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ABSTRACT

Although the power of personal computers has increased
1000-fold over the past 20 years, user interfaces remain
essentially the same. Innovations in HCI research, particularly
novel interaction techniques, are rarely incorporated into
products. In this paper I argue that the only way to
significantly improve user interfaces is to shift the research
focus from designing interfaces to designing interaction. This
requires powerful interaction models, a better understanding o ) ) . )
of both the sensory-motor details of interaction and a broader original Macintosh | iMac 20 comparison
yiew of .interaction. in the context of use. It also requires novel date January 1984 November 2003 | + 20 years
interaction architectures that address reinterpretability, -
resilience and scalability. price $2500 $2200 x 0.9
. . . CPU 68000 Motorola G5

Categories and Subject Descriptors 8 MHz 126 GHz < 156
H.5.2 [Information Interfaces and Presentation]: User 0.7 MIPS 2250 MIPS x 3124
Interfaces — graphical user interfaces (GUI), interaction
styles, theory and methods, user-centered design. memory | 128KB 256MB x 2000
D22 [Sof;ware Engineering]: Design Tools and Techniques — storage | 400KB floppy drive | 80GB hard drive | x 200000
user interfaces. - - -
1.6.3 [Computer Graphics]: Methodology and Techniques — monitor | 9" black & white 20" color x 2.2
interaction techniques. 512 x 342 1680 x 1050 x 10

68 dpi 100 dpi x 1.5
General Terms devices | mouse mouse same
Design, Human Factors, Theory. keyboard keyboard same
Keywords GUI desktop WIMP desktop WIMP | same

Interaction paradigm, Interaction model, Instrumental
interaction, Design principles, Situated interaction, Interaction
architecture.

1. INTRODUCTION

Over the past twenty years, the computing power of personal
computers has increased by at least three orders of magnitude
(Table 1), while their input/output devices have stayed
essentially the same. In many cases, the hardware interface has
become more limited, with the advent of PDAs and cell phones
and their tiny screens and buttons.

The essential character of the user interface has not evolved
either. Today's Macintosh users use the same WIMP interface

Table 1. Comparing two personal computers 20 years apart.

(Window Icon Menu Pointer) as in 1984: an iconic Finder,
applications with a menu bar and overlapping windows, and a
limited set of interaction techniques, including "widgets"
(menus, buttons, dialog boxes, scrollbars), "drag&drop" and
"copy-paste" to transfer data within and across applications.

WIMP interfaces have reached their limits in the face of three
major challenges: the exponential growth in the amount of
information each individual user deals with; the distribution
of this information over multiple computers and devices,
including mainframes, desktop computers, laptops, PDAs and
cell phones; and the growing range of computer users, with
their wide variety of skills, needs and expectations.

Why is it that the tremendous increase in computational power
has not benefited user interfaces and made them much more
powerful?
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Figure 1. Interaction as a phenomenon.

HCI researchers have developed and evaluated a variety of
innovative novel interaction techniques but few have been
adopted in the marketplace. For example, pie menus, invented
in the early 80s [13], are demonstrably more effective than
linear menus and have a very low learning cost, yet only a
handful of applications use them. Why? How is it that
hardware innovations like mouse wheels, with their associated
manufacturing costs, are adopted more easily than software
innovations like pie menus, which could be added to user
interface toolkits of all major platforms at practically no cost?

Two major barriers restrict wider dissemination of interaction
research. First, although HCI researchers have created a variety
of novel interaction techniques and shown their effectiveness
in the lab, such "point designs" are insufficient. Software
developers need models, methods and tools that allow them to
transfer these techniques to commercial applications. Second,
WIMP user interfaces have been so stable and so universally
adopted over the past twenty years that the users' cost of
change is very high. Before users switch to a radically new user
interface paradigm, they must perceive the immediate benefits
as dramatically outweighing the costs of learning and transfer
to the new system. Macintosh users made such a jump 20 years
ago; PC users followed 10 years later, from DOS to Windows.

In this paper I argue that, if we are to create the next generation
of interactive environments, we must move from individual
point designs to a more holistic approach. We need a solid
theoretical foundation that combines an understanding of the
context of use with attention to the details of interaction,
supported by a robust interaction architecture. I characterize
this shift as designing interaction rather than simply
designing interfaces.

2. ANALYSING INTERACTION

Figure 1 illustrates interaction as a phenomenon between a
user and a computer. This phenomenon is controlled by the
user interface running on the computer. Designing interaction
rather than interfaces means that our goal is to control the
quality of the interaction between user and computer: user
interfaces are the means, not the end.

In the natural sciences, analyzing, understanding and
controlling a phenomenon requires theory. Unfortunately, HCI
research is far from having solid (and falsifiable) theories of
interaction. In particular, the situation illustrated in Figure 1
is overly simplified and naive, abstracting out everything but
the user and the computer. In real-world interaction (Figure 2)
users interact in an environment that includes physical
artifacts and networks of diverse computers and whose
physical, social, organizational and cultural characteristics
affect their actions. I identify two levels for analyzing and
designing interaction: interaction paradigms offer a high-
level conception of interaction phenomena and interaction
models are operational descriptions of how interaction
proceeds.
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Figure 2. Interaction in the real world.

2.1 Interaction Paradigms

The three primary interaction paradigms are: computer-as-
tool, computer-as-partner, and computer-as-medium. The
computer-as-tool paradigm extends human capabilities
through a (very sophisticated) tool, just as the invention of
the wheel allowed us to transport heavy loads over long
distances. Direct manipulation and WIMP interfaces fall into
this category. The computer-as-partner paradigm embodies
anthropomorphic means of communication in the computer,
such as natural language, so that users can delegate tasks.
Agent-based interaction and speech-based interfaces fall into
this category. Finally the computer-as-medium paradigm uses
the computer as a medium by which humans communicate with
each other. Email, chat and videoconferencing fall into this
category.

These paradigms are addressed separately by different research
communities: Human-Computer Interaction focuses on
computer-as-tool, Artificial Intelligence focuses on computer-
as-partner and Computer-Supported Cooperative Work focuses
on computer-as-medium. However, no paradigm can subsume
the others and I believe that ultimately, all three paradigms
must be integrated into a single vision. Note, too, that these
paradigms rely on two sets of skills that distinguish humans
from other species: the ability to create and use artifacts
(computer-as-tool and computer-as-medium), and the ability
to communicate with each other through language (computer-
as-partner and computer-as-medium).

The rest of this paper focuses on the computer-as-tool
paradigm. The unique challenge here is to create new tools that
both augment and complement human capabilities. For
example, Information Visualization [14] illustrates the
benefits of complementing human capabilities: it combines
the power of computers to create visualizations and human
perceptual abilities to extract patterns. In the computer-as-tool
paradigm, designing interaction requires understanding of
both computer algorithms and human perception-and-action
in order to harness the power of the user+computer ensemble.

2.2 Interaction Models

The purpose of an interaction model is to provide a framework
for guiding designers, developers and even users (in the
context of participatory design) to create interactive systems.
An interaction model is thus more operational than an
interaction paradigm and can be used directly by designers.
Unlike ergonomic rules, which are often limited to post-hoc
evaluation of a design, an interaction model is used from the
early stages of the design and is therefore proactive.



Interaction models can be evaluated along three dimensions:
1) descriptive power: the ability to describe a
significant range of existing interfaces;
2) evaluative power: the ability to help assess multiple
design alternatives; and
3) generative power: the ability to help designers create
new designs.

Generative power does not mean allowing the computer to
automatically generate canned solutions, but rather helping
human designers create richer and more varied design spaces
from which to develop innovative solutions.

An interaction model can take many forms, from high-level
design guidelines, such as the four principles of direct
manipulation [30], to detailed rules such as those described in
style guides, e.g. the Apple Human Interface Guidelines [3].
High-level models tend to have good descriptive power but
poor evaluative and generative power. Low-level models tend
to have poor descriptive and evaluative power, but higher
generative power. A good interaction model must strike a
balance between generality (for descriptive power),
concreteness (for evaluative power) and openness (for
generative power). Finally, the quality of the interaction model
itself does not guarantee the quality of the resulting designs.
As with programming languages, where one can write terrible
programs with a good language, one can create terrible
interfaces with a good model.

3. INSTRUMENTAL INTERACTION

Instrumental Interaction [4] is an interaction model that
operationalizes the computer-as-tool paradigm. Building on
direct manipulation [30], it introduces the notion of
instruments as mediators between users and domain objects. It
is inspired by our everyday experience of using tools,
instruments and devices to operate on the physical world
rather than using our bare hands. We often use secondary
objects to extend our abilities and achieve the desired effect
on a physical artifact. For example, undoing a screw requires a
screwdriver, writing is easier with a pen, and swimming is more
efficient with fins.

Figure 3 illustrates a simple navigation instrument: the
scrollbar. This instrument is composed of the physical mouse
and the on-screen scrollbar. The user interacts with it through
direct action, and receives direct feedback from the mouse
(touch) and the scrollbar (highlight). The scrollbar then
translates user actions into scrolling commands for the
document. The document provides two kinds of response:
towards the instrument (updating the thumb of the scrollbar)
and towards the user (scrolling the contents of the document).
Interaction with the document is therefore mediated by the
instrument.
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Figure 3. Instrumental interaction: the instrument (center)
mediates interaction between user (left) and document (right)
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Figure 4. Distribution guideline: objects are re-distributed
when an object (left) is added to the guideline (center) or
when the guideline is reshaped (right).
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Descriptive power - Instrumental interaction describes a wide
spectrum of interaction techniques, from traditional GUIs to
advanced techniques such as toolglasses [9], tangible
interfaces [34] and augmented reality [37]. (See [4] for details).

Evaluative power -1 have introduced three properties [4] to
compare instruments with similar functions. The degree of
indirection is the distance, in time or space, between the
instrument and the object it operates on. The degree of
integration measures degrees of freedom of the input device
that are used by the instrument. The degree of conformance is
the extent to which the user's action on the instrument is
similar to the instrument's action on the object. Additional
properties could be defined, e.g. in relation with the
taxonomies introduced below.

Generative power - Thinking in terms of instruments helps
designers focus on interaction and create more innovative
design solutions. For example, we designed an alignment
instrument for a graphical editor [5] that is more powerful than
the traditional alignment dialog box. A dialog box answers the
question: What interface should I build that specifies the
parameters of the alignment function in my application? In
contrast, an alignment instrument answers the question: How
can [ create and maintain alignments in a document? The first
approach focuses on the interface, the second focuses on
interaction. Our solution was the magnetic guideline: an
instrument that can be inserted as a first-class object into a
document. Graphical objects can then be attached to or
detached from the guideline. Moving the guideline moves all
the objects attached to it, maintaining the alignment. Figure 4
shows an extension which evenly distributes all objects that
are attached to the guideline.

Both generative and evaluative power can be enhanced by
creating instrument taxonomies. One taxonomy might concern
the relationship between instruments and the objects they
operate on: some instruments create objects, others transform
them while others add constraints, such as the alignment
instrument above. Still others select objects or navigate the
object space and some even operate on other instruments, such
as a tool palette with a set of tools. Another taxonomy might
describe how the user operates the instrument: some
instruments, like paint brushes, are held in the hand. Others,
like scrollbars, sit on the screen. Still others, like magnetic
guidelines, become domain objects in their own right.
Taxonomies are useful for cataloguing existing techniques,
identifying gaps and looking for possible new candidates.

3.1 Design principles

Another way to increase the generative power of an interaction
model is to define design principles. For instrumental
interaction, we have defined three design principles inspired
by programming languages: reification, polymorphism and
reuse [6].



Reification turns concepts and abstract commands into user
interface objects that the user can manipulate directly. For
example, a scrollbar is the reification of the concept of
navigating a list or document. Polymorphism states that tools
should operate in as many different contexts as possible, as
long as this makes sense to the user. For example, copy and
paste work across a wide range of object types, including text,
drawing and sound. Finally reuse may involve either user
input or system output. Redo and macros are examples of
input reuse, enabling users to replay earlier commands in a
new context. Copy-paste is an example of output reuse,
enabling users to reuse results from earlier command
sequences.

Building on the parallel with programming languages, other
principles can be defined. For example currying (or partial
application) might be used when a command requires multiple
parameters, such as applying a color to an object. Currying the
command means creating a family of instruments that apply a
color (one per instrument) to an object, i.e. a set of color
swatch tools. Side Views [33] is an example of a sophisticated
use of currying: it displays a preview of the current command
applied to the current object, and expands the preview when
the command uses extra parameters.

Our extensive use of the first three principles in the CPN2000
project [5] led to a graphical application with no menus, no
dialog boxes, no title bars, no scrollbars and no notion of
selection, yet it was demonstrably more powerful and simpler
to use than the earlier WIMP version. These principles are
complementary to each other when designing instruments and
have proven extremely effective as design tools.

3.2 From models to systems

Even though instrumental interaction helps designers think in
terms of interaction rather than just interfaces, it only
addresses one level of interaction design. Interaction can be
analyzed at many levels and, to be successful, interaction
design must take them all into account. The following sections
focus on two levels: situated interaction, where the concern is
to understand how the system can support the users' activities
in the context of use, and interaction as a sensory-motor
phenomenon where the concern is to match the interface with
the users' capabilities. Next, I address how operationalizing
the design of interaction requires appropriate tools and
frameworks. Beyond user interface toolkits, we need proper
interaction architectures that can support the creation and
evolution of interactive systems.

4. SITUATED INTERACTION

Traditional HCI views interactive software in terms of user
tasks, with the assumption that these systems will be used for
specific purposes in specific ways. This approach emphasizes
operational rather than creative tasks, yet the most interactive
applications, e.g. graphical editors, are the least amenable to
operational task descriptions. Increasingly, computers are
used by knowledge workers and other creators who typically
develop their own practices and patterns of use, despite using
the same software on similar computers for similar projects.
Even in cases where the computer supports operational tasks,
users do not always play by the rules and adapt the system to
their needs and work habits [22].
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Figure 5. The CPN2000 interface, with multiple-page
windows, a tool palette, a toolglass and a marking menu.

If we abandon the notion of task, on what grounds can we
build better interactive systems? Suchman's concept of
situated action [31] gives an anthropologist's account of how
users interact with information technology in real-world
settings. Her work shows how ethnography can help
characterize the design problem. Usability testing on the other
hand helps identify problems once a solution has been
developed. But ethnography does not provide much help in
choosing a design direction, and user testing does not provide
much help in how to fix design problems. What is needed is a
more generative approach, one that can create solutions or
pieces of solutions that are then evaluated and improved upon.

Situated interaction is an approach I am developing with
Wendy Mackay in the In Situ lab (http://insitu.lri.fr). The goal
is to combine a range of techniques for designing interactive
systems that are better adapted (and adaptable) to their context
of use. It builds upon participatory design [18] by heavily
involving end users throughout the design process.
Generative techniques include well-known creativity
techniques such as brainstorming and paper prototyping [7],
and the heavy use of video [23]. We rely on interaction models
and design principles to guide the design process and help
reflect on the solution being created.

The CPN2000 project [5] illustrates this design approach with
a graphical editor for Colored Petri Nets (CPN). The first key to
the successful design of CPN2000 was to recognize, after
detailed observational work, that different users work
differently and that the same user applies different interaction
patterns according to the context of use [24]. A CPN designer
may be copying a design drawn on paper, creating it directly
on-line, beautifying a diagram or fixing a bug uncovered
during a simulation. Even though the elementary actions of
creating and editing objects in the diagram may be the same,
the different contexts of use lead to different interaction
patterns. Some patterns are object-centered, i.e. applying
multiple commands to the same object, while others are
command-centered, i.e. applying the same command to
different objects. As a result no single interaction technique
works best in all contexts, and the best solution is to provide a
range of interaction techniques and let users decide which to
use.
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Figure 6. A mock-up of the DPI environment, with a set of
editing instruments that can be used across documents.

The second key to the design of CPN2000 was the holistic
approach to interaction design. Rather than juxtaposing a set
of interaction techniques and hoping for the best, we
systematically studied how best to combine them, using
instrumental interaction and the design principles.

A similar approach was taken by Beaudoux to design DPI
(Document-Presentation-Instrument) [8], a document-centered
system based on instrumental interaction (Figure 6). Here too,
the design process focused on interaction as a whole, resulting
in a system that completely decouples documents from the
tools used to edit them and supports various types of sharing
of document and tools.

I call systems such as CPN2000 and DPI post-WIMP interfaces
because, even though they are graphical, direct manipulation
interfaces, they are radically different from current systems. In
particular, current systems intertwine the data being
manipulated and the tools used to manipulate it while post-
WIMP interaction separates them. This opens the door to
interactive environments that are centered on documents rather
than applications, as in the original Xerox Star [21].

By decoupling documents from the tools used to create, edit
and navigate them, users gain a sense of freedom and control
in organizing their electronic world: they can select the tools
that fit them best. This approach would have a tremendous
effect on the market for interactive software. Instead of using
proprietary formats to lock their users away from the
competition, software vendors would compete in a market of
interaction instruments and document viewers. They would be
compatible by necessity, like plug-ins for systems like Adobe
Photoshop. Competition and openness would facilitate the
transfer of novel interaction techniques from research to the
market.

5. INTERACTION AS A
SENSORY-MOTOR PHENOMENON

Interaction can be viewed as a sensory-motor phenomenon: the
user acts on the system, which generates output perceived by
the user. Since human sensory-motor capabilities are fairly
limited and constant across users and over time, it is important
to develop interactions that are adapted to these capabilities.
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Figure 7. Semantic pointing: a dialog box as seen on the
screen (left) and as perceived in motor space (right).
Enlarging the Save button in motor space facilitates its
selection, while shrinking the Don't Save button in motor
space makes it harder to select.
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Although the psychology of perception and action has a vast
literature, the advent of computers has created new challenges
and opportunities. With computers, humans are no longer
exposed to the physical world governed by the laws of
physics, but to a synthetic world whose laws can be
programmed at will. For example, overlapping windows with
scrollable contents do not correspond to anything in the
physical world, yet most users understand them easily.
Pointing with a mouse is also unnatural because of the
indirection between mouse and cursor and the non-linear
control-display ratio, i.e. the mapping between mouse
movement and cursor motion. Controlling interaction opens a
wide design space not covered by traditional Psychology.

Fitts' law [16] is one of the rare examples of a robust empirical
law in Psychology and has generated a significant amount of
HCI research [25]. It is extremely relevant to graphical
interaction because it models the movement time to acquire a
target, i.e. the basic act of pointing. Fitts' law specifies that
movement time MT is a simple function of the index of
difficulty /D of the task, defined as the logarithm of the ratio
of target distance D to target width W : MT = a + b ID where a
and b are determined empirically and ID = log, (1+D/W).

Until recently, Fitts' law had been applied to graphical
interaction for pointing tasks that were similar to pointing in
the real world. Not surprisingly, performance was similar to
that in the real world. Recently, several researchers have tried
to "beat Fitts' law", i.e. to obtain pointing performance that is
better than in the real world, or to see if the law applies to
pointing tasks that are impossible in the real world. For
example, McGuffin & Balakrishnan [26] show that when the
target expands as the cursor approaches it, the performance is
that of the expanded target size even if expansion occurs as
late as 90% of the distance to target. The MacOS X dock uses
expansion. Unfortunately it does not take advantage of this
phenomenon because of the relative motion of its targets [38].

Blanch et al. [11] present semantic pointing: by manipulating
the control-display ratio, the visual size of targets can be
independent from their size in motor space (Figure 7). A
visually-small target can be made easier to point to, for
example, without the user even noticing the manipulation. A
simple version of this decoupling occurs when targets are
along the sides of the display. For example, the menu bar on
the Macintosh is at the top of the screen, so targets have an
infinite vertical size in motor space since the cursor cannot go
further than the top. On Windows however, the menu bar is
separated from the top of the screen by a thin border, so the
height of the targets in the menu bar is the same in visual and
motor space, resulting in a significantly higher index of
difficulty than on the Macintosh. This shows how the details
of even the simplest interaction technique (pointing) can be
critical to its performance.



In joint work with Yves Guiard, we have pushed the limits of
Fitts' law even further. Pointing with one's arm in physical
space is limited to an index of difficulty of about 10 bits
(Imm at a 1m distance). However on a computer, with the help
of zooming, one can point to targets that are arbitrarily small
at an arbitrarily-long distance. We experimented with indices
of difficulty up to 30, i.e. a target of lmm at a distance of
1000km, and found that Fitts' law still applied [19].

Fitts' law has proven to be an invaluable tool in studying
interaction as a sensory-motor phenomenon. Its scope,
however, is limited to a single type of action: pointing. Other
laws exist that can be used to model a wider range of
techniques, including the steering law [1] for moving the
cursor through a constrained path and Hick's law [20] for
visually searching a target. But more work is required to fully
understand the sensory-motor phenomena of interaction. For
example, information visualization relies on preattentive
processing of visual information to extract patterns [35]. Our
knowledge of preattentive processing is still limited and
amounts to a set of rules rather than a unifying theory.
Perception of sound is even less well understood [12], despite
the obvious potential for reducing the load on the visual
channel and conveying temporal information.

More generally, few theories in Psychology can be easily
applied by interaction designers. This is not surprising, since
HCI researchers generally draw from descriptive Psychological
theories. (Exceptions, such as Behaviorism, are rarely used in
interaction design). Gibson's ecological approach to
perception [17] has been popularized in HCI by Don Norman
through the (often misunderstood) notion of affordances [29].
Unfortunately it, too, is a descriptive theory that is hard to use
by designers.

If we are to foster the design of better interaction, we need not
only sets of techniques with proven effectiveness, but also
rules and principles for combining them without losing their
advantages. We are defining a model that predicts the cost of
combining interaction techniques according to the context of
use [2], moving up from techniques to interaction sequences.
This is a first step toward a generative theory of interaction.

Studying interaction at the level of a sensory-motor
phenomenon has led to important advances in HCI by
providing a scientific basis to evaluate the performance of
interaction techniques. However, the results must be taken
with care since they are easy to misuse or overgeneralize.
Controlled experiments abstract real situations in order to
operationalize the phenomenon being observed. They allow
measurement of the peak performance of a technique, which
may differ significantly from its actual performance in context.
This is why designing interaction must associate the holistic
level of interaction in the context of use with the details of
interaction as a sensory-motor phenomenon.

6. INTERACTION ARCHITECTURES

The last piece in promoting the design of interaction rather
than interfaces is interaction architectures, i.e. tool and
middleware support for creating interactive systems. Wegner
argues that interactive systems are inherently more powerful
than algorithmic systems [36]. Yet most interactive systems
are implemented with traditional, algorithmic programming
languages. This partially explains the high cost of developing
and maintaining interactive software, and why the user
interface represents 50% to 80% of an application [28].

Research in user interface toolkits and user interface
management systems was active 10 years ago, but has almost
disappeared. If we are to promote new interaction techniques
and new interaction models, it is critical that they are
embedded into toolkits that can be adopted by developers.

Virtually all of today's toolkits are based on an event-based
model where input (and other) events are read by a top-level
loop and dispatched to widgets through a callback mechanism.
The resulting programming style breaks a conceptually linear
interaction into a set of chunks called by the main loop
independently from each other [27]. Programmers resort to
tricks such as global variables and unsafe narrowing to share
state between chunks (Figure 8). The result is brittle code that
is hard to debug and hard to maintain.

Another problem is that almost all toolkits are based on the
notion of a widget, i.e. a software component that encapsulates
a presentation (how the widget is displayed), a behavior (how
it reacts to user input) and an application interface (how it
signals its state changes and how its state can be changed by
the application). Widgets work well for simple interaction
objects such as buttons or scrollbars. They work less well for
dialog boxes and inspector windows and do not work at all for
more direct manipulation techniques such as drag and drop or
toolglasses [9]. We need to break away from the widget model,
which results in "boxy" interfaces that do not exploit direct
manipulation and instrumental techniques.

segment s; // global variable

bool drawing; // global variable

void HandleButtonPress (point p) {
s.pl = s.p2 = p; drawing = false;

void HandleMouseMove (point p) {
if (! drawing && distance (s.pl, p) > 3) {

drawing = true; s.p2 = p; Draw (s);
} else {
Erase (s); s.p2 = p; Draw (s);

}
}
void HandleButtonRelease () {
if (drawing) {
Erase (s);
AppNewSegment (s); // notify application

}
Figure 8. Event-driven programming of rubber-band
interaction (event-loop omitted).

interaction RubberBand {
segment s;
state start {
when ButtonPress(p) {
s.pl = s.p2 = p;
} -> waitMove

state waitMove {
when MouseMove(p)
&& distance(s.pl, p) > 3 {
s.p2 = p; Draw(s);
} -> track
when ButtonRelease -> start

}
state track {
when MouseMove(p) {
Erase(s); s.p2 = p; Draw(s);

when ButtonRelease {

Erase(s); App.NewSegment(s);
} -> start

Figure 9. Interaction machine for rubber-band.



I propose making interactions (not widgets) the first-class
objects of a toolkit. Figure 9 shows a simple example of an
interaction machine for rubber-banding (compare with Figure
8). One of the benefits of this approach is the ability for
multiple interactions to run in parallel. For example, with
bimanual input, the left hand can pan and zoom a document
while the right hand edits the document, as in CPN2000 [5]. Or
multiple users can work on the same screen with single-
display groupware [32]. Such interactions are likely to become
more common as we move towards pervasive computing and
its multiplicity of devices. Another advantage of reifying
interactions is the ability to externalize them, as in the ICON
system [15]: interactions can be loaded and unloaded at run-
time, like plug-ins. This allows both developers and end-users
an unprecedented level of control over their interaction with
the system. We have started to experiment with programming
interactions. Interactions are described by hierarchical state
machines [10], are independent from the objects they operate
on, and can be loaded dynamically.

Interactive systems are by definition open: they interact with
the user (or users) and often with other programs. They must
therefore adapt to various contexts of use, both on the users
side and on the computer side. In order to address the
challenges described at the beginning of this paper, I believe it
is critical that we define interaction architectures that give
more control to end users, that are more resistant to changes in
the environment, and that scale well. 1 call these three
properties reinterpretability, resilience and scalability.

Reinterpretability is the ability of a system to be used in
contexts and by users it was not designed for. Like any other
technology, computer systems are inevitably reinterpreted by
their users. Users not only passively adapt to new technology
but also adapt and appropriate it for their own needs [22].
Current systems are not flexible enough to support, even less
encourage, such co-adaptation. One way to look at co-
adaptation is that the development of an interactive system
continues after it has been released, in the hands of users.
Reinterpretability requires that users be able to redefine
functions, change input/output devices, add or remove
interaction techniques, maybe even program their own
functions. Interaction as first-class object is a step in this
direction, but it must be complemented by other mechanisms,
such as those studied in the context of End-User Development
(see, e.g. http://giove.cnuce.cnr.it/EUD-NET).

Resilience is the ability of a system to resist to change. This
might seem contradictory with reinterpretability, but in fact is
a condition for it: in order to withstand changes and
reinterpretation, critical components of the architecture must
resist changes in their environment. Web browsers are a good
example: they are very tolerant of incorrect syntax in the
HTML documents they display. Almost any subset of an HTML
page is HTML, i.e. understandable by a browser. This
encourages users to compose new pages by editing existing
pages or page fragments, and has been a major factor in the
development of the web. To date, there is no general approach
for creating resilient interactive systems, especially since it is
difficult to automate testing of interactive software.

Scalability is the ability of a system to withstand scale effects.
How does a file manager perform with a million files? A text
editor with a thousand page document? A shared editor with
one hundred users? Given the exponential growth of on-line
data, scale effects cannot be ignored when designing an
interactive system. Maintaining interactive response time

under 0.1s under any circumstance means that performance
should be constant with data size. Strategies such as caching,
level-of-detail and multi-threading should be employed to
guarantee response time and built into the architecture. Until
this is achieved, we will continue to observe that despite the
growth in computational power of our computers, the
performance as perceived by end users degrades quickly as the
number or size of documents grows.

In summary, more work is needed on software tools to create
better infrastructures for interactive systems. This not only
means software toolkits and middleware, but also
programming languages and operating system support.

7. CONCLUSION

Despite the tremendous increase in computing power of
personal computers and the large number of novel interaction
techniques published in the literature, today's commercial user
interfaces perform poorly. They face a three-fold challenge: an
increasing amount of data, number of devices and diversity of
users. | have argued that HCI research needs to shift its focus
from individual point designs to full-fledged interactive
environments and their supporting methods and tools.

I have shown how interaction models and design principles
can help create better interactive systems. I have argued that
design should focus both on the higher level of context of use
and the lower level of sensory-motor phenomenon, and that
implementation should be supported by robust interaction
architectures. These are of course only the first steps toward a
generative "theory" of interaction.

A paradox of HCI is that the best interface designs are
invisible: they are not noticed by users, who find the
interaction "natural", and once invented, they seem obvious to
other designers. Our measure of success is therefore elusive:
making systems that disappear, creating the invisible.

HCl is not the science of user interfaces, just as astronomy is
not the science of telescopes. HCI needs interfaces to create
interaction, and we should focus on describing, evaluating and
generating interaction, not interfaces.
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