the store to correct an
error in an existing entry or to add new publications as they become available. The application

SOFTWARE INFRASTRUCTURES 215

is shared amongst a number of users, perhaps the members of a research group who share a
set of common interests (and, therefore, are likely to refer to the same set of publications).

The first step is to organize the actions around streams. Updates, changes, lookups and re-
trievals are separate operations which are captured in streams of activity associated with each
user. The critical issue is the set of circumstances under which streams will be synchronized.
Prospero offers a number of pre-defined streams with different synchronization characteris-
tics; bounded-stream is a stream which will synchronize with its peers whenever a certain
number of operations have been performed on it, or an explicit-synch-stream will
accumulate actions until one particular synchronization action occurs. Alternatively, at the
metalevel, a new stream class can be constructed with specialized behaviors for any given
setting. However, in this case, let’s take explicit-synch-stream.

To encode the application’s behavior in Prospero, the programmer creates new application
action classes which corresspond to the different sorts of activities in which clients can engage
(lookup, new-record, change-record). Objects corressponding to each application
action are generated as the actions are performed, and are added to the stream. Prospero
handles the synchronization between streams.

Prospero’s behavior can be further specialized by using semantic properties of the appli-
cation actions to increase parallelism. As described earlier, the idea here is that we can use
the detailed semantics of the application domain as the basis for consistency management,
rather than simply using the generic “read” and “write” of the database infrastructure. In this
example, the major opportunity is in the two conditions in which data might be written —
correcting a record or adding a new record. Three observations are critical:

1. Updates are far more common than corrections.
2. Updates do not conflict with lookups.
3. Two parallel updates are unlikely to conflict. Even if they are for the same publication, then

they should contain the same information, and so either one can be executed and the other
discarded.

These observations allow us to encode application semantics in the consistency management
mechanism. First, we adjust the definitions of the application actions defined above, so that
they are now defined in terms of a set of application semantic properties — in this case,
whether or not they introduce potentially conflicting changes into the data store. This is only
true of corrections, so only the correct-record action class will inherit from the property
class changes-data.

Now that actions are specified in terms of semantic properties, the consistency management
mechanism is updated in terms of these properties. The programmer can choose how to make
use of the properties and what sorts of consistency guarantees to use. This is specified by
providing methods for the compatibility testing methods which compare specific operations
and return an indication of compatibility. In some cases, this might involve consulting recent
execution history, or combining a set of compatibility predicates over a number of operations.
In this case, however, we can solve the problem with only two operations — one method
which says that any two generic application actions are compatible, and a second overrid-
ing method which says that no action is compatible with one which inherits the property
changes-data.

As with the streams mechanism, once the action of the application has been specified in
these terms, the Prospero mechanisms will handle synchronization and consistency manage-
ment independently. However, in much the same way as these mechanisms have provided the

216 DOURISH

means for the programmer to specialize the toolkit’s mechanisms for particular settings, so
these automatic mechanisms may themselves be further appropriated and specialized. This
example, however, does not require further specialization.

8.6.5 Reconsidering Infrastructure

The reflective approach opens up a new view of infrastructure. Instead of having to map the
functionality required of an application into the generic facilities which the infrastructure pro-
vides, this approach instead allows programmers to specialize the infrastructure components
so that they match the needs of particular settings.

This radically changes the nature of infrastructure, which takes a much more active role
in the applications we might develop. Further, the relationship between application and in-
frastructure is changed, since the infrastructure no longer stands alone, unchanging, against
the backdrop of different uses. Instead, it provides a framework within which each applica-
tion can gain access to resources, but deploy them differently, reflecting the different needs,
requirements and expectations for different applications or domains.

Prospero is a demonstration and exploration of these ideas as applied to CSCW. As was
explored in the first half of this chapter, collaborative applications and settings can require
significant flexibility in the underlying infrastructure. Prospero shows how the reflective/open
implementation approach can recast this relationship and so provide a means to creating much
more flexible levels of infrastructure.

8.7 SUMMARY

Since the design and implementation of CSCW applications draws on a number of areas of
system design, such as data communication, distributed systems and user interfaces, there are
a range of technologies and techniques which can be employed as infrastructure for CSCW
systems design. This chapter has provided an overview of some of these areas, as well as dis-
cussing particular components which have been, or can be, used as infrastructure supporting
CSCW systems development.

However, there are some important considerations to be borne in mind when evaluating
infrastructures for CSCW systems. Experience has demonstrated that the needs and goals of
CSCW design are often at odds with the design goals of these infrastructural components,
and in particular, the way in which infrastructure services are implemented and combined can
systematically introduce problems for the design and use of CSCW systems. For example,
the management of distributed or replicated data, and subsequently the mechanisms which
are used to maintain consistency in the face of potentially simultaneous action by multiple
individuals, can interfere with patterns of collaborative activity. To support the rich forms of
interaction which we observe in studies of cooperative work, applications need to be able to
configure the way in which infrastructure services are offered to them.

In the final section of this chapter, I outlined an approach to this problem. The solution uses
an architectural technique called Open Implementation, which provides clients of an abstrac-
tion with a principled form of access to a model of internal operations. The clients can use
this mechanism to examine the way in which internal mapping decisions have been made, and
to adjust those to suit particular application requirements. This approach has been exploited

SOFTWARE INFRASTRUCTURES 217

in Prospero, a prototype toolkit for CSCW applications, based on the open implementation
approach.

CSCW is a young and rapidly expanding field; and at the same time, many of the infras-
tructures on which we base our technologies are changing even faster. As we learn more
about how these infrastructures can be deployed, and more about how CSCW applications are
designed and used, then we can expect to see not only new opportunities for infrastructure
support, but also new models of the integration and mutual adaptation of infrastructure and
CSCW applications programming.

ACKNOWLEDGEMENTS

Jim Holmes provided useful feedback on an earlier draft of this chapter, and Jon Crowcroft and
Mark Handley useful pointers for the section on internet multicast. Prospero was developed
while I was working at the Rank Xerox Research Centre, Cambridge Laboratory (formerly
EuroPARC) and at University College, London.

REFERENCES

[Bal93] Ballardie, A., Francis, P. and Crowcroft, J., Core Based Trees (CBT): A scalable inter-domain
multicast routing architecture. Proc. ACM Symposium on Computer Communications SIG-
COMM’93, San Francisco, California. ACM, New York, 1993.

[Bar96] Barga, R. and Pu, C., Reflection on a legacy transaction processing monitor. Proc. Reflec-
tion’96, San Francisco, California, 1996.

[Bar91] Barghouti, N. and Kaiser, G., Concurrency control in advanced database applications. ACM
Computing Surveys, 23(3):269–317, 1991.

[Ben95] Bentley, R., Horstman, T., Sikkel, K. and Trevor, J., Supporting collaborative information
sharing with the World-Wide Web: The BSCW Shared Workspace System. Proc. Fourth
International World Wide Web Conference, Boston, Mass. O’Reilly and Associates, Cam-
bridge, Mass., 1995.

[Bha94] Bharat, K. and Brown, M., Building distributed, multi-user applications by direct manipu-
lation. Proc. ACM Symposium on User Interface Software and Technology UIST’94. ACM,
New York, 1994.

[Bir87] Birman, K. and Joseph, T., Exploiting Virtual Synchrony in Distributed Systems. ACM
Operating Systems Review, 22(1):123–138, 1987.

[Bir94a] Birman, K. and van Raneese, R., Reliable Distributed Computing with the Isis Toolkit. IEEE
Computer Society Press, Los Alamitos, California, 1994.

[Bir94b] Birrell, A., Nelson, G., Owicki, S. and Wobber, E., Network Objects. Systems Research
Center Research Report 115, Digital Equipment Corporation, Palo Alto, California, 1994.

[Bly93] Bly, S., Harrison, S. and Irwin, S., Media spaces: Bringing people together in a video, audio
and computing environment. Communications of the ACM, 36(1), 1993.

[Car95] Cardelli, L., A language with distributed scope. Proc. ACM Symposium on Principles of
Programming Languages. ACM, New York, 1995.

[Car93] Carlsson, C. and Hagsand, O., DIVE: A platform for multi-user virtual environments. Com-
puter Graphics, 17(6):663–669, 1993.

[Cla90] Clark, D. and Tennenhouse, D., Architectural considerations for a new generation of proto-
cols. ACM Communications Review, 20(4):200–208, 1990.

[Dav73] Davies, C., Recovery semantics for a DB/DC system. Proc. ACM National Conference.
ACM, New York, 1973.

[Dee88] Deering, S., Multicast routing in internetworks and extended LANs. Proc. ACM Symposium
on Computer Networks SIGCOMM’88. ACM, New York, 1988.

218 DOURISH

[Dou92] Dourish, P. and Bellotti, V., Awareness and coordination in shared workspaces. Proc. ACM
Conference on Computer-Supported Cooperative Work CSCW’92, Toronto, Canada. ACM,
New York, 1992.

[Dou95a] Dourish, P., Developing a reflective model of collaborative systems. ACM Transactions on
Computer–Human Interaction, 2(1):40–65, 1995.

[Dou95b] Dourish, P., The parting of the ways: Divergence, data management and collaborative work.
Proc. European Conference on Computer-Supported Cooperative Work ECSCW’95, Stock-
holm, Sweden. Kluwer, Dordrecht, 1995.

[Dou96a] Dourish, P., Open Implementation and Flexibility in CSCW Toolkits. Ph.D. dissertation,
Department of Computer Science, University College, London, UK, 1996.

[Dou96b] Dourish, P., Consistency guarantees: Exploiting application semantics for consistency man-
agement in CSCW toolkits. Proc. ACM Conference on Computer-Supported Cooperative
Work CSCW’96, Cambridge, Mass. ACM, New York, 1996.

[Dou96c] Dourish, P., Holmes, J., Maclean, A., Marqvardsen, P. and Zbyslaw, A., Freeflow: Me-
diating between representation and action in workflow systems. Proc. ACM Conference
on Computer-Supported Cooperative Work CSCW’96, Cambridge, Mass. ACM, New York,
1996.

[Far89] Farran, A. and Ozsu, M.T., Using semantic knowledge of transactions to increase concur-
rency. ACM Transactions on Database Systems, 14(4):503–525, 1989.

[Flo95] Floyd, S., Jacobson, V., McCanne, S., Lui, C-H. and Zhang, L., A reliable multicast frame-
work for light-weight sessions and application level framing. Proc. ACM Symposium on
Computer Communications SIGCOMM’95, Boston, Mass. ACM, New York, 1995.

[Gar89] Garfinkel, D., Gust, P., Lemon, M. and Lowder, S., The SharedX Multi-User Interface User’s
Guide, Version 2.0. Software Technology Lab Report STL-TM-89-07, Hewlett-Packard Lab-
oratories, Palo Alto, California, 1989.

[Gel85] Gelernter, D., Generative communication in Linda. ACM Transactions on Programming
Languages and Systems, 7(1), 1985.

[Gra75] Gray, J., Lorie, R. and Putzolu, G., Granularity of Locks and Degrees of Consistency in a
Shared Database. Research Report RJ1665, IBM, San Jose, California, 1975.

[Gre94] Greenberg, S. and Marwood, D., Real-time groupware as a distributed system: Concurrency
control and its effect on the interface. Proc. ACM Confeerence on Computer-Supported
Cooperative Work CSCW’94, Chapel Hill, North Carolina. ACM, New York, 1994.

[Gre99] Greenberg, S. and Roseman, M., Groupware toolkits for synchronous work. In Beaudouin-
Lafon, M. (Ed.), Computer Supported Cooperative Work, Trends in Software Series 7:135–
168. John Wiley & Sons, Chichester, 1999.

[Haa93] Haake, A. and Haake, J., Take CoVer: exploiting version support in cooperative systems.
Proc. InterCHI’93, Amsterdam, Netherlands. ACM, New York, 1993.

[Haa92] Haake, J. and Wilson, B., Supporting collaborative writing of hyperdocuments in SEPIA.
Proc. ACM Conference on Computer-Supported Cooperative Work CSCW’92, Toronto,
Canada. ACM, New York, 1992.

[Han97] Handley, M. and Crowcroft, J., Network Text Editor (NTE): A scalable shared text editor for
the MBone. Proc. ACM Symposium on Computer Communications SIGCOMM’97, Cannes,
France. ACM, New York, 1997.

[Har95] Hardman, V., Sasse, A., Handley, M. and Watson, A., Reliable audio for use over the internet.
Proc. INET’95, Hawaii. 1995.

[Hea92] Heath, C. and Luff, P., Collaboration and control: Crisis management and multimedia tech-
nology in london underground control rooms. Computer Supported Cooperative Work, 1(1),
69–94, 1992.

[Her90] Herlihy, M., Apologizing versus asking permission: Optimistic concurrency control for ab-
stract data types. ACM Transactions on Database Systems, 15(1):96–124, 1990.

[Kic90] Kiczales, G. and Rodriguez, L., Efficient method dispatch in PCL. ACM Symposium on Lisp
and Functional Programming LFP’90, Nice, France. ACM, New York, 1990.

[Kic96] Kiczales, G., Beyond the black box: Open implementation. IEEE Software, 8–11, January
1996.

[Kin95] Kindberg, T., Mushroom: a framework for collaboration and interaction across the Internet.
Proc. ERCIM Workshop on CSCW and the Web, Sankt Augustin, Germany, 1995.

SOFTWARE INFRASTRUCTURES 219

[Mac99] Mackay, W.E., Media spaces: Environments for informal multimedia interaction In
Beaudouin-Lafon, M. (Ed.), Computer Supported Cooperative Work, Trends in Software
Series 7:55–82. John Wiley & Sons, Chichester, 1999.

[McC95] McCanne, S. and Jacobson, V., Vic: A flexible framework for packet video. Proc. ACM
Multimedia’95, San Francisco, California. ACM, New York, 1995.

[Moy94] Moy, J., Multicast Extensions to OSPF. RFC 1584, SRI Network Information Center, Menlo
Park, California, 1994.

[Oka94] Okamura, H. and Ishikawa, Y., Object location control using meta-level programming.
Proc. European Conference on Object-Oriented Programming ECOOP’94, Bologna, Italy.
Springer-Verlag, Heidelberg, 1994.

[Pos81] Postel, J., Internet Protocol. RFC 791, SRI Network Information Center, Menlo Park, Cali-
fornia, 1981.

[Pra99] Prakash, A., Group editors. In Beaudouin-Lafon, M. (Ed.), Computer Supported Cooperative
Work, Trends in Software Series 7:103–133. John Wiley & Sons, Chichester, 1999.

[Rao91] Rao, R., Implementational reflection in Silica. Proc. European Conference on Object-
Oriented Programming ECOOP’91, Geneva, Switzerland. Springer-Verlag, Heidelberg,
1991.

[Ren96] van Reneese, R., Birman, K. and Maffeis, S., Horus: A flexible group communication system.
Communications of the ACM, 39(4):76–83, 1996.

[Smi84] Smith, B.C., Reflection and semantics in Lisp. Proc. ACM Symposium on Principles of
Programming Languages, Salt Lake City, Utah. ACM, New York, 1984.

[Str92] Streitz, N., Haake, J., Hanneman, J., Lemke, A., Shutt, W. and Thuring, M., SEPIA: A co-
operative hypermedia authoring environment. Proc. ACM Conference on Hypertext, Milano,
Italy. ACM, New York, 1992.

[Tre95] Trevor, J., Rodden, T. and Blair, G., COLA: A lightweight platform for CSCW. Computer-
Supported Cooperative Work, 3:197–224, 1995.

[Zim80] Zimmerman, H., OSI Reference Model — The ISO model of architecture for open systems
interconnection. IEEE Transactions on Communications 28(4):425–432, 1980.

9

Expanding the Role of Formal
Methods in CSCW

CHRIS JOHNSON

University of Glasgow

ABSTRACT

Before we can build CSCW systems it is important to have a clear idea of the requirements
that they must satisfy. This chapter argues that formal methods can be used to help repre-
sent and reason about these requirements. Unfortunately, the formal notations that support
the development of single-user interfaces cannot easily be used to support the design of
multi-user applications. Traditional approaches abstract away from the temporal proper-
ties that characterize interaction with distributed systems. They often neglect the input and
output details that have a profound impact upon multi-user interfaces. The following pages
argue that these details can be integrated into formal specifications. For the first time, it
is shown how mathematical specification techniques can be enhanced to capture physical
properties of working environments. This provides a link between the physiological studies
of ergonomics and the interface design techniques of HCI. Such links have been completely
neglected within previous work on design notations. In all of this, the intention is to fight
against a narrow, myopic, view of formal methods. These notations need not simply be
used to focus in upon a relatively small number of software engineering principles. The
aim is to show that formal methods can be used creatively to solve a vast range of design
problems within complex multi-user interfaces.

9.1 INTRODUCTION

The term “formal method” is used to refer to a variety of notations and development tech-
niques that support the rigorous development of complex systems. By the term rigorous, we
mean that they have a mathematical basis which can be used to determine whether a par-
ticular description of a complex system is in some sense correct. At first sight, the use of

Computer Supported Cooperative Work, Edited by Beaudouin-Lafon
c
 1999 John Wiley & Sons Ltd

222 JOHNSON

Formal Specifications

Implementations

Toolkits Architectures

establish
requirements

establish
requirements

define
structures for
eventual
implementation

support
prototyping
and iterative
development

embody

support

Figure 9.1 Formal methods and the development of CSCW systems

abstract mathematics may seem to have little connection with the previous chapters in this
collection. These have focused upon particular CSCW interfaces, development architectures
or multi-user toolkits. In contrast, this chapter argues that formal methods offer considerable
benefits for the development of CSCW systems. Figure 9.1 illustrates how they might guide
the different approaches described in the previous chapters of this book. Before designers
can select appropriate architectures, they must have a clear idea of the requirements that their
system must satisfy. Before development teams can identify potential toolkits, they must first
establish the constraints that their interface must satisfy.

9.1.1 Why Use Formal Methods In CSCW Systems?

There are a number of additional, commercial reasons why formal methods are being recruited
to support the design of CSCW systems. Mathematical notations are increasingly being used
in the development of large-scale applications. Craigen, Gerhart and Ralston’s survey for the
US Department of Commerce cites projects ranging from nuclear reactor control systems to
French rapid transport applications [Cra93]. Formal methods have also been used to support
the development of interactive systems [Joh96b]. A number of authors have extended these
techniques to support the design of multi-user interfaces. For instance, Palanque and Bastide
have developed a graphical notation to represent simultaneous transactions by multiple users
on shared interaction objects [Pal95]. The applications, cited above, all focus upon CSCW
interfaces for office-based applications. Safety-critical systems, perhaps, represent the greatest
potential for the application of formal methods. Johnson, McCarthy and Wright have exploited
a range of graphical formalisms to identify human factors problems amongst the aircrews in
several major accidents [Joh94a]. A common motivation behind all of this work has been a
concern to avoid some of the weaknesses that natural language presents for the development
of multi-user systems [Joh95a].

9.1.2 The Limitations of Natural Language

What is a formal method? In one sense, a formal method is any notation that has a clear syntax
and a well-understood semantics. By syntax, we mean that there are rules for building up

FORMAL METHODS IN CSCW 223

sentences out of simpler components. For instance, the sentence “all users can quit the system
at any time” follows the established grammatical rules for the English language. “ Time users
all any system the quit can at the” breaks the rules. The term semantics is used to refer to
the meaning of a sentence. We can all hopefully agree upon the intended meaning of the first
example. If we break the syntactic rules, as in the second example, then it is more difficult to
extract the meaning of a sentence.

According to our definition, natural language is a formal method. The previous paragraph
has shown that it has both a syntax and semantics. Without these underlying properties it
could not be used to support the development of multi-user systems. Designers and engineers
would not be able to interpret phrases such as “all users can quit the system at any time”.
Unfortunately, there are a number of problems. The intended meaning of an English sentence
is not always clear. For instance, the previous example does not describe the input devices
and command sequences that each user might exploit to quit the system. Such ambiguity may
cause irritation and inconvenience in the design of collaborative working environments. In
safety-critical applications, the consequences can be much more profound. For example, the
following recommendation was published by the United Kingdom’s Department of Energy in
the aftermath of the Piper Alpha accident:

“ There should be a system of emergency exercises which provides Offshore Installations
Managers with practice in decision-making in emergency situations, including decisions on
evacuation. All of the Offshore Installations Managers and their deputies should participate
regularly in such exercises” [Cul90, page 399, para 20.61].

These natural language requirements cannot easily be used to support the detailed develop-
ment of CSCW systems. They do not provide enough information about the “emergency ex-
ercises” for designers to review existing practice. It is ambiguous in the sense that any two
individuals might disagree about what is meant by an “emergency situation”. These problems
provide real barriers to the use of natural language in the team-based development of CSCW
systems.

9.1.3 The State of the Art

Formal notations help to reduce the ambiguity and imprecision that characterize natural lan-
guage. This is, typically, done by imposing constraints upon the sentences that are valid within
a language. For example, syntactic rules can be used to define a structure or format for natural
language clauses. Within this general approach, there are a range of different ways in which
formal notations can support the development of CSCW systems.

9.1.3.1 Formal Methods for Principled Design

An important benefit of formal methods is that they enable designers to express important
properties of CSCW systems at an extremely high level of abstraction. By stripping out low-
level implementation details, it is possible to focus in upon common properties that affect
a large number of multi-user systems. For example, Dix, Rodden and Somerville use the
following formulae to specify the notion of fidelity in a multi-user version control system
[Dix97]. By fidelity, they intend that the version history for any object should accurately
reflect the transactions that have been performed upon it. In the following, @(context) is an
actual context corresponding to a context label in a version manager:

224 JOHNSON

1 54

9

7

3

6

8

2
A: Request B: Promise

B:Reject
A: Withdraw

A: Reject
B: Withdraw

A: Counter

A: Accept
B: Counter

A: Withdraw

B: Renege

B: Assert

A: Declare
A: Decline

Figure 9.2 Conversation for action (from Winograd and Flores)

8context 2 Contexts; context0 2 dom world context(entity0) :

world context(entity0)(context0) = world@(context0)(entity) (9.1)

The important point here is that mathematical abstractions, such as the set ofContexts, can
be used to represent the concept of fidelity without referring to the particular details that must
be considered during a full implementation. The use of mathematics encourages designers to
carefully formulate an explicit expression or representation for such properties. This avoids
the misunderstandings that can arise when such high-level goals are left as implicit objectives
for design teams.

9.1.3.2 Formal Methods for Interaction Architectures

The previous section briefly argued that formal notations can be used to represent high-level
design objectives. They can, however, also be used to direct the implementation of particular
systems. Winograd and Flores exploited this approach when using state transition diagrams to
develop a high-level architecture for their Coordinator application [Win87]. Figure 9.2 shows
how the states, denoted by circles, are used to represent critical points in a “conversation for
action”. The transitions between states, denoted by arcs, are used to represent communication
between the participants. The key point here is that the syntactic structures of the notation
help designers to strip aside the mass of irrelevant detail that can obscure critical properties of
CSCW systems. By focusing on states and the transitions between them, the previous diagram
clearly illustrates the various opportunities that face each participant at each stage of an in-
teraction. Figure 9.2 also illustrates some of the weaknesses of this approach. State transition
diagrams provide a very sequential view of interaction with CSCW systems. It can also be
difficult to capture some of the detailed cognitive and system factors that affect interaction
with multi-user applications.

FORMAL METHODS IN CSCW 225

User 1 Computer/communications
 infrastructure

user
(articulatory)

actions
internal
actions

perceivable
computer actions

internal
actions

locate button select button button hilited on 1

user 2's machine
shows request
pending

user 1's request
sent

"re-connecting"
message on 1

location

Sector A

Sector B

dispatch
transfer request
from 2

User 2

location

observe
request
pending
symbol

select view
request
menu item

Sector C

internal
actions

user
(articulatory)

actions

Figure 9.3 UAN showing interaction over a mobile network

9.1.3.3 Formal Methods for Task Analysis in Traces of Interaction

The semi-formal User Action Notation (UAN) avoids some of the limitations of state tran-
sition diagrams [Hix93]. UAN organizes the actions comprising a task into categories based
on the agent that executes them and their function in the task. These categories define the
syntax of the notation and are represented as the columns of a tabular format. For example,
Figure 9.3 shows how an extended form of UAN can be used to analyze mobile communi-
cation between concurrent users of a multiple computer system [Joh97]. Initially, user 1 is
in cell A and requests information from user 2. The communications infrastructure forwards
the request to user 2 who views it before dispatch. In the meantime, user 1 has moved into
another cell and the system must reestablish their connection through another transceiver. It
is important to emphasize that Figure 9.3 represents a different application of formal methods
from that shown in Figure 9.2. Rather than representing a high-level architecture for interac-
tion, as in the case of Coordinator, the UAN diagram is being used to represent and reason
about particular user tasks during a particular trace of interaction. Unfortunately, a number of
problems limit the utility of this notation. It provides no means of reasoning about temporal
properties. This is important because the handover delay in Figure 9.3 might have a minimal
effect if it lasted a few seconds. If it took several minutes then the “re-connecting” message
might have to be reworded to provide more information about the cause of the delay. Tem-
poral information can be represented using the extended XUAN notation [Gra95]. The more
general point here is again that the restricted syntax of formal notations helps designers to
focus in on critical properties of a CSCW system. In Figure 9.3, those properties include the
physical locations of the users and their observable actions. However, this is only achieved at
the cost of other properties, such as temporal relationships, that cannot be so easily captured
within the syntactic structures.

9.1.3.4 Formal Methods for Accident Analysis

In contrast to the tabular form of UAN, Petri Nets provide a graphical notation that has
long been used to represent temporal properties of interactive systems [Kra91]. Bastide and
Palanque [Bas90] exploit Petri Nets to derive formal specifications of interactive systems at a
very high level of abstraction. Johnson et al [Joh94a] have shown that Petri Nets can be used
to represent the operator–system interaction which can lead to accidents in safety-critical sys-

226 JOHNSON

Fan blade fracture

Captain
incorrectly
diagnoses
engine #2

Captain believes
fault is in the #2 engine

Captain correctly
diagnoses engine#1

Captain believes
it's engine #1

Captain is
unfamiliar
with
ventilation

Captain is aware
of smoke on
the flight deck

Smoke enters
ventilation

There is smoke

There is vibration
in engine #1

AVM is displaying
out of range reading

Crew and passengers
are aware of smoke
in the cabin

Passengers
become
alarmed

Cabin
crew
are
busy

1st Officer incorrectly
polls the AVM

1st Officer makes
informed decision

1st Officer
is considering
the information

1st Officer forced
to make a guess

Commander is considering
command

Captain: OK throttle is back...

Workload
is high

Display
layout
is poor

1st Officer is
unaware of
the AVM

AVM is
unreliable

Sensors begin to
detect vibration

1st Officer is
unsure

1st Officer: It's the le...
It's the right one.

1st Officer: Its the le...
It's the right one.

1st Officer is liable
to make a verbal slip

Captain hears the
1st Officer's
observation

Figure 9.4 A high-level Petri net

tems. Timing properties are represented by sequences of places. These are denoted by a circle
and can be used to show states of interaction. Places are linked by transitions. These are
denoted by rectangles and can be used to represent events during interaction. Figure 9.4 illus-
trates this approach. It also shows how Petri Nets can be used to analyze relatively complex
traces of group interaction. Once again, it is important to emphasize that the previous diagram
represents a different style of application for formal methods. Previous examples have used
state transition diagrams to analyze high-level architectures for CSCW systems, UAN was
used to analyze user tasks during a potential trace of interaction. Here, Petri Nets are being
used to analyse crew interaction prior to the Kegworth air crash. This more situated use of a
notation helps to focus in upon critical features of a previous failure as a means of establishing
requirements for future systems. There are, however, a number of limitations that restrict the
utility of Petri Nets for the design of CSCW systems. For example multi-user undo cannot eas-

FORMAL METHODS IN CSCW 227

ily be represented using this notation [Gra95]. Similarly, the associated proof techniques that
support this approach can be surprisingly complex given the intuitive appeal of the graphical
representation.

9.1.3.5 Formal Methods for Proof

The ability to prove properties of a system, prior to implementation, is a key benefit of formal
methods. Proof is essentially a form of reasoning or argument that uses the syntactic rules of
a notation to determine the validity of a theorem or hypothesis. This can be illustrated by the
following example using first-order logic. Designers might specify that a system should be
shut down if two users issue input to that effect:

shut down(

input(user 1; stop) ^ input(user 2; stop): (9.2)

The system is shut down if user 1 and user 2 issues input to stop the system.

First-order logic provides a proof rule which states that if we know that some fact P is
implied by some other fact Q and we know Q then it is safe to conclude P :

P (Q;Q ` P: (9.3)

Given that P is true if Q is true and we know Q then it is safe to conclude that P is true.

Given the two previous clauses we can now establish whether or not the system will ever
be shut down. In a model checking approach to theorem proving, this would be achieved by
generating possible states of the system and inspecting those states to determine whether or
not both users had issued the appropriate input. This illustrates an important weaknesses of
theorem proving for interactive systems. There is no automatic means of determining whether
or not users will actually provide the anticipated input in any state of the system. On the
other hand, this approach does force designers to consider the assumptions that they make
about operator behavior. For instance, the proof process outlined in (9.3) forces designers
to consider those situations in which users might be expected to cooperate in the manner
described by (9.2).

A range of tools support the application of formal methods. For example, theorem proving
tools provide designers with a semi-automatic means of checking whether certain properties
do or do not hold for a particular design [Har95]. Similarly, model checking tools can be used
to search for particular situations that may or may not arise during the course of interaction.
These tools increase the level of automation provided by theorem proving systems and pro-
vide direct means of searching for particular scenarios of interaction. Other tools can also
be recruited to aid the formal development of multi-user systems. For example, Figure 9.5
illustrates the user interface to Logica’s commercial Z tool, called Formaliser. This automati-
cally helps designers to construct syntactically correct specifications through structure editing.
Other tools can be used to “directly” develop prototype implementations from formal specifi-
cations [Joh92]. This is important because mathematical specification techniques provide an
extremely poor impression of what it would be like to interact with a potential interface.

228 JOHNSON

Figure 9.5 The Formaliser syntax editing tool

The remainder of this chapter focuses upon the application of logic to support the design
of CSCW systems. This decision is justified by a number of arguments. Firstly, logic forms
a key component of most undergraduate degrees in computing science and engineering. This
supports the skill base that is necessary for the pragmatic application of these techniques
within commercial development practices. Secondly, there exist a range of relatively simple
transformations between other formalisms, such as Petri Nets, and first-order logic. This of-
fers designers the possibility of recruiting different notations during different stages of the
development process. Finally, logic programming environments, such as that supported by
PROLOG, offer a means of deriving prototype implementations from abstract specifications.
As mentioned, this is vital if designers are to validate the products of formal analysis.

9.2 STARTING FROM THE GROUND UP: THE APPLICATION OF
FORMAL METHODS TO CSCW

The limitations of natural language stem from the fact that it is difficult to write down the exact
syntactic rules which guide its use. Similarly, it can be difficult to agree upon the semantics
of particular words. Dictionaries provide many different definitions for common words and
phrases. Even human factors experts disagree about the meaning of terms such as “workload”
[Kan88]. Given such ambiguity and inconsistency, people have long sought to strip away the
clutter of everyday language to focus in upon the essentials of communication. Much of this
work has built upon the use of mathematics to define syntactic rules for the development of
valid sentences. The same mathematical constructs can also be used to specify an exact se-
mantics for these phrases. For example, the designers of a CSCW interface must consider the
commands that can be issued by system operators. The following clause might be used to

FORMAL METHODS IN CSCW 229

specify that user 1 issues input to quit the application. The intention is to express require-
ments in a clear and simple manner without the elaborate syntax of natural language:

input(user 1; quit): (9.4)

User 1 issues input to quit the system.

Even with such simple beginnings it is possible to reason about the design of a potential
interface. For example, the previous clause does not state that other operators, user 2, user 3
etc., also issue input to quit the system. In other words, clause (9.4) does not require agreement
between multiple operators. Designers must identify such collaborative requirements if they
are to provide the additional cues and prompts that are necessary to achieve coordination.
A further benefit is that additional requirements can be gradually introduced as development
progresses. For example, the followingclause states that the application is shut down ifuser 1
or user 2 issues input to quit the system:

shut down(system) (input(user 1; quit)_ input(user 2; quit): (9.5)

The application is shut down if user one or user two issues input to quit the system.

This clause relies upon logic operators, _ (read as “or”) and ((read as “if”). These provide
the syntax that is needed to construct more complex requirements out of basic relationships
such as input(user 1; quit). We have previously argued that natural language cannot eas-
ily be used to support the large-scale development of CSCW systems because it may have
ambiguous semantics. We face a similar problem here. What is the meaning of _ or of (?
Fortunately, there are a number of techniques that can be used to capture the meaning of such
operators. For example, the following truth table provides the semantics for the _ operator.
The first line states that whenever we know that P is true and we know that Q is true then
it is safe to conclude that P _ Q is true. The second line states that whenever we know that
P is true and Q is false then it is safe to conclude that P _ Q is true. The rest of the table
can be read in a similar fashion. It is important to emphasize, however, that the formal de-
velopment of software requires more complex tools than truth tables. The following table is
included to reinforce the central idea behind formal specifications. Mathematical structures
restrict and focus the components of requirements documents so that they have a precise and
concise meaning:

P Q P _Q

true true true
true false true
false true true
false false false

Rather than present a complete introduction to first-order logic, the remainder of this chap-
ter focuses upon the application of formal methods to support the design of CSCW systems.
Hodges provides a fuller description of the underlying mathematics [Hod77]. Natural lan-
guage annotations will be provided in the following pages to help readers who are more inter-
ested in the application of the logic rather than its theoretical foundations.

230 JOHNSON

9.2.1 An Example Application

We are concerned that a real-world example is used to illustrate our approach. The following
pages, therefore, investigate the design of a control room for an oil production facility. These
systems have posed a significant challenge for both systems designers and human factors
specialists [War89]. Oil production facilities are complex applications. For instance, operators
must monitor the extraction of oil from geological structures under the sea-bed. They must
also control the extraction and purification of any gas which is recovered with the oil. The
UK Government’s Gas Conservation Policy prevents these gas products from being “flared”
or burnt on the rig. Operators must also monitor repair activities and maintenance schedules.
This involves the coordination of many different teams. These properties of the application
help to ensure that oil production control systems exhibit many of the problems that frustrate
the design of CSCW applications. Groups of operators must monitor computer displays in
order to identify faults in many different processes. Users must detect and coordinate their
responses to a range of potential errors. Information systems present their operators with
information about the extraction of oil products from geological structures deep beneath the
sea-bed. Not only must users monitor the rate of extraction but they must also maintain a
constant watch for problems that threaten the safety of the rig. For instance, gas leaks pose a
considerable risk of fire. If gas is detected then control-room personnel must investigate the
cause and identify potential solutions.

9.3 DIALOGUE SEQUENCES

First-order logic provides a means of focusing in upon critical properties of interfaces to
applications such as the oil production control system. Designers can represent and reason
about a design without being forced to consider the low-level details of device polling and
event handling. An important point in all of this is that the elements of a specification should
provide a common focus for multi-disciplinary design teams. For instance, it might be stated
that a fault monitoring system is ready to start logging failures if a user issues a command to
start. In order to satisfy such a requirement, interface designers must enable users to easily
issue such high-frequency commands. Application engineers must support the functionality
that lies behind these commands. A key issue here is that the use of the formal notation does
not bias or pre-judge the work of these groups. For instance, the designer is not forced to
consider which devices will be used to issue the start command. The choice of presentation
strategies can profoundly affect the usability of the final interface. Formal methods can be
used to construct a design without forcing commitment to a particular implementation early
in the development process:

start logging (

input(user 1; start) ^ effect(start; off; logging): (9.6)

The monitoring system starts logging faults if user 1 issues input to start the application
and the effect of that input is to transform the state of the system from one in which it is off
to one in which it is logging faults.

First-order logic can be recruited to reason about the complexity of concurrent interaction

FORMAL METHODS IN CSCW 231

between multiple users. Contention is a frequent problem in multi-user systems which allow
two or more operators to access the same resources. For example, one user might attempt to
quit the application while another attempts to log a fault:

log contention(

input(user 1; quit) ^ input(user 2; log pump A error): (9.7)

Contention arises in the logging system if user 1 issues input to quit the system and user 2
issues input to log a fault.

This conflict could be resolved by always giving priority to commands from a particular user
[Pen90]. Alternatively, priority might be associated with certain commands [Ell91]. Input with
a lower priority may be disregarded. The input quit does not affect the state of the system:

resolve contention (log contention^

effect(quit; on; on) ^ effect(log pump A error; on; pump A error): (9.8)

Contention is resolved if the logging command takes effect but input to quit the system
does not change the state of the application.

Unfortunately, a number of problems must be resolved before first-order logic can be used
to support the design of concurrent multi-user systems. In particular, there is no notion of
ordering in first-order logic. This creates problems because many critical issues in the devel-
opment of CSCW systems arise from the sequencing of events. In our example, no conflict
need arise if the system were closed down after the fault had been recorded. As there is no
notion of sequence in first-order logic, the previous clause would still specify that contention
occurs even if quit were issued some time after log pump A error. Temporal sequencing
must be introduced if such concurrency requirements are to be made explicit within logic
specifications of interactive systems.

9.3.1 Time and First-Order Logic

The lack of sequencing in first-order logic has important consequences for the design of
CSCW systems. Delays in receiving information, from systems and other users, can lead to
breakdown and referential failure [McC91]. Concurrent input can lead to contention and in-
terference. The following section describes how the temporal properties of an interface can be
made explicit within logic specifications. This provides the designer with a medium in which
to reason about the possible impact of timing properties upon the users of CSCW applications.

9.3.1.1 Fixed Time-Stamps

Fixed time-stamps provide one means of avoiding the limitations of first-order logic. This ap-
proach associates a particular instant of time with each clause in a specification. For example,
it might be specified that quit and log pump A error should be input at twenty seconds past
midday. An additional requirement might also be that the command to quit the system should
not take effect when the fault is being logged at twenty-five seconds past midday. An impor-

232 JOHNSON

tant point here is that time-stamps help to build a standard time-line for critical requirements.
This provides a means of explicitly representing synchronization requirements:

fixed solution (

log contention(120020) ^ effect(quit; on; on; 120025) ^

effect(log pump A error; on; pump A error; 120025): (9.9)

Contention is resolved if quit and log pump A error are input at twenty seconds past
midday and five seconds later the monitoring system logs the fault.

There are a number of limitations which restrict the utility of fixed time-stamps within a
specification. Considerable burdens are imposed upon the designer who must provide and
maintain the temporal parameters in each clause. A further problem is that it is difficult to
represent persistent properties of CSCW interfaces. For instance, a designer might wish to
ensure that quit does not take effect before log pump A error:

persistent solution(log contention(120020)^

not(effect(quit; on; off; 120021)) ^ not(effect(quit; on; off; 120022)) ^

not(effect(quit; on; off; 120023)) ^ not(effect(quit; on; off; 120024)) ^

effect(log pump A error; on; pump A error; 120025): (9.10)

Contention is resolved if quit and log pump A error are input at twenty seconds past
midday and the input to quit the system does not take effect at twenty-one seconds past
midday, twenty-two seconds past midday, twenty-three seconds past midday, twenty-four
seconds past midday and the monitoring system logs the fault at twenty-five seconds past
midday.

Fixed time-stamps also introduce a high degree of temporal determinism into a specifica-
tion. In order to fulfill the previous specification both users must provide concurrent input
at exactly twenty seconds past midday. If designers wished to represent means of avoiding
contention at twenty seconds before midday, at twenty seconds to one, at half past four or at
any other time, they would be forced to repeat previous clauses for each of these points.

9.3.1.2 Time Variables

The limitations of fixed time-stamps can be avoided by using time variables. For example,
fixed solution (9.9) might be re-expressed as follows:

variable solution(log contention(T) ^ effect(quit; on; on; T1)^

effect(log pump A error; on; pump A error; T1) ^ after(T; T1): (9.11)

Contention is resolved if user 1 and user 2 issue input at time T and the command to quit
the system is ineffective at some subsequent time, T1, when user 2’s fault is logged.

The time variables, T and T1, could be instantiated at a number of points during interaction

FORMAL METHODS IN CSCW 233

and the temporal ordering is made explicit by the predicate after. Unfortunately, the use of
such variables still imposes considerable burdens upon the interface designer. It is particularly
important that a clear semantics is maintained for predicates, such as after, which define an
ordering over variables. These can radically effect the properties of any specification. For
example, the following clause specifies that user 1’s input does take effect after the fault has
been logged:

circular solution (

log contention(T) ^ effect(quit; on; on; T1) ^

effect(log pump A error; on; pump A error; T1) ^

effect(quit; pump A error; off; T2) ^ after(T; T1)

^after(T1; T2) ^ after(T2; T): (9.12)

Contention is resolved if user 1 and user 2 issue input at time T and the command to quit
the system is ineffective at some subsequent time, T1, when user 2’s fault is logged but
the input to quit the system does take effect at time T2.

The previous clause illustrates some of the problems that can arise in large-scale specifications
of CSCW systems. In particular, time T2 occurs both after and before time T . This circular
model of time makes little sense. Unfortunately, there is a high risk of such considerable prob-
lems occurring if designers are forced to construct complex sequences in terms of the after
relation. Temporal ambiguities may easily occur in specifications that contain hundreds or
thousands of clauses, especially if they must be constructed and maintained by many different
development teams.

9.3.1.3 Temporal Logic

Temporal logic extends first-order logic by supporting the following operators: 3 (read as
“eventually”);
 (read as “next”); 2 (read as “always”) and U (read as “until”) [Man81].
This notation relieves the designer from the burdens of maintaining an explicit ordering in
terms of predicates such as after. The ordering is captured within the definition of temporal
operators. For example, 3 may be defined using a set of time-stamps T , jwjt denotes the
truth value of the formula w at time t. It is important to note, however, that designers can
simply introduce temporal operators into a specification. They are not forced to explicitly
represent the after sequences that are embedded within the definitions of temporal operators.
Nor are they obliged to explicitly deal with the underlying model represented in the following
definition:

j3(w)jt � 9t1 2 T [after(t; t1) ^ jwjt1] (9.13)

The 3 operator is defined such that any formula w is eventually true at time t if there exists
some later time, t1, when w is true.

Prior provides complete definitions for the various temporal operators mentioned above
[Pri67]. In contrast, our focus is upon the application of the notation. The following section,

234 JOHNSON

therefore, shows how temporal logic can be used to analyse solutions for the problem of
interference within our CSCW application.

9.3.1.4 Input Priorities Revisited

Contention can be resolved by associating priorities with commands. Scarce resources can be
allocated to input with a high priority, input with a low priority may be disregarded. In terms
of our oil production system, a command to switch off the fault monitoring application might
be assigned a relatively low priority. The systems should continue to log faults whenever
possible and input to disable the system might, therefore, be ignored if users continue to
report problems in their equipment. Unfortunately, this solution suffers from a number of
limitations. There is no guarantee of fairness, some users may be “frozen” out of interaction if
their commands always receive low priority. In particular, a user could not predict the success
or failure of a quit command unless they could determine the priority of concurrent input from
all other users. A designer might reduce this uncertainty by ensuring that low-priority input is
eventually effective:

priority solution (log contention^

effect(log pump A error; on; pump A error) ^

3 effect(quit; pump A error; off): (9.14)

Contention is reduced if input to log a fault takes effect in the present interval and eventually
the input to quit the system takes effect.

This approach can be used to develop sophisticated priority structures. For example, a com-
mand to close the system might be assigned a lower priority than input to log a fault in the
emergency deluge equipment for fire-fighting on the rig. This, in turn, might be assigned a
higher priority than the input to log a pump fault. The following clause formalizes this re-
quirement. It is clearly important to explicitly represent these priorities if critical input is not
to be delayed:

ranking solution(input(user 1; quit)^

input(user 2; log pump A error) ^

input(user 3; log deluge failure) ^

effect(log deluge failure; on; deluge failure) ^

3(effect(log pump A error; deluge failure; fire risk alert) ^

3 effect(quit; on; off)): (9.15)

Contention is reduced if three users issue input at the same time to close down the system,
to log a pump fault and to log a fault in the emergency deluge system. The input to log
the deluge fault takes effect immediately and eventually the pump failure is recorded. This
changes the state of the system into one in which there is a fire risk and eventually at some
point after this the input to close down the system will have the effect of turning the system
off, providing the state has returned to normal.

FORMAL METHODS IN CSCW 235

Unfortunately, postponing the effect of low-priority input can cause a number of problems
for the users of groupware applications. The previous clause does not specify when the 3
(read as “eventually”) clause will be true. Delays in system responses can lead to frustration
and error [Kuh89]. Unpredictable behavior is likely to occur when periods of quiescence allow
the system to process a backlog of low-priority input [Ell89]. Delayed commands might take
effect at inappropriate moments during an interaction. The presentation of a large amount of
contextual information is required before a user can resolve such instances of unpredictability.

9.3.1.5 Locking

Interference can occur even if input priority mechanisms are adopted. Low-priority input to
halt the system might take effect before another user has finished logging a fault. This inter-
ference can be avoided by assigning priorities to transactions rather than single commands.
For example, transaction locking restricts input from other users until an operation has been
terminated. Input priority, user priority or first-come first-served mechanisms provide a means
of determining the identity of the next user to “gain the floor”:

transaction lock (input(user 2; log pump A error)^

(not(input(user 1; I)) U input(user 2; end pump A error)): (9.16)

Contention is reduced through the imposition of a lock if user 1 cannot enter any input, I,
until user 2 has cleared the fault.

Unfortunately, single-entry transaction locking resolves contention by restricting multi-user
systems to sequential interaction. There are a number of reasons why such an approach is of-
ten unacceptable. Users may not relinquish control if transactions are not terminated. Oppor-
tunism and negotiation may provide more fruitful grounds for cooperation than prescription.
In contrast to transaction locking, data locking avoids contention by restricting the ability of
operators to make modifications to shared resources. For instance, user 1 might continue to
interact with the fault monitoring system even though user 2 is logging a fault on pump A.
Designers may only choose to prevent user 1 from also logging a fault on that component
while user 2 is accessing it:

logging lock (input(user 2; log pump A error)^

(not(input(user 1; log pump A error))U

input(user 2; end pump A error)): (9.17)

Contention is reduced if user 1 cannot log a fault until user 2 has finished logging their
fault.

It is important to notice that this solution has been expressed without reference to device
primitives or particular polling strategies. Later sections will describe tools which have been
developed to directly execute such abstract specifications. This provides a means of evaluating
the consequences of placing restrictive locks upon the group process. For example, this ap-
proach can prove unnecessarily restrictive if locks are placed upon entire systems. Interference
need not occur if users make concurrent updates to different processes. Alternatively, as we

236 JOHNSON

have seen, data locks may be imposed at the level of individual systems or sub-components.
This introduces considerable complexity into the design of an interface [Gre87]. For instance,
logging knock-on faults can involve the acquisition of a large number of locks. The process
by which a user requests and relinquishes a shared resource can impose a large overhead on
the times necessary to perform even simple operations.

9.4 FORMALIZING THE PRESENTATION OF CSCW SYSTEMS

The second way in which formal methods can be applied to support CSCW systems is in
display design. This poses significant challenges because the presentation of multi-user appli-
cations is qualitatively different from that of single-user systems. Some displays are shared
amongst the members of a group while others are not. For example, the task of monitoring
oil production will require different information from that of gas extraction. This, in turn, will
require different information from the task of fire prevention and detection. CSCW designers
must consider the composition of displays that support these different activities. This devel-
opment problem is complicated because the individual elements of a display will change over
time. It is critical that development teams have some means of representing and reasoning
about these common and private contexts if they are to provide adequate support for group
activities and individual tasks.

9.4.1 Unstructured Graphics

Unstructured graphical representations do not distinguish between the images of display com-
ponents, such as menus and icons. For instance, bitmaps represent the image of pixels as bits
in a data structure. Designers might use these representations to specify the images that are
presented to the multiple users of CSCW systems, such as the oil production application:

DeclareBitmap(logging display.bit, 42, 49, logging display.bits);
short on display.bits[] =
/* Abbreviated for the sake of brevity */
f

0x0000, 0x0000, 0x0000, 0x000f, 0xff00, 0x0000, 0x007f, 0xffc0,
0x0000, 0x00ff, 0xfff0, 0x0000, 0x00ff, 0xfff0, 0x0000, 0x00ff,
0x001f, 0x0000, 0x0340, 0x006f, 0x0000, 0x03b0, 0x0a97, 0x0000,
0x037d, 0x3fef, 0x0000, 0x03ee, 0x0a1b, 0x0000, 0x03d7, 0x3ff7,
0x0000, 0x03fd, 0x87ca, 0x0000, 0x03f7, 0x5616, 0x0000, 0x014b,
0x0000, 0x0000, 0x0000,

g;

It is extremely difficult to decompose data structures, such as the previous bitmap, into the
components of a complex image. This hinders the development of multi-user computer sys-
tems because, typically, only part of a screen is shared by all system operators. The common
parts of a display cannot easily be extracted from an unstructured representation.

9.4.2 Procedural Graphics

Procedural graphics systems construct pictures from sequences of instructions. Designers
might use these systems to generate interface components without describing the entire ap-
pearance of a display. The shared images of CSCW systems can be represented and reasoned

FORMAL METHODS IN CSCW 237

about in terms of the instructions necessary to create them. For instance, the following clauses
show how the
 (read as “next”) operator can be used to describe the instructions that are
necessary to draw part of a pump A error icon:

draw pump A error icon(

pen down ^
(pen forward(10) ^

(pen rotate(90) ^
(pen forward(20) ^

(pen rotate(90) ^
(pen forward(10) ^ :::)))) (9.18)

The error icon for pump A is drawn if in the present interval the pen is lowered to the
paper and in the next interval the pen is moved forward by ten units and in the next again
interval the pen is rotated by ninety degrees and...

Procedural approaches offer only limited support for the prototyping of multi-user CSCW
systems. Designers would be forced to write many thousands of instructions in order to create
complex images. This burden is greatly increased because different sequences of instructions
must simultaneously be executed on a range of different devices in order to present displays to
a number of different users. If one instruction were omitted or placed out of sequence then the
final image might be corrupted. Szekely and Myers identify a further limitation of procedural
graphics systems [Sze88]. If users select part of a display, using a mouse or some cursor keys,
then there is no means of identifying the target of their selection using the instructions that
generated the image. Designers must, therefore, maintain additional data structures in order
to determine which images are selected by operator input. This is a considerable overhead for
prototype CSCW systems whose users may concurrently select many different parts of many
different images.

9.4.3 Structured Graphics

Logic can be used to represent the images presented by a CSCW system at an extremely high
level of abstraction. For instance, the following clause specifies that user 1 is presented with
a condensate display, user 2 is presented with a deluge display. Similar clauses might be
introduced to represent the images presented to user 3, user 4, user 5 etc:

display(user 1; condensate display): (9.19)

display(user 2; deluge display): (9.20)

The first clause states that user 1 is presented with the condensate display. The second
clause states that user 2 is presented with the deluge display.

Display abstractions can be decomposed into their component parts. For instance, the
condensate display presented to user 1 might show that the pneumatic valves, the cen-
trifuges and the non-return valves are all functioning correctly but that there is an er-
ror with pump A. This image is illustrated in Figure 9.6. The structure of the user 1’s
condensate display is represented by the following clauses:

238 JOHNSON

J-T Flash Drum

Condensate
Suction Vessel

A

B

Condensate
Condensate

675psi
635psi

670psi

635psi

A

Warning

Pump A Error
Deluge System

Pump A Error Icon Centrifuge A Pneumatic Valve B Non-return Valve A

Figure 9.6 The graphical decomposition of the condensate display

part(user 1; condensate display; centrifuge A): (9.21)

part(user 1; condensate display; pneumatic valve B): (9.22)

part(user 1; condensate display; pump A error icon): (9.23)

part(user 1; condensate display; non return valve A): (9.24)

The first clause states that the centrifuge A icon is part of the condensate display pre-
sented to user 1. The second clause states that the pneumatic valve B icon is part of the
condensate display presented to user 1. The third clause states that the pump A error
icon is part of the condensate display presented to user 1 and so on.

Figure 9.7 illustrates how the deluge display presented to user 2 can be decomposed in a
similar fashion. The structure of this image can be represented by the following clauses:

part(user 2; deluge display; pump A error icon): (9.25)

part(user 2; deluge display; inlet B capacity): (9.26)

part(user 2; deluge display; pump C icon): (9.27)

part(user 2; deluge display; protection cage C): (9.28)

The first clause states that the pump A error icon is part of the deluge display presented
touser 2. The second clause states that the inlet B capacity is part of the deluge display
presented to user 2. The third clause states that the pump C icon icon is part of the
deluge display presented to user 2 and so on.

FORMAL METHODS IN CSCW 239

Pump C IconPump A Error Icon

1,800 gpm 1,800 gpm4,000 gpm4,000 gpm

1,800 gpm

Utility Water
Header

Fire Water
Header

12-hrs Diesel

TYP
Diesel

Inlet capacity
(US gallons per minute)

Intake protection
cage

Figure 9.7 The graphical decomposition of the deluge display

Designers can use logic clauses to identify those images, such as pump A error icon,
which form the common context of operations performed by user 1 and user 2. This sup-
ports the detailed development of CSCW systems. For instance, designers might specify that
the deluge pumping equipment is closed if user 1 and user 2 are presented with an error for
pump A and both provide input to close off the pump. Such an agreement would be appropri-
ate because closing-off fire-safety equipment has important consequences for the oil and gas
extraction processes. The display requirement that they both see the error icon for pump A is
intended to ensure that both operators are presented with sufficient contextual information in
order for them to coordinate their response:

voting close pump A(

display(user 1; condensate display) ^

display(user 2; deluge display) ^

part(user 1; condensate display; pump A error icon) ^

part(user 2; deluge display; pump A error icon) ^

3(input(user 1; close pump A) ^

input(user 2; close pump A)): (9.29)

This states that a voting system is used to close pump A if user 1 is presented
with the condensate display and user 2 is presented with the deluge display and
pump A error icon is part of both displays and eventually both user 1 and user 2 pro-
vide input to close the pump.

240 JOHNSON

Such clauses support further stages in the development of CSCW systems. For instance, it
has not been specified that the deluge display presents detailed information about the cen-
trifuges that are used during gas extraction from the oil. It would not, therefore, be appropriate
to expect user 2 to resolve problems with these components without access to additional data.
Contention might occur if they did attempt to operate a centrifuge.

For example, user 1 might close it while user 1 tried to open it. The display abstractions
introduced in the previous paragraphs might be integrated with the temporal operators from
the first part of this chapter to specify solutions for such problems. Designers might require
that a lock is imposed to resolve contention if user 2 is not presented with information about
a particular centrifuge:

lock out centrifuge contention(

input(user 1; close centrifuge A) ^

display(user 2; deluge display) ^

not(part(user 2; deluge display; centrifuge A)) ^

not(input(user 2; I) U input(user 1; end centrifuge A error)): (9.30)

This states that a lock is imposed to prevent contention over centrifuge A if user 1
provides input to close it and user 1 is presented with the deluge display and the
centrifuge A icon is not part of that display and user 2 does not provide input until
user 1 has issued input to state that the error in the centrifuge is over.

We have argued that problems such as contention and deadlock make it necessary to con-
sider the “look and feel” of a potential interface during the early stages of CSCW systems
development. It is, therefore, important that designers can refine high-level clauses, such as
condensate display, into the primitive images which are presented to users. One means of
doing this is to describe images in terms of lines:

line(user 1; centrifuge A; 0:1; 0:2; 0:6;0:2): (9.31)

This states that the image of the centrifuge icon presented to user 1 includes a line from
coordinates (0.1,0.2) to (0.6, 0.2).

A limitation with this approach is that operator input is not usually directed towards lines
but towards areas of the screen. A user selecting an icon does not, necessarily, expect to select
a particular line of its image. In order to support such interaction, designers must exploit
more sophisticated graphical “building-blocks”. Figure 9.8 illustrates how the image of the
condensate display can be described in terms of a number of regions: a background region,
a text region and a centrifuge region. Regions can be further decomposed into sub-regions.
Each region has properties, such as size and position, attributes, such as font and pattern,
and a behavior, such as whether or not it is selectable. For instance, the centrifuge A icon
could be presented to user 1 as a region with a blank background and dimensions that occupy
one-twentieth of the screen:

FORMAL METHODS IN CSCW 241

A

Condensate

635psi

670psi

635psi

J-T Flash Drum

A Background RegionA Text Region A Graphical Region

A

B

Condensate
Suction Vessel

J-TFlashDrum

Figure 9.8 The region decomposition for part of the condensate display

dimension(user 1; centrifuge A; 0:05; 0:05): (9.32)

pattern(user 1; centrifuge A; blank): (9.33)

The first clause states that the image of the centrifuge A icon presented to user 1 has
dimension that occupy one twentieth of the screen. The second clause states that the image
of the centrifuge A icon presented to user 1 has a blank background.

These clauses can represent the ways in which CSCW displays must be tailored in order
to support group tasks. For instance, designers might require that user 2 can monitor the ef-
fects of user 1’s intervention on the centrifuge while performing other duties. Under such
circumstances, the centrifuge might be introduced into the deluge display. The dimensions
of the centrifuge icon could also be reduced in order to free display resources for the presen-
tation of user 2’s primary activities. Although both users must be presented with information
about the centrifuge, the size of this image is used to reflect the relative importance of the
component for each user’s task. The following clause illustrates how logic abstractions can
be used to represent and reason about CSCW systems which support semi-independent views
[Ell91] of application processes :

part(user 2; deluge display; centrifuge A): (9.34)

dimension(user 2; centrifuge A; 0:02; 0:02): (9.35)

The first clause states that the centrifuge A icon is part of the deluge display presented
to user 2. The second clause states that the image of the icon presented to user 2 has
dimension that occupy one-fiftieth of the screen.

242 JOHNSON

The choice of input media has a profound affect upon the usability of CSCW systems. For
instance, Galer and Yap have used prototypes to investigate the costs and benefits of different
input devices for the users of intensive care systems [Gal80]. Some operators suffered from
high error rates when using thumb wheels, mice were difficult to use in cluttered clinical en-
vironments. In order to evaluate the tradeoffs that exist between tracker-balls, mice, joysticks
and keyboards, the designers of CSCW systems must be able to represent a variety of input
devices.

9.4.4 Introducing Input Information

Input can be represented by introducingdevice drivers into formal specifications. For instance,
the following routine “blinks” the caret when a mouse is moved over a text region in an Apple
Macintosh [App86]:

CLR.L -SP ;event code for null event is 0
PEA 2(SP) ;pass null event
CLR.L -SP ;pass NIL dialogue pointer
CLR.L -SP ;pass NIL pointer
DialogueSelect ;invoke DialogueSelect
ADDQ.L #4,SP ;pop off result and null event

Burton et al show how designers might formalize similar code in order to specify single-
user graphical interfaces built from the Apple Macintosh Toolbox [Bur89]. Such descriptions
provide an appropriate level of detail for many stages in development. They are, however,
extremely device dependent. The complexity of accessing input at this level of detail might
dissuade designers from assessing the costs and benefits of a range of devices for the many
different users of CSCW systems. Like bitmaps, this approach provides a one-step refinement
between abstract, formal representations of graphical interfaces and device specific implemen-
tations. This would have important consequences for the development of embedded control
systems, such as our oil rig application. In these environments, CSCW applications must fre-
quently be developed to run on a range of existing hardware. It would not be acceptable to
rebuild a control room because its input devices could not be formalized in terms of their
device drivers.

Input from a range of physical devices, such as mice or tracker balls, can be represented by
generic events, such as on select and on move. Events can be introduced into formal specifi-
cations by associating them with graphical regions. For example, the following clause shows
how designers might specify that pump A is closed if user 1 and user 2 are presented with
an pump A error icon and both operators use a mouse to select this image. This clause can
also be used to describe control rooms in which the operators had access to tracker-balls or
cursor keys instead of mice. These devices could also generate on select events. Such device
independence helps to avoid premature commitment to particular hardware platforms. Imple-
mentation decisions can be postponed until late in the development cycle when the costs and
benefits of a range of different input media have been considered. This encourages designers
to identify those devices that are most appropriate to the particular tasks and environments of
CSCW groups:

FORMAL METHODS IN CSCW 243

event close pump A(

display(user 1; condensate display) ^

display(user 2; deluge display) ^

part(user 1; condensate display; pump A error icon) ^

part(user 2; deluge display; pump A error icon) ^

3(input(user 1; pump A error icon; on select) ^

(not(effect(on select; pump A error icon; pump A off)U

input(user 2; pump A error icon; on select)): (9.36)

This states that input events are used to close pump A if user 1 is presented with
the condensate display and user 2 is presented with the deluge display and the
pump A error icon is part of the fault and line displays and eventually user 1 issues
a select event for the icon but this is not effective until user 2 also issues a select event on
the icon.

We have shown that formal notations can be used to represent the proportion and location
of graphical images on a display. A limitation with this approach is that it does not consider
the operators’ physical and environmental surroundings. Specifying the size and position of
an image is of little benefit if users cannot easily view the devices that are used to present
the condensate and deluge displays. This is a weakness of almost all previous approaches to
interface design. Few existing techniques consider the layout of particular working environ-
ments.

9.5 WORKING ENVIRONMENTS

The European Community Directive on work with Display Screen Equipment and the United
Kingdom’s Health and Safety Regulations provide guidelines on the correct layout of work-
ing environments for computer operators. Screens should be parallel to overhead fluorescent
tubes, at right angles to windows etc. Unfortunately, many techniques in human–computer
interaction completely ignore these issues. They provide ample support for screen layout and
dialogue design but they provide no means of reasoning about the physical layout of work
environments. Conversely, the empirical techniques and CAD tools that have been devel-
oped to analyse different operator postures do not address the concerns that dominate human–
computer interaction [Mal89]. The lack of integration between user-interface design and en-
vironmental layout is not a serious problem in many contexts. Office workers can easily move
keyboards, screens and telephones into positions that support their everyday tasks. This lack
of integration is, however, a more serious problem for the development of safety-critical ap-
plications. The position of a display can determine whether operators will observe a warning
within a particular time period [Wic84]. The physical location of buttons, keyboards and mice
can affect the error rates for particular input sequences [Joh94b]. For example, the following
clause states that user 1 is responsible for observing and responding to the failure of a blow-
back valve. These devices ensure that material is not forced back up a line from which it is
being pumped:

244 JOHNSON

Battery rack

Air ductBattery
charger

125 VDC
SwitchgearFan Coil

Unit

Battery chargers
and transformers

Safety
office

Generator Control
Panels

Data loggerMain fire and
gas panel

Second fire
and gas panel

Main production
control panel

Local control
panel B

VDU

Local control
panel A

Local control
panel C

0.0 10.0

0.0

10.0

13.8kV
 B

oards

E
lectrical room

W
orktop

Instrum
ent store

E
lec. store

E
lectrical

M
aintenance

R
oom

Figure 9.9 Control room module for North Sea oil production

user 1 responsible for closing valve A(

display(user 1; condensate display) ^

display(user 2; deluge display) ^

part(user 1; condensate display; valve A error icon) ^

not(part(user 2; deluge display; valve A error icon)) ^

input(user 1; valve A error icon; on select): (9.37)

This states that users agree to close valve A if user 1 is presented with
the condensate display and user 2 is presented with the deluge display and
valve A error icon is part of the condensate and but not of the deluge display and user 1
provides input to close valve A.

Such dialogue requirements make implicit assumptions about the layout of a potential con-
trol room. Designers must ensure that user 1 can view the valve A error icon from their
normal working position. Figure 9.9 illustrates that this may be a non-trivial problem. For
instance, if the operator were routinely stationed behind the work surface at the bottom on
the figure then it would be difficult for them to view a warning presented on the local control
panels towards the top of the layout. Fortunately, logic abstractions can also be used to reason
about the physical organization of complex working environments.

FORMAL METHODS IN CSCW 245

9.6 REPRESENTING WORKSTATION LAYOUT

Designers can exploit logic to represent the allocation of displays to the control panels that
users must operate. For instance, clause (9.37) required that user 1 should be presented with
the condensate display. This could be presented through the local control panel next to the
switchgear shown in Figure 9.9 rather than through the main VDU next to the worktop:

present(user 1; condensate display; local panel A): (9.38)

location(local panel A; 6:0; 6:5): (9.39)

dimension(local panel A; 1:5; 0:9;1:1): (9.40)

The first clause states that the condensate display is presented to user 1 through local
control panel A. The remaining clauses state that the control panel is located at Cartesian
coordinates (6.0, 6.5) and is 1.5 meters in dimension along the X axis, 0.9 along the Y axis
and 1.1 meters along the Z axis; this corresponds to the height of the panel.

Designers can use these clauses to guide the detailed layout of a control system. By intro-
ducing positional information into logic clauses it is possible to represent the likely working
position of an operator performing a particular task. For instance, user 1’s normal activity
might be to coordinate the operation of the system from behind the worktop. This would
place the user at a position close to (6:0; 2:2). It would then be difficult for user 1 to respond
to warnings presented on local control panel A at the same time as monitoring a display on
the fire and gas panel:

divided attention(

location(user 1; 6:0; 2:2)^

location(local panel A; 6:0; 6:5)^

location(fire panel; 6:5; 1:5)^

present(user 1; Display 1; local panel A) ^

present(user 1; Display 2; fire panel) ^

part(user 1; Display 1; valve A error icon) ^

part(user 1; Display 2; communications error) ^

input(user 1; valve A error icon; on select) ^

input(user 1; self test communications; on select): (9.41)

This states that user 1 must divide their attention if they are at (6.0,2.2) and must monitor
two different displays, one presented by local panel A at (6.0,6.5) and the other presented
by the fire and gas console at (6.5,1.5). And that those displays contain warnings about a
communications error and a fault with valve A and user 1 must provide input to resolve
those warnings.

Logic can be used to represent potential solutions to such problems. For instance, the po-
sition of the fire and gas console might be moved so that it could more easily be observed
while user 1 was monitoring the local control panel. This can be represented by altering one

246 JOHNSON

+5 degrees

Horizontal plane

-10 degrees

Normal line of sight

-15 degrees

-30 degrees

Figure 9.10 The relaxed viewing angle

of the location clauses. Alternatively, the task of monitoring and responding to the communi-
cations error might be allocated to another user. These two potential solutions again illustrate
the close interaction between dialogue design and the layout of control rooms:

coordinated response (

part(user 1; Display 1; valve A error icon) ^

part(user 2; Display 2; communications error) ^

input(user 1; valve A error icon; on select) ^

input(user 2; self test communications; on select): (9.42)

This states that there is a coordinated response if user 1’s display contains a warning about
a fault with valve A and user 2’s display contains a warning about a communications
problem and user 1 must provide input to resolve the valve problem and user 2 must
resolve the communications error.

Such clauses illustrate the benefits of formal methods for the integration of interface design
and environmental layout. It is not clear how the individual images shown to many different
operators might be represented using the conventional sketches and two-dimensional plans of
control rooms, such as that shown in Figure 9.9.

9.7 USING ERGONOMIC GUIDELINES TO INFORM CSCW DESIGN

Research in the field of human factors and ergonomics has developed a mass of information
about suitable operator postures and working positions. For instance, Figure 9.10 illustrates
Grandjean’s [Gra88] guidelines for a relaxed viewing angle from an upright, seated posture.
If operators are required to monitor displays outside of the �10 to �15 degree cone for long
periods then static muscle overloading may occur. Until now, it has been difficult to envisage
how such information can be used to directly inform the development of CSCW systems. In
contrast, the previous clauses can be used to reason about the consequences of such figures for
interactive dialogues in particular working environments. For example, assuming that user 1
were at the worktop in the centre of the control room at (6.0,2.2,1.3) and that they were

FORMAL METHODS IN CSCW 247

observing a point on local control panel A, mentioned in clause 9.41, at (6.0,6.5, 1.4) then the
visual angle would be approximately 19 degrees below the horizontal. The panel would fall
outside of the line of sight for comfortable eye rotation. This is derived from the following
formula that relates the operator’s seated eye height and the distance of a target on a control
panel to the height of that target and the likely visual angle between the horizontal plane and
that target:

p
seated height2 + target distance2=sin 90 =

target height=sin visual angle (9.43)

Such formulae can be used to guide interface development. In particular, it can be used to
ensure that operators can actually monitor and use the multiple displays of CSCW systems.
Designers should not place routinely monitored information for user 1 on the local control
panel. The operator would be forced to assume an undesirable posture to observe the display.
This area might be used to present information for other operators who can more easily view
this display. Similarly, user 1 cannot be expected to observe high-priority error messages on
the local control panel. Operators frequently fail to detect warnings on the edge of their vi-
sion [Wic84]. The identification of such “high-priority” errors is an important stage during
the development of safety-critical interfaces. User 1’s observation problem with local control
panel A might be resolved by ensuring that such critical warnings are also presented closer
to their normal line of sight. Equation (9.43) can be used to validate user 1’s line of sight
between various positions in the control room and these additional sources of information.
These positions must, in turn, be checked to ensure that they do not obscure critical informa-
tion for user 2, user 3 etc. Once an optimal position has been identified, logic can be used
to represent the new position for the display:

resolve observation problem(

location(user 1; 6:0; 2:2)^

present(user 1; Display 1; local panel A) ^

part(user 1; Display 1; compressor failure) ^

present(user 1; Display 2; worktop panel) ^

part(user 1; Display 2; compressor failure): (9.44)

This states that a potential observation problem can be resolved if user 1 is located at
(6.0, 2.2) and they are allocated a display, Display 1, which includes a warning that a
compressor is failing and that display is presented on the local control panel and they are
allocated a display,Display 2, which also includes a warning that the compressor is failing
and that display is presented on the worktop panel.

Workstation layout not only affects the presentation of control information, it also has a pro-
found impact upon input requirements. For example, Grandjean uses Figure 9.11 to illustrate
the working distance from the elbow to the hand of an operator at table-top height [Gra88].
This applies to the fifth percentile of the male population. The inner arc represents the extent
of the grasp from a relaxed, seated position. This analysis can be used to inform dialogue
design. For example, in control systems it is important that certain input sequences are dif-

248 JOHNSON

100cm

160cm

55-65cm35-45cm25cm

50cm

Figure 9.11 The horizontal reach limit

ficult to issue. The valve isolation switches might, therefore, be placed beyond the 55–65cm
arc. Operators can make occasional stretches of 70–80cm without difficulty:

reach isolate valve A(

location(user 1; 6:0; 2:2)^

select(user 1; close valve A switch) ^

component(close valve A switch; worktop panel) ^

location(close valve A switch; 6:0; 3:0; 0:9): (9.45)

This states that the user must reach to close off valve A if they are at (2.0, 2.1) and they
provide input to isolate the valve by selecting a button on the worktop control panel at
(6.0,3.0,0.9).

The correct positioning of control panel components must reflect details of the operators’
tasks. It should be hard to issue input sequences that cannot easily be reversed. Conversely,
the input requirements that are implicit within dialogue designs must also take into account
the physical demands that devices place upon their users. Operators should not routinely be
expected to sustain postures that impose significant biomechanical strain.

9.8 PROTOTYPING

Mathematical specifications provide users with little idea of what it would be like to interact
with a graphical interface. Prototypes provide a far better impression of the “look and feel”
of a potential implementation. The experimental analysis of partial implementations can be
used to inform the refinement of detailed specifications towards full implementation. They can
be shown to members of concurrent design teams. They can be shown to operators and are
amenable to experimental analysis. Logic programming environments, such as that supported
by PROLOG, provide a convenient bridge between formal specifications and functioning pro-
totypes. This environment has a well understood semantics based on that of first-order logic.
This secton, therefore, provides a brief introduction to the design and implementation of the

FORMAL METHODS IN CSCW 249

Figure 9.12 A Prelog prototype

Prelog system. This application has been specifically developed to implement CSCW pro-
totypes. Prelog combines a temporal logic interpreter and a screen management system to
directly execute the clauses that have been presented in this chapter.

9.8.1 Presenting Graphical Structures

A number of research groups have developed executable versions of the temporal logic no-
tation that has been used in this chapter. For instance, the Tokio interpreter has been imple-
mented using the PROLOG programming environment [Aoy86]. Clauses that contain tempo-
ral operators are re-written and are asserted over an appropriate interval. In other words, the
Tokio interpreter maintains time-variables that are similar to those introduced in the earlier
sections of this chapter. Unfortunately, Tokio only provides limited input and output facilities.
The Prelog prototyping tool avoids this limitation by linking Tokio and Presenter [Too91].
Prelog uses the Presenter screen management system to provide facilities for manipulating
region structures and for setting, clearing and interrogating properties of regions. Low-level
implementation details, such as raster graphics operations, are isolated within the presentation
system. This is a significant benefit for the development of CSCW system. Designers are not
forced to consider low-level details for multiple presentation devices. Figure 9.12 shows a
display that was generated using Prelog. In order to produce such an image, Prelog constructs
a part hierarchy using clauses such as (9.21,9.22,9.23). The region properties, attributes and
behaviors of each part, represented by clauses such as (9.33), are then recorded in a tree. This
data structure is traversed. Information about each region is passed to Presenter. For designers,
the net effect of linking Tokio and Presenter is to provide the impression of a graphical output
channel.

9.8.2 Handling Device Input

Prelog must translate device primitives into input events. It is important that the complexity of
handling input from many concurrent users should not frustrate the design of CSCW systems.
Prelog reduces this complexity by isolating low-level device handling within Presenter. Cur-
rent implementations support on select, on move and on size to represent initial selection,
move and scaling events. The on select up, on move up and on size up events represent
terminating selection, move and scaling. Users may type input directly into editable regions.

250 JOHNSON

Interaction

Tokio running
under Prolog

Input events
and display
structures

Temporal logic
dialogue sequences

User 2 User NUser 1

Presenter
System System System

Presenter Presenter

Designers

InteractionInteraction

Figure 9.13 The distributed Prelog architecture

Such keyboard input is represented by an on CR event which is generated each time a car-
riage return is pressed. If necessary, designers can then specify that Prelog should read the
text which has been entered into an editable region.

It can be extremely computationally expensive to support fine-grained updates of shared ob-
jects in CSCW systems. Presenter provides means of reducing this cost; it implements Took’s
notion of surface interaction [Too91]. Some graphical operations, such as textual and geomet-
ric manipulations, have no “deep” semantic meaning for an application. They can, therefore,
be handled by Presenter without reference to the logic specification. For instance, designers
can specify that the image of the pump presented to user 1 changes under selection. Presenter
will then automatically highlight the region whenever user 1 selects it. The designer is only
forced to explicitly request this image update if it is to be presented to other users. Prelog also
provides efficiency features which ensure that certain input events from particular operators
can be discarded. For instance, on move and on move up might be ignored by safety-critical
CSCW systems in which users are prevented from altering the layout of their displays. All of
these enhancements are optional and can be explicitly represented in the clauses of logic
specifications.

Controlling event-based interfaces from within a logic programming environment raises
many practical and theoretical problems. In particular, it is unclear how asynchronous, con-
current input from many different operators can be supported without sacrificing Prelog’s
notion of execution as proof. If Prelog is interrupted with new input events, how should this
information be accommodated within an ongoing proof? For instance, if Prelog were forced
to suspend a proof to handle a move event on an inlet icon, it might have to ensure that
prior proof steps did not depend on previous information about the position of that object.
This would radically affect the nature of the programming environment provided by Prelog.
A large number of input events might stretch the resources of any implementation to an unac-
ceptable level. An obvious alternative is to make Prelog responsible for sampling input. The
designer is free to specify when Prelog should poll Presenter. One drawback to this approach

FORMAL METHODS IN CSCW 251

is that important events from one user can be stored until Prelog has finished handling less
important input from other users.

Tokio was intended to run on single-user, single-processor implementations. In contrast, our
implementation of Prelog uses UNIX sockets [Lef90] to support interaction between a number
of users communicating over local and wide area networks. Figure 9.13 illustrates the Prelog
architecture. In the current implementation of Prelog, graphics write(To client;Message)
is evaluated as true if a Message string is successfully sent to the client process running
on the user’s workstation. graphics read(From client;Message) is evaluated as true if
Message unifies with input sent from a client process. For example, event close pump A
(9.36) can be implemented by the following clause. The graphics read and graphics write
formats are used here to aid the exposition. Designers can re-name these clauses to increase
the tractability of an executable specification:

close pump A prototype (

graphics write(user 1; display(condensate display));

graphics write(user 2; display(deluge display));

graphics write(user 1; part(condensate display; pump A error icon));

graphics write(user 2; part(deluge display; pump A error icon));

3(graphics read(user 1; input(pump A error icon; on select);

(not(effect(on select; pump A error icon; pump A off)U

graphics read(user 2; input(pump A error icon; on select)): (9.46)

This states that there is a dialogue to close pump A if a message is written to user 1’s
client to ensure that they are presented with the condensate display and a message is
written to user 2’s client to ensure that they are presented with the deluge display and
messages are sent to ensure that the pump A error icon is part of the displays and even-
tually a select event for that icon is read from the user 1. This input is ineffective until a
selection is also read from user 2.

Prelog also supports the implementation of CSCW systems which provide multiple win-
dows on each workstation. A stub process is created for each window, graphical clauses are
easily parameterized by their intended destination; user 1 window 1.

9.8.3 Environmental Animation

Prelog offers significant advantages over traditional prototyping tools. Previous systems help
developers to quickly mock-up CSCW displays and animate dialogue sequences. There is a
danger, however, that such tools may produce dialogues which cannot easily be integrated
with their eventual working environment. Warnings may be obscured by other operators or
pieces of equipment. On-line help may be abandoned if users cannot easily read particular
displays. In contrast, the Prelog tool exploits location clauses such as those in (9.45) to build
up three-dimensional models of control rooms and offices. The same system can, therefore,
be used to prototype dialogues as well as view the potential layout of working environments.
These models can be shown to operators and to the members of concurrent design teams that
are working on control room planning and display development. The term “environmental

252 JOHNSON

Software
Engineers

Hardware
Engineers

Temporal specifications of
interactive dialogues and
models of working
environments.

3D Model &
user interface

Tokio running
under Prolog

Presenter

Designers

Human
Factors

Engineers
Users

3D Model &
user interface

Figure 9.14 The application of Prelog for environmental animation

animation” has been used to refer to our integration of prototyping techniques and three-
dimensional models. Figure 9.14 illustrates this aspect of the Prelog architecture. Further
work intends to explore the more general use of formal notations to reason about the physical
characteristics of working environments. For instance, logic can also be used to characterize
acoustic properties. Layout information might then be recruited to represent appropriate sound
levels within particular areas of a control room. Prelog might provide rudimentary simulations
for these presentation techniques:

timbre(pump A error alarm; bell): (9.47)

amplitude(pump A error alarm; 60dBA): (9.48)

pitch(pump A error alarm; 260Hz): (9.49)

This states that the pump A warning has the timbre of a bell, the amplitude of the warning
is 60dB and its pitch is 260Hz.

In many human–machine interfaces, changes in the characteristics of acoustic signals are
used to indicate changes in the underlying state of an application. For instance, a continuous
tone might change into a bell in order to indicate a failure in the deluge system. Temporal
logic offers one means of explicitly representing these dynamic properties [Joh91, Joh90].

9.9 CONCLUSION

This chapter has shown how mathematical specification techniques can support the design
of CSCW systems. In particular I have argued that temporal logic can be used to represent

FORMAL METHODS IN CSCW 253

Q: how to prevent contention
during pump errors

O: transaction_lock

O: priority_solution

C: prevents low
priority input from
taking effect during
failure.

C: ensures that low
priority commands
are eventually
effective.

Figure 9.15 Literate specification for transaction lock

critical requirements for sychronization and locking. This approach is justified because tem-
poral properties have a profound impact upon the nature of interaction in multi-user systems.
It has also been argued that graphical information and input events must be explicitly repre-
sented within abstract models of CSCW applications. I have also shown how the application
of formal methods can be extended to represent and reason about the physical dimensions of
working environments. This is often neglected within the development of CSCW systems and
represents an important extension to the application of formal methods. For CSCW systems,
the layout of an office, factory or control room will have a critical impact on the operation
and use of a human–computer interface. Finally, I have argued that prototyping tools must be
provided if non-formalists are to assess the products of mathematical specification techniques.
The Prelog system has been developed to address this concern. It can be used to directly derive
partial implementations from temporal logic clauses, such as those introduced in this chapter.
It can also be used to generate environmental animations, or 3-D models, of potential work-
station layouts. This enables designers to view potential displays within their intended context
of use.

Many questions remain to be addressed before formal methods can be widely applied to
support the development of multi-user systems. In particular, there are problems in scaling up
the approach to deal with very large-scale systems. Such applications raise a different set of
CSCW problems. Not only do they raise issues about synchronizing multi-user access to com-
puter resources, these design challenges also force designers to consider the synchronization
of multiple development teams. This is difficult because many members of these teams will
have no understanding of formal methods. In order to address this issue, we are developing lit-
erate specification techniques [Joh96a, Joh95b]. This approach provides clients and users with
access to both formal and semi-formal documentation. In particular, design rationale is used
to record the reasons why particular clauses were used during the development of a CSCW
specification. For example, Figure 9.15 presents the arguments for and against locking out the
user in the manner described by transaction lock (9.16) and priority solution (9.14). The
problem of reducing contention during pump failures can either be satisfied by transaction
locking or by the use of input priorities. These are labelled as alternative options, O. These
options are linked to criteria, C, which represent the reasons for and against a particular ap-
proach. In the case of transaction locking this is supported by the criteria that it prevents low
priority input from taking effect during the failure. Positive or supporting criteria are indicated
by solid lines. In contrast, it is not supported by the argument that low-priority commands will
eventually be effective. This is because they are literally locked-out of the system. The dotted
lines indicate negative or weakening criteria. The intention here is that the QOC argumenta-

254 JOHNSON

tion structures should enable designers to question the approaches that are embodied within
formal specifications. It should be possible for non-formalists to ask why a system is designed
the way it is.

The literate specification approach, described above, addresses a fundamental paradox in
the formal design of CSCW systems. In order to obtain precise notations for reasoning about
the complexity of multi-user communication, we may lose the ability to communicate within
and between multiple design teams. Not everyone can be expected to learn and understand
temporal logics. This re-iterates a key point for future work in this area. We will not be able
to develop interfaces that support groupwork unless we provide techniques that can be used
by groups of designers. This represents the greatest challenge to the continued application of
formal methods for CSCW systems.

REFERENCES

[App86] Rose, C. Inside The Apple Macintosh, Vol. I. Addison Wesley, Wokingham, UK, 1986.
[Aoy86] Aoyagi, T., Fujita, M. and Moto-Oka, T., Temporal logic programming language -Tokio-

programming in Tokio. In Wada, E. (Ed.), Proceedings of the 4th Annual Conference - Logic
Programming ’85, LNCS 221, pages 128–137. Springer-Verlag, Berlin, Germany, 1986.

[Bas90] Bastide, R. and Palanque, P., Petri net objects for the design, validation and prototyping
of user-driven interfaces. In Diaper, D., Gilmore, D., Cockton, G. and Shackel, B. (Eds.),
Human–Computer Interaction — INTERACT’90, pages 625–631. Elsevier Science Publica-
tions, North Holland, Netherlands, 1990.

[Bur89] Burton, C.T., Cook, S.J., Gikas, S., Rowson, J.R. and Sommerville, S.T., Specifying the Apple
Macintosh Toolbox Event Manager. Formal Aspects of Computing, 1:147–171, 1989.

[Cra93] Craigen, D., Gerhart, S. and Ralston, T., An international survey of industrial applications
of formal methods. Technical Report NISTGCR 93/626, U.S. Department of Commerce,
National Institute of Standards and Technology, Githersburg, USA, 1993.

[Cul90] Cullen, Proceedings of the Public Enquiry into the Piper Alpha Disaster. The Department of
Energy, London, UK, 1990.

[Dix97] Dix, A., Rodden, T. and Sommerville, I., Modelling versions in collaborative work. IEE
Proceedings in Software Engineering, 14(4):195–205, 1997.

[Ell89] Ellis, C.A. and Gibbs, S.J., Concurrency control in groupware systems. ACM SIGMOD
Record, 18(2):399–407, 1989.

[Ell91] Ellis, C.A., Gibbs, S.J. and Rein, G.L., Groupware: Some issues and experiences. Communi-
cations of the ACM, 34(1):35–58, January 1991.

[Gal80] Galer, I.A.R. and Yap, B.L., Ergonomics in intensive care: Applying human factors to the
design and evaluation of a patient monitoring system. Ergonomics, 23(8):763–779, 1980.

[Gra88] Grandjean, E., Fitting the Man to the Task: Occupational Ergonomics. Taylor & Francis,
London, UK, 1988.

[Gra95] Gray, P.D. and Johnson, C.W., Requirements for interface design notations. In Palanque,
P. and Bastide, R. (Eds.), Design, Specification and Verification of Interactive Systems ’95,
pages 113–133. Springer Verlag, Berlin, Germany, 1995.

[Gre87] Greif, I. and Sarin, S., Data sharing in group work. Communications of the ACM, 5(2):197–
211, 1987.

[Har95] Harrison, M.D., The role of verification. In Palanque, P. and Bastide, R. (Eds.), Design,
Specification and Verification of Interactive Systems ’95, pages 342–344. Springer Verlag,
Berlin, Germany, 1995.

[Hix93] Hix, D. and Hartson, H.R., Developing User Interfaces. John Wiley & Sons, London, 1993.
[Hod77] Hodges, W., Logic. Penguin Books, London, 1977.
[Joh90] Johnson, C.W. and Harrison, M.D., Using temporal logic to support the specification and

prototyping of interactive control systems. International Journal of Man–Machine Studies,
36:357–385, 1992.

FORMAL METHODS IN CSCW 255

[Joh91] Johnson, C.W., Applying temporal logic to support the specification and prototyping of con-
current multi-user interfaces. In Diaper, D. and Hammond, N. (Eds.), People And Computers
VI: Usability Now, pages 145–156. Cambridge University Press, Cambridge, UK, 1991.

[Joh92] Johnson, C.W., Specifying and prototyping dynamic human-computer interfaces for stochas-
tic applications. In Alty, J.L., Diaper, D. and Guest, S. (Eds.), People And Computers VIII,
pages 233–248. Cambridge University Press, Cambridge, UK, 1993.

[Joh94a] Johnson, C.W., McCarthy, J.C. and Wright, P.C., Using a formal language to support natural
language in accident reports. Ergonomics, 38(6):1265–1283, 1995.

[Joh94b] Johnson, C.W., Representing and reasoning about the impact of environmental layout upon
human computer interaction. Ergonomics, 39(3):512–530, 1996.

[Joh95a] Johnson, C.W., Using Z to support the design of interactive, safety-critical systems. IEE
Software Engineering Journal, 10(2):49–60, 1995.

[Joh95b] Johnson, C.W., Literate specification. Software Engineering Journal, 11(4):224–237, 1996.
[Joh96a] Johnson, C.W., Documenting the design of safety-critical user interfaces. Interacting With

Computers, 8(3):221–239, 1996.
[Joh96b] Johnson, C.W. and Gray, P.D., Error driven design. In Harrison, M.D. and Vanderdonk,

J. (Eds.), Design, Specification and Verification of Interactive Systems’96, Springer Verlag,
Berlin, Germany, 1996.

[Joh97] Johnson, C.W., The impact of time and place on the operation of mobile computing devices.
In People and Computers XII, pages 175–190. Springer Verlag, Berlin, Germany, 1997.

[Kan88] Kantowitz, B.H. and Casper, P.A., Human workload in aviation. In Wiener, E.L. and Nagel,
D.C. (Eds.), Human Factors In Aviation, pages 157–187. Academic Press, London, UK, 1988.

[Kra91] Kramer, B., Introducing the GRASPIN specification language SEGRAS. Journal of Systems
and Software, 15(1):17–31, 1991.

[Kuh89] Kuhmann, W., Stress inducing properties of system response times. Ergonomics, 32(3):271
– 280, 1989.

[Lef90] Leffler, S.J., McKusick, M.K., Karels, M.J. and Quarterman, J.S., The Design and Implemen-
tation of the 4.3BSD UNIX Operating System. Addison Wesley, Reading, USA, 1990.

[Mal89] Malone, T.B., MPTS methodology in the Navy: Enhanced HARDMAN. In Pettigrew, D.L.
(Ed.), Proceedings of the 33rd Annual Meeting of the Human Factors Society, pages 1044–
1048. Human Factors Society, Santa Monica, USA, 1989.

[Man81] Manna, Z. and Pnueli, A., Verification of concurrent programs: The temporal framework. In
Boyer, R.S. and Strother Moore, J. (Eds.), The Correctness Problem In Computer Science,
pages 215–273. Academic Press, London, UK, 1981.

[McC91] McCarthy, J.C., Miles, V. and Monk, A.F., An experimental study of common ground in
text-based communication. Proceedings of the CHI’91 Conference on Human Factors in
Computing Systems, pages 209–215. ACM, New York, USA, 1991.

[Pal95] Palanque, P. and Bastide, R., Formal specification and verification of CSCW using interactive
cooperative object formalism. In People and Computers X, pages 197–212. Springer Verlag,
Berlin, Germany, 1995.

[Pen90] Pendergast, M.O. and Vogel, D., Design and implementation of a P.C. based multi-user text
editor. In Gibbs, S. and Verrijn-Stuart, A.A. (Eds.), Multi-User Interfaces And Applications,
pages 195–206. Elsevier Science Publications, North Holland, Netherlands, 1990.

[Pri67] Prior, A., Past, Present, Future. Oxford University Press, Oxford, UK, 1967.
[Sze88] Szekely, P. and Myers, B., A user interface toolkit based on graphical objects and constraints.

ACM SIGPLAN Notices, 23(11):36–45, 1988.
[Too91] Took, R., Integrating inheritance and composition in an objective presentation model for

multiple media. In Post, F.H. and Barth, W. (Eds.), EUROGRAPHICS ’91, pages 291–303.
Elsevier Science Publications, North Holland, Netherlands, 1991.

[War89] Wardell, R.W., An ergonomics perspective on safety in the oilfield. In Pettigrew, D.L. (Ed.),
Proceedings of the 33rd Annual Meeting of the Human Factors Society, pages 999–1003.
Human Factors Society, Santa Monica, USA, 1989.

[Wic84] Wicken, C.D., Engineering Psychology And Human Performance. C.E. Merrill Publishing
Company, London, UK, 1984.

[Win87] Winograd, T. and Flores, F., Understanding Computers And Cognition. Addison-Wesley,
Reading, USA, 1987.

257

Index

This index includes the CSCW applications, tools and models that are referenced in this book.

Action Workflow, 44
Ariel, 70
Aspects, 84
Augmented Petri Nets, 38

Backtalk, 38
BDL, 37
BSCW, 206
Buttons, 60

Calliope, 154
CAVECAT, 67, 69, 70, 78, 84
CaveDraw, 84
CDO meta-model, 40
CES, 107
Chiron-1, 148, 149
ClearBoard, 86, 92, 95, 162
ClearFace, 89
Clock, 143, 144, 149, 157, 161, 176, 181, 185
ClockWorks, 143
Clover model, 174, 190
COAST, 110, 113, 127, 128
Cognoter, 84
COLA, 153, 177, 203
Collaborative Process Model, 37
Collaboratory Builder’s Environment, 125, 131
Collage, 159
Commune, 84
Conference Toolkit, 146
ConversationBuilder, 162
Cooltalk, 106, 127
Coordinator, 224
CoVer, 207
Cruiser, 67, 78, 84

DECAF, 110
DEC@aGlance, 13
Dialogo, 84
DistEdit, 106, 108, 112, 118, 123, 124, 126, 127,

137, 162, 163, 203
DistView, 111, 125, 128, 131, 162, 177, 179, 188
DIVE, 149, 203

Dolphin, 11, 104, 113, 123, 125–127
Domino, 37

FlowMark, 43
FlowPath, 47
Freeflow, 206

GEN, 144
Godard, 62, 63
GroupDesign, 181
GroupDraw, 84
GroupKit, 131, 136, 138, 141, 146–148, 153,

154, 157, 160, 161, 176, 181, 187, 188
GroupSketch, 84
GroupWeb, 155
GROVE, 84, 106, 114

Habanero, 123
Hole-In-Space, 57
Horus, 203
Hydra, 68

IBIS, 104, 207
ICN, 37, 39, 49
iiif, 59, 62, 70, 85
Information Control Net (ICN), 38
Interface Builder, 125, 205
Intermezzo, 160
Isis, 109, 163, 202
IVS, 76

Java, 125, 131, 163

Kasmer, 68, 78
Khronika, 63

Linda, 203
LiveBoard, 13
Lotus Notes, 21, 131, 162
Lotus/Domino, 20

MACE, 106, 112

258

MBone, 106, 125, 162, 200
Media Space, 57, 67, 71, 78, 84, 86
Mediascape, 69, 78
MERMAID, 85, 92
MMConf, 176, 179, 188
MMM, 174, 181, 188, 190
Model–View–Controller, 128, 143, 148, 173
Montage, 15, 67
Moondo, 149
Multi-User Dungeons, 160
Mushroom, 206

NeWS, 199
Notification Server, 138, 139, 141, 146, 147
nte, 202, 204
nv, 201

OAM, 37
Obliq, 203, 204
Officetalk, 37, 38
OFS model, 38
OSSAD model, 37
Oval, 162

PAC model, 173, 190
Petri net, 37, 49, 225
PicturePhone, 57
PMTC, 85, 92
Polymer, 37, 45
Polyscope, 64
Portholes, 65, 70, 71, 154
Prelog, 249, 251
Prep, 107
Prominand, 37
ProShare, 106
Prospero, 144, 207, 211

Quilt, 107

Rapport, 176, 181
rat, 201
RAVE, 57, 58, 63, 65, 67, 69–71, 78, 84
Rendezvous, 67, 141, 143, 148, 149, 152, 157,

160, 173, 181, 182, 185, 188
Role Interaction Nets, 37

SAAM model, 189
SACT, 37
SASSE, 106, 125, 126, 153
SCOOP, 38
SEPIA, 85, 207
Share-Kit, 137, 146, 160
Shared X, 176, 177, 188, 199
Shastra, 190
ShowMe, 13
ShrEdit, 127

SLICE model, 163
Society model, 37
SOL, 153, 162
Strudel, 162
Suite, 124, 152, 162, 176–178, 181, 182, 186,

188, 190

TeamPaint, 84, 96
TeamRoom, 17, 20
TeamRooms, 125, 131, 160
TeamWorkStation, 84, 86, 89, 92, 176, 179, 181,

188
Telepresence, 68, 84
TEMPORA, 38
Timbuktu, 84
TUMS, 37

UBIK, 38
User Action Notation, 225

vat, 104, 125, 201
VConf, 84
vfctool, 76
vic, 201
VideoDraw, 84, 94
VideoWindow, 67, 84
Virtual Places, 206
Visual Obliq, 158, 203, 205

WAVE, 71, 78
wb, 106, 116, 127, 202, 204
We-Met, 84
Weasel, 148, 149, 176, 181, 185, 188
WooRKS, 37
World Wide Web, 24, 56, 70, 78, 163, 199, 205,

206
wOrlds, 125
WScrawl, 140

X Window System, 140, 143, 177, 199
Xedit, 128
XTV, 176, 177, 181, 182, 188, 190

