
CPN/Tools: A Post-WIMP Interface for
Editing and Simulating Coloured Petri Nets

Michel Beaudouin-Lafon, Wendy E. Mackay, Peter Andersen, Paul Janecek,
Mads Jensen, Michael Lassen, Kasper Lund, Kjeld Mortensen, Stephanie Munck,

Anne Ratzer, Katrine Ravn, Søren Christensen and Kurt Jensen

Department of Computer Science
University of Aarhus

IT-Parken, Aabogade 34
8200 Aarhus N - Denmark

E-mail: cpn2000@daimi.au.dk

ABSTRACT
CPN/Tools is a major redesign of the popular Design/CPN
tool from the University of Aarhus CPN group. The new
interface is based on advanced, post-WIMP interaction
techniques, including bi-manual interaction, toolglasses and
marking menus and a new metaphor for managing the
workspace. It challenges traditional ideas about user
interfaces, getting rid of pull-down menus, scrollbars, and
even selection, while providing the same or greater
functionality. It also uses the new and much faster CPN
simulator. The first internal release of CPN/Tools was
made in April 2000 and the first public release is expected
in October 2000. CPN/Tools requires an OpenGL graphics
accelerator and will run on all major platforms (Windows,
Unix/Linux, MacOS).

KEYWORDS: Coloured Petri Nets, graphical editor,
Design/CPN, instrumental interaction, OpenGL.

INTRODUCTION
Interaction techniques for desktop workstations have
changed little since the creation of the Xerox Star in the
early eighties. The vast majority of today's interfaces are
still based on a single mouse and keyboard to manipulate
windows, icons, menus, dialog boxes, and to drag and drop
objects on the screen. While these WIMP interfaces
(Windows, Icons, Menus, Pointing) are now ubiquitous,
they are also reaching their limits: as new applications
become more powerful, the corresponding interfaces become
more complex. Some users are at a breaking point and are
less and less able to cope with new software releases [14].
Others have begun to actively reject software upgrades and
cling to older versions of products (survey of Microsoft
users, Business Week, 5 July, 1999).

New interaction techniques, such as toolglasses [4] and
marking menus [11], have been proposed to reduce this

trade-off between power and ease-of-use. Yet such post-
WIMP interaction techniques tend to be developed in
isolation, as the focus of a particular research project. As a
result, they have not made it into commercial tools even
though they have been shown to be significantly more
efficient than traditional techniques. CPN/Tools is the first
real-size application to combine such advanced interaction
techniques into a consistent interface. The goal of this
project is two-fold: first, it will provide the CPN
community with a new, cutting-edge interface to edit and
simulate Coloured Petri Nets; second, it paves the way to a
new generation of post-WIMP applications that will take
advantage of recent advances in graphical interfaces.

The CPN2000 project
CPN/Tools is a complete redesign of Design/CPN [10], a
graphical editor and simulator of Coloured Petri Nets
(CPNs) developed at Meta Software (USA) and the
University of Aarhus (Denmark) over the past 10 years.
Design/CPN has a standard WIMP interface, based on direct
manipulation, menus and dialog boxes (Figure 1). It is in
use by over 600 organizations around the world, in both
academia and industry. Production CPNs can have over a
thousand places, transitions and arcs, structured into a
hundred modules or more.

The CPN2000 project started in February 1999. We used a
highly participatory design process, involving the users
throughout the design process [15, 9]. Version 1 of
CPN/Tools was released in April 2000 and is in use by a
small group of CPN designers for production work. Version
2 is planned for October 2000 and will be released to a
selected set of users outside the project.

The CPN/Tools interface uses a combination of traditional,
recent and new interaction techniques, e.g. tool palettes,
toolglasses, and magnetic guidelines. Integrating these
interaction techniques together in a consistent way in a
single tool proved quite challenging. To our knowledge,
this had never been done before. We wanted to design a
system that would strike a better balance between power and
simplicity than current WIMP interfaces. This led us to
define three design principles: reification, polymorphism

- 2 -

Figure 1: Design/CPN, the predecessor to CPN/Tools

and reuse [1]. Reification states that any entity in the
interface should be accessible as a first-class object.
Polymorphism states that commands should apply to as
many different object types as possible. Reuse states that
any output generated by the system and any input to the
system should be reusable later, e.g. in the form of macros.

The resulting interface has no menu bars, no pull-down
menus, no scrollbars, no dialog boxes and no notion of
selection. Instead, it uses a unique combination of floating
palettes, toolglasses and hierarchical marking menus, a
novel windowing model based on pages and binders, and
several new interaction techniques such as magnetic
guidelines to align objects and bi-manual interaction to
manipulate objects. This interface supports the same or
higher level of functionality as the previous Design/CPN
application, yet we have empirical evidence [15, 9, 1] that
it is both simpler to use and more powerful.

The rest of this article presents the CPN/Tools interface and
its design principles, outlines the implementation and gives
preliminary performance evaluation data.

THE CPN/Tools INTERFACE
The CPN/Tools interface requires a traditional mouse and
keyboard, plus a trackball (or other locator) for the non-
dominant hand. For simplicity, we assume a right-handed
user, but the mouse and trackball can be swapped for left-
handed users. The keyboard is used only to input text and to
navigate within and across text objects. The design of the
bi-manual interaction follows Guiard's Kinematic Chain
theory [7] in which the left hand manipulates the context
(container objects such as windows and toolglasses) while
the right hand manipulates objects within that context. The
exception is direct interaction for zooming and resizing,
which, according to Casalta et al. [5], should give both
hands symmetrical roles. CPN/Tools incorporates six
primary interaction techniques: direct and bi-manual
interaction, marking menus [11], keyboard input, floating
palettes, and toolglasses [4].

Direct manipulation (i.e. clicking or dragging objects) is
used for frequent operations such as moving objects,
panning the content of a view and editing text. When a tool
is held in the right hand, e.g. after having selected it in a
floating palette, direct manipulation actions are still
available via a long click, i.e. pressing the mouse button,
waiting for a short delay (200ms) until the cursor changes,
and then either dragging or releasing the mouse button.
Because of the visual feedback, this multiplexing of tools
in the right hand is easily understood by users.

Bi-manual manipulation is a variant of direct manipulation
that involves using both hands for a single task. It is used
to resize objects (windows, places, transitions, etc.) and to
zoom the content of a page. The interaction is similar to
holding an object with two hands and stretching or
shrinking it. Bi-manual interaction could also be used to
control the orientation and position of an object. This
might be used in the future to control the orientation of our
magnetic guidelines (see below).

Marking menus are radial, contextual menus that appear
when clicking the right button of the mouse. Marking
menus offer faster selection than traditional linear menus for
two reasons. First, it is easier for the human hand to move
the cursor in a given direction than to reach a target at a
given distance. Second, the menu does not appear when the
selection gesture is executed quickly, which supports a
smooth transition between novice and expert use.
Kurtenbach and Buxton [11] have shown that selection
times can be more than three times faster than with
traditional menus. Hierarchical marking menus involve
more complex gestures but are still much more efficient
than their linear counterparts.

Keyboard input is used only to edit text. Some navigation
commands are available at the keyboard to make it easier to
edit several inscriptions in a row without having to move
the hands to the mouse and trackball. Keyboard modifiers
and shortcuts are not necessary since most of the interaction
is carried out with the two hands on the locator devices.

Floating palettes contain tools represented by buttons.
Clicking a tool with the mouse activates this tool, i.e. the
user conceptually holds the tool in his or her hand.
Clicking on an object with the tool in hand applies the tool
to that object. In many current interfaces, after a tool is
used (especially a creation tool), the system automatically
activates a "select" tool. This supports a frequent pattern of
use in which the user wants to move or resize an object
immediately after it has been created but causes problems
when the user wants to create additional objects of the same
type. CPN/Tools avoids this automatic changing of the
current tool by getting rid of the notion of selection (see
below) while ensuring that the user can always move an
object, even when a tool is active, with a long click
(200ms) of the mouse. This mimics the situation in which
one continues holding a physical pen while moving an
object out of the way in order to write.

- 3 -

Figure 2: The CPN/Tools interface. The index appears in the left column. The upper-right binder contains a page with
the simulation layer active. The upper-left binder contains a view of the same page, at a different scale. The lower
binder contains six pages: the top page shows several magnetic guideline (dashed lines). The VCR-like controls to the
left belong to the simulation floating palette. The toolglass at the bottom is positioned over objects on the page and is
ready to apply any of the attributes shown. To the right, a hierarchical marking menu has been popped up on the page
and is ready to accept a gesture to invoke one of the commands displayed.

Toolglasses, like floating palettes, contain a set of tools
represented by buttons. Unlike floating palettes, they are
semi-transparent and are moved with the left hand. A tool is
applied to an object with a click-through action: The tool is
positioned over the object of interest and the user clicks
through the tool onto the object. The toolglass disappears
when the tool requires a drag interaction, e.g., when
creating an arc. This prevents the toolglass from getting in
the way and makes it easier to pan the document with the
left hand when the target position is not visible. This is a
case where the two hands operate simultaneously but
independently.

Since floating palettes and toolglasses both contain tools, it
is possible to turn a floating palette into a toolglass and
vice versa, using the right button of the trackball. Clicking
this button when a toolglass is active drops it, turning it

into a floating palette. Clicking this same button on a
floating palette picks it up, turning it into a toolglass.

None of the above interaction techniques requires the
concept of selection. All are contextual, i.e. the object of
interest is specified as part of the interaction. This causes a
problem, though, since it is not possible to apply a
command to a group of objects as with traditional
interfaces. Some features of the interfaces such as magnetic
guidelines, described below, reduce the need to work with
groups. Nevertheless, Version 2 of CPN/Tools will
incorporate additional facilities to create groups, including
dynamic groups resulting from a search.

Preliminary results from our user studies [15, 9] make it
clear that none of the above techniques is always better or
worse. Rather, each emphasizes a different, but common,
pattern of use by using a different syntax:

- 4 -

Figure 3: Tabs for the pages in a binder

Mouse (dominant hand) Trackball (non-dominant hand)
Left button
short click

Left button
long click

Right button
click

Mouse then
trackball

Left button
click

Right button
click

Trackball
then mouse

Background Background
marking menu

Binder Bring to front
Move

Bring to front
Move

Binder
marking menu

Move + pan Bring to front
Move

Resize binder

Page tab Bring to front
Move

Bring to front
Move

Page tab
marking menu

Move + pan Bring to front
Move

Move + pan

Page
background

Apply tool in
hand

Pan Page
marking menu

Move
(conflicting)

Pan Zoom page

Objects Apply tool in
hand
Select text

Move Object
marking menu

Move Move Resize object

Toolglass Apply cell tool
to underlying
object

Move
underlying
object

Apply cell tool
to underlying
object

Turn toolglass
into palette

Apply cell tool
to underlying
object

Palette Select tool Select tool Palette
marking menu

Select tool Select tool Turn palette
into toolglass

Select tool

Index Drag (copy of)
entry

Drag (copy of)
entry

Drag (copy of)
entry

Drag (copy of)
entry

Table 1: Overview of the commands available according to the input action (down) and the context (across).

• object-then-command: point at the object of interest, then
select the command from a contextual marking menu;

• command-then-object: select a command by clicking a
tool in a floating palette, then apply the tool to one or
more objects of interest;

• command-and-object: select the command and the object
simultaneously by clicking through a toolglass or
moving it directly.

As a result, marking menus work well when applying
multiple commands to a single object. Floating palettes
work well when applying the same command to different
objects. Toolglasses work well when the work is driven by
the structure of the application objects, such as working
around a cycle in a Petri net. Table 1 summarizes the
available interactions.

The Workspace Manager
Coloured Petri Nets frequently contain a large number of
modules. In the existing Design/CPN tool, each module is
presented in a separate window and users spend time
switching among them. In CPN/Tools we have designed a
new window manager to improve this situation: the
Workspace Manager.

The workspace occupies the whole screen (figure 2) and
contains window-like objects called binders. Binders contain

pages , each equivalent to a window in a traditional
environment. Each page has a tab similar to those found in
tabbed dialogs (figure 3). Clicking the tab brings that page
to the front of the binder. A page can be dragged to a
different binder with either hand by dragging its tab.
Dragging a page to the background creates a new binder for
it. Dragging the last page out of a binder removes the
binder from the screen. Binders reduce the number of
windows on the screen and the time spent organizing them.
Binders also help users organize their work by grouping
related pages together and reducing the time spent looking
for hidden windows.

CPN/Tools also supports multiple views, allowing several
pages to contain a representation of the same data. For
example, the upper-right page in figure 2 shows a module
with simulation information, while the upper-left page
shows the same module without simulation information
and at a smaller scale.

- 5 -

Figure 4: Index
Figure 5: Toolglass for editing attributes

The left part of the workspace is
called the index (figure 4) and
contains a hierarchical list of objects
that can be dragged into the
workspace with either hand. Objects
in the index include toolglasses,
floating palettes and Petri net
modules. Dragging an entry out of
the index creates a view on its
contents, i.e. a toolglass, a floating
palette or a page holding a CPN
module.

Pages and binders do not have
scrollbars. If the contents of a page
is larger than its size, it can be
panned with the left button of the
trackball, even while the right hand
is using the mouse to, for example,

move an object or invoke a command from a marking
menu. Getting rid of scrollbars saves valuable space but
makes it harder to tell how much of the whole document is
being displayed. A future version will use the borders of the
page to show what portion of the document is viewed in a
non-intrusive, space-saving way.

Resizing a binder and zooming the contents of a page
involves direct bi-manual interaction (as described above).
Unlike traditional window management techniques, using
two hands makes it possible to simultaneously resize and
move a binder, or pan and zoom the contents of a page at
the same time. Clicking the right button of the mouse on
the page tab or on the binder pops up a contextual marking
menu with additional commands to close, collapse, expand
the page or create a new page with the same content.

Creating and Laying out Objects
Creation tools are accessible via any of the three interaction
techniques. The user may select the appropriate object from
the floating palette, move to the desired position and click,
or use the left hand to move the toolglass to the desired
position and click-through with the right hand, or move to
the desired location and make the appropriate gesture from
the marking menu.

Users of Design/CPN spend a great deal of time creating
and maintaining the layout of their Petri net diagrams. The
primary technique is a set of align commands, similar to
those found in other drawing tools. The limitation is that
they align the objects at the time the command is invoked,
but do not remember that those objects have been aligned.
We observed that most users use the same pattern to move
an object: They manually select all objects aligned to the
object of interest and move them as a group. This
dramatically slows down the interaction.

In order to facilitate the alignment of objects, we have
introduced horizontal and vertical magnetic guidelines.
Guidelines are first-class objects that are created in the same
way as the elements of the Petri net model, i.e. with tools
found in a palette/toolglass or in a marking menu.

Guidelines are displayed as dashed lines (figure 2) and are
magnetic. Moving an object near a guideline causes the
object to snap to the guideline. Objects can be removed
from a guideline by clicking and dragging them away from
the guideline. Moving the guideline moves all the objects
that are snapped to it, thus maintaining the alignment. An
object can be snapped simultaneously to a horizontal and a
vertical guideline.

We have designed, and will implement, additional types of
guidelines. For example, rectangular or elliptical guidelines
would make it easier to layout the cycles commonly found
in Petri nets. We also plan to support spreading or
distributing objects over an interval within a line segment,
since this is a common layout technique. Adding these new
types of guidelines may create conflicts when an object is
snapped to several guidelines. One solution is to assign
weights to the guidelines and satisfy the alignment
constraints of the guidelines with heaviest weight first.
Such conflicts do not exist in the current system because
only horizontal and vertical guidelines are available.

Editing Attributes
The tools to edit the graphical attributes of the CPN
elements are grouped in a palette/toolglass that contains
five rows (figure 5): two rows of color swatches, a row of
lines with different thicknesses, a row of lines with different
dash patterns and a row for user-defined styles. The first four
rows are fairly standard and are not described further here.

Tools in the last row correspond to the reification of groups
of graphical attributes into styles. Initially, each tool in
this row is a style picker. Applying this tool to an object
copies the object's color and thickness into the tool and
transforms the tool into a style dropper. Applying a style
dropper to an object assigns the tool's color and thickness
to that object. Applying a style dropper to the background
of the page empties it and turns it into a style picker. If this
is done by mistake, the undo command restores its previous
state. In practice, style pickers and style droppers make it
very easy and efficient for users to define the styles they use
most often and apply them to objects in the diagram.

- 6 -

Figure 6: Simulation information

Figure 7: Simulation control panel

In Version 2 objects will remember which style they
belong to (like in, e.g., Microsoft Word) and it will be
possible to edit the attributes of a style in the toolglass
itself. This will affect all the objects that use this style,
saving repetitive editing.

Simulation tools
Once a CPN model has been created, the developer runs
simulations to validate it. CPN/Tools uses the new
simulator developed by the University of Aarhus CPN
group [8], which is up to 1000 times faster than the
previous one used by Design/CPN. The simulator runs as a
separate process and communicates with the tool over a
TCP/IP network connection.

CPN/Tools displays simulation information in a
simulation layer that can be added to any page via any of
the three interaction techniques. When the simulation layer
is active (figure 6), the background color of the page
changes, the number of tokens are displayed as small green
disks, the token colors are displayed as yellow text
annotations, and enabled transitions are displayed with a
green halo. Each of these types of feedback can be toggled
on or off using the tools in the simulation palette or
toolglass (figure 7, top row).

Running the simulation involves compiling the net into
ML code based on the structure of the net and the text
inscriptions. This may result in syntax errors (during
compilation) and run-time errors (during the simulation
itself). In both cases, error messages are displayed as red
"bubbles" next to the location of the error. The object that
caused the error has a red halo. Since the error may occur in
a page that is not on top, the red halo also appears in the
tab of any page that has an error.

CPN/Tools uses a video tape player metaphor to control the
simulation (figure 7, bottom row). Next frame lets the user
select a transition to fire. Play randomly fires enabled
transitions until a deadlock is reached or the user hits the
stop button. Fast-forward runs the simulation at full speed
for a maximum number of steps set by the user, displaying
only the final state. Rewind resets the net to its initial

state. The Next frame command is polymorphic: If applied
to an enabled transition, it fires that transition. If applied to
a page, it fires a randomly-selected transition within the
page. If applied to a binder or to the workspace, it fires a
randomly-selected transition within the pages of the binder
or the whole model, respectively.

Our user studies showed that users are either interested in
the results of the simulation, and thus do not want to
change the underlying diagram, or they are interested in
editing the diagram and usually do not need the results of
the simulation. Therefore, in our design, a diagram cannot
be edited in a page while the simulation layer is active,
which makes it easier to adjust the location of the
simulation feedback. The user can always edit the
underlying diagram in a different page with the simulation
layer turned off (figure 2).

DESIGN PRINCIPLES
Graphical user interfaces can be broadly defined as
consisting of graphical objects and commands. Graphical
objects are represented on the screen and commands can be
applied to create, edit and delete them. The perceived "ease-
of-use" of an interface depends upon many factors, including
the effectiveness of the visual representation, the
completeness of the command set and the support for
efficient patterns of use.

We have developed three principles that address the issues
surrounding objects, commands and patterns of use:

• Reification extends the notion of what is an object;
• Polymorphism extends the power of commands with

respect to these objects; and
• Reuse provides a way to capture and reuse patterns of use.

Reification
Reification is the process by which concepts are turned into
objects. For example, in a graphical editing tool, the
concept of a circle is represented as an image of a circle in a
tool palette: it is reified into a tool. Reification therefore
creates new objects that can be manipulated by the user.

Instrumental Interaction [2] extends the principles of Direct
Manipulation [16] by reifying commands into interaction
instruments. An interaction instrument is a mediator
between the user and objects of interest: the user acts on the
instrument, which in turn acts on the objects. This reflects
the fact that, in the physical world, our interaction with
everyday objects is mediated by tools and instruments such
as pens, hammers or handles. The menu items, tool
buttons, manipulation handles and scrollbars seen in today's
user interfaces are examples of interaction instruments. A

- 7 -

scrollbar, for example, is both a visible object on the screen
that can be manipulated by the user and also a command the
user manipulates to scroll the document.

Another example of reification is the notion of style: In a
text editor such as Microsoft Word, a style is a collection of
attributes describing the look of a text in a paragraph, e.g.,
the font and margins. The user can create and edit styles and
apply them to paragraphs. Styles thus become first-class
objects for the user. Instruments may also operate on other
instruments. For example, in some user interfaces, menus
and toolbar buttons can be reconfigured to tailor the
interface: they become objects that can be manipulated by
(meta-)instruments.

CPN/Tools uses reification in various ways. All
commands, whether in a marking menu, palette or
toolglass, are instruments. As described below, this is also
reflected in the implementation. Version 2 will support
extensive customization by including additional instruments
to operate on the instruments in the palettes and
toolglasses. Also, the notion of group is reified in various
ways. Magnetic guidelines represent a group of aligned
objects, reifying the notion of alignment. Styles reify
groups of graphical attributes to be applied to other objects.
Binders reify groups of pages to be manipulated together.

Polymorphism
Polymorphism is the property that enables a single
command to be applicable to objects of different types.
Polymorphism allows us to maintain a small number of
commands, even as reification increases the number of
object types. This property is essential if we want to keep
the interface simple while increasing its power.

Most interfaces include the polymorphic commands cut,
copy and delete, which can be applied to a wide variety of
object types, such as text, graphics, files or spreadsheet
cells. Undo and redo can also be considered polymorphic to
the extent that they can be applied to different commands.

Applying a command to a group of objects involves
polymorphism at two levels. First, most commands that
apply to an object can also be applied to a group of objects
of the same type by applying them to each object in the
group. Second, such commands can also be applied to a
heterogeneous group of objects, i.e. objects of different
types, as long as they have meaning for each of the
individual object types.

CPN/Tools uses polymorphism in two ways. First, many
instruments are polymorphic, i.e., they work with different
types of objects. The best example is the "move"
instrument used to move objects by direct manipulation: it
works with index entries, binders, pages, places,
transitions, arc bendpoints, text items, etc. Second, many
instruments apply to groups of objects as well as individual
objects. In some cases, the effect is to operate on all objects
in the group. For example, applying a style or graphical
attribute to a guideline affects all the objects attached to the
guideline rather than the guideline itself. In other cases, the

effect is to select one object in the group and apply the
command to it. For example, the "next-frame" simulation
tool fires a single transition. When applied to a page or
binder, it randomly selects a single transition in the page or
set of pages in the binder and fires it.

Reuse
Reuse can involve previous input, previous output or both.
Input reuse makes previously-provided user input available
for reuse in the current context. For example, the redo
command lets users repeat complex input strings without
having to retype them. Output reuse makes the results of
previous user commands available for reuse. For example,
duplicate and copy-paste let users avoid re-creating complex
objects they have just created.

Polymorphism facilitates input reuse because a sequence of
actions can be applied in a wider range of contexts if it
involves polymorphic commands. Reification facilitates
output reuse by creating more first-class objects in the
interface which are then available for reuse. Thus, for
example a Microsoft Word user can create a new style
object by reifying the style of an existing paragraph or by
duplicating an existing style object, modifying the copy and
reapplying it. A more elaborate form of reuse obtains when
new styles are created through inheritance from an existing
style, which allows changes made in the reused object to be
propagated to the edited copies.

Macros, such as those found in Microsoft Excel, illustrate
the power of combining these three design principles. The
user begins by telling the system to "watch" as a sequence
of commands is performed. Reification enables the user to
capture the particular pattern of use as a sequence of
commands that can be applied as a single new command to
a new set of objects.

The current version of CPN/Tools has limited support for
reuse. Some commands can be undone/redone, and the style
picker/dropper makes it possible to reuse the set of
attributes of an object for other objects. Version 2 will
incorporate more advanced facilities, including macros that
will be available as regular tools in palettes and toolglasses.

IMPLEMENTATION
Implementing CPN/Tools required that we started from
scratch: most user interface toolkits do not support our
graphical model (e.g. transparency and non-rectangular
windows) nor our input model (bi-manual input). We
decided to use OpenGL [18] for output and to design and to
implement our own input management. Note that the extra
hardware for bi-manual input is very inexpensive: any
mouse or trackball can be used.

The choice of OpenGL was motivated by several factors.
First, the performance of 3D accelerated graphics is
increasing faster than Moore's law, thanks to applications
such as video games driving the market, and more and more
of the rendering costs are off-loaded to the graphics
hardware, saving CPU cycles. We anticipate that such
hardware, which is already inexpensive, will be standard on

- 8 -

Input

Structure

Document

Structure

Display

Structure

Abstract

Petri Net

hit detection

edit

show

notify

Figure 8: Main components of the architecture

PCs within a few years. Second, OpenGL is a standard API,
implemented by many vendors on the three main platforms
in use today : Windows, MacOS and Unix. This will make
it easier to support Design/CPN on these platforms. Third,
OpenGL has a sophisticated graphics model that supports
transparency, lighting and texturing. This opens the door to
advanced visual effects, which we have only started to use
in CPN/Tools.

The system architecture is depicted in figure 8. The
Document Structure holds a set of Abstract Documents that
represent all persistent data in the system. The Abstract
Petri Net is the part that represents the CPN diagrams and
interfaces with the CPN simulator. The simulator runs as a
separate process and is not covered in this description. The
Display Structure is used for rendering the document
structure and for hit detection. The Input Structure manages
the interaction instruments that edit the documents.

The Document Structure
Abstract documents represent the persistent data of the
system, including the diagrams being loaded, the tools and
tool palettes, and the configuration of the workspace. This
structure must be both extensible and efficient. The file
format for storing the data in abstract documents is XML.

An abstract document is a collection of typed nodes. The
document maintains a classification tree so that accessing
all the nodes of a given type is efficient. The nodes can also
be organized in a graph by creating typed associations
among them. Any other structure could be superimposed on
a document. For example, a spatial index such as in Pad++
[3] could be used to optimize access by the display
structure.

Abstract documents generate notifications when nodes are
added, removed or changed. The observers of these
notifications are the items of the display structure described
below as well as other nodes in the document structure. For
example, an arc needs to know when its place or transition
is moved or destroyed.

The Display Structure
The role of the display structure is to represent what is on
the screen. It is used both by the rendering algorithm to
update the screen and by the input structure for hit
detection. The display structure is a special scene graph,
similar to those found in 3D graphics toolkits such as

Inventor [17]. Our display structure is slightly more
abstract than traditional scene graphs because we separate
the document structure from the display structure. Therefore
the document structure can be organized to suit the needs of
the application while the display structure can be optimized
for rendering and hit detection.

The root of the structure is a Canvas, representing the
whole screen. The Canvas contains an ordered set of Views,
stacked from back to front. Views correspond roughly to
windows in traditional window systems. Each view may
contain other views, for grouping. Views can be semi-
transparent, i.e. the views underneath them may show
through, and they can have any shape. This is used to
implement toolglasses.

The contents of a View is one or more Scenes, which are
stacked like overlapping layers as in the multi-layer model
[6]. We use different scenes to represent a single document
in order to control which parts of the document structure is
visible in a page:

• main layer: places, transitions and arcs, no textual
inscriptions except the names of places and transitions;

• text layer: all text except names of places and transitions;
• guidelines: magnetic guidelines for aligning objects;
• simulation: tokens and messages related to the simulation
• annotations: error messages, help tips, etc.

A Scene can be shared among multiple Views. For
example, two pages may display the same diagram by
sharing the main layer and the text layer. One page may
show the guidelines layer while the other displays the
simulation layer, and each page may have its own scale.

Finally, the contents of a Scene is a set of Items. Items are
meant to be lightweight objects: they typically contain a
reference to the node of the document structure that they
represent, and some information used solely by the display
and hit detection algorithms.

The Input Structure
The input structure is based on the Instrumental Interaction
model [2]. An interaction instrument is the association of a
physical part (the input device) and a logical part (the
representation on the screen). An instrument operates on a
node of the document structure called the target. When
receiving input events, an instrument provides feedback by
updating its on-screen representation and sends commands
to its target. The target responds to these commands by
updating its own state.

Instruments are easy to implement in this framework. For
example, it took less than two hours to create a help
instrument that works with any object in the interface
(including other instruments) and that is available from
contextual menus as well as in a tool palette.

Polymorphic instruments such as the move instrument
described before are implemented as collections of
"concrete" instruments that represent implementations of

- 9 -

instr.prepare(target)

Idle

Empty Tool

Waiting

Active

startTool/

chooseInstr()

devEvent/

instr.handleEvent()

timeout/

setInstr(move)

pick(tool)

drop(tool)
finish

startMenu/

activateMenu(target)

devEvent/

instr.activate()

Figure 9: State machine for each hand

Empty workspace 50 - 60 fps
One empty page 32 - 36 fps

 After loading a 5 modules net:
One binder with 5 pages 20-23 fps
Two binders with 5 pages each 14-15 fps
Five binders with one page each 11-12 fps
Five binders without text layer 15-16 fps

Table 2: Frame rates measured on our reference
platform, in frames per second (fps)

the instrument for different target types. When a
polymorphic instrument is activated, it looks at the target
object type, and activates the concrete instrument that
corresponds to that type. For example the move instrument
has many concrete instruments for moving places or
transitions, bend points of an arc, inscriptions, magnetic
guidelines, pages, binders, entries in the index, etc.

Several instruments may be ready for use at any one time.
In our design, the user has instant access to up to five
instruments at a time:

• the tool selected in a palette and held in the right hand;
• the move/pan tool accessible with a long click with the

right hand, or with a short click when no tool is selected;
• the marking menu accessible with the right mouse button
• the toolglass that can be moved with the left hand and

clicked-through with the right hand;
• the resize/zoom tool accessible by bi-manual interaction

(left button press on the trackball and then click and drag
with the mouse).

The input manager uses two identical state machines to
manage the activation of instruments, one for each hand
(figure 9). The transitions of the state machine are abstract
events generated by the input devices or the instrument. The
Idle state has two sub-states, Empty and Tool, describing
whether a tool has been selected (right hand) or a toolglass
has been picked up (left hand). The Waiting state is used to
distinguish between a long click and a short click: when the
200ms timeout occurs, the current instrument becomes the
move instrument. The Active state corresponds to the
current instrument being used during a click or drag
interaction. The instrument interacts with its target by
sending it commands. Executing a command normally
results in some edit of the document structure, which will
be reflected on the screen at the next redisplay. At some
point the instrument generates a finish event and the state
machine is reset.

Since there are two state machines, one for each hand, it is
possible to execute parallel actions, e.g., moving an object
with the right hand while panning the contents of a page
with the left hand. For interactions that involve both hands,
such as resizing and zooming, one state machine sets the
state of the other to Active (if it is Idle) and passes it its
instrument and target. The two state machines therefore
send their respective events to the same instrument.

PERFORMANCE EVALUATION
The data reported in this section corresponds to version 1 of
CPN/Tools, which is fully functional and has been in use
by a small group of members of the CPN group for real
work for two months. Our reference platform is a
HP/Kayak XW with a 500 MHz Pentium II and a Visualize
FX6 graphics card running Windows NT4. We also use a
similar PC with a Diamond FireGL 1 graphics card and a
SGI Visual PC 320 for testing. CPN/Tools can also run on
Unix (SGI O2) and Macintosh, but we need to improve the
management of the secondary input device (the trackball) on
these platforms.

The system is implemented in Beta [12], a high-level,
compiled, strongly-typed object-oriented language based on
a single construct, the pattern, that unifies classes, objects
and methods. The implementation consists of 40000 lines
of Beta code.

We have conducted a preliminary evaluation of the memory
footprint and display rates of the system. However, we
must stress that virtually no optimization has been carried
out on this version. The memory footprint is typically
between 10 and 12Mb when a medium-size CPN model is
loaded, compared to 7.5Mb for the former Design/CPN
tool. A break-down of memory usage shows that the
Document, Display and Input structures use only 3Mb of
the total, plus 1Mb for the texture cache. 2Mb are used by
the Beta runtime for garbage collection, and the remaining
4Mb are used by OpenGL and the rest of the Beta run-time.
While loading fonts, the Freetype engine may use up to an
additional 10Mb.

Table 2 summarizes the frame rates (number of screen
redisplays per second) for typical situations on the reference
platform. The size of the display window is 1280x1024,
and all measurements are done with a semi-transparent
toolglass on the screen. As expected, the frame rates are
very stable, irrespective of what the user is doing: moving
pages, panning, zooming, etc.

The Visual PC 320 gives similar frame rates, while the
FireGL 1 is 30% faster. Visually, frame rates of 15 frames
per second or more look smooth enough for the interaction
techniques we use. A close analysis of the profiling
information shows that up to 50% of redisplay time could
be optimized by using the hardware more efficiently. Also,
profiling data shows that displaying text is time-
consuming, as shown by the last two lines in the table
above. But our choice of using OpenGL is clearly

- 10 -

successful and the increase in performance of graphics cards
will only make things better: the FireGL1 came out less
than one year after the Visualize FX6, costs a fraction of its
price and is 30% faster!

CONCLUSION AND FUTURE WORK
We have described the interface, design principles and
implementation of CPN/Tools and shown how it supports
a combination of advanced interaction techniques in a post-
WIMP interface. Version 1 is functional and already in use
by a small group of users. We are currently working on the
next version that will incorporate new features and
improvements, based on the same design principles and
overall approach.

Version 2 will feature various methods for creating and
managing groups of objects. Groups will be specified either
explicitly by designating the objects in the group or
indirectly through a query, e.g. to find all places that belong
to a given color set. The interface will also be
customizable: users will be able to compose their own
palettes and toolglasses and exchange them with other
users. Styles and guidelines will be improved, and context-
sensitive help will be available throughout the interface.

We are looking forward to the public release of Version 2 of
CPN/Tools to a wider group of users in the Petri Nets
community to collect valuable feedback for the next
iteration of the design.

ACKNOWLEDGMENTS
We thank the members of the CPN group at the University
of Aarhus for their participation in the design and
evaluation activities.

This work is supported by the University of Aarhus, the
Danish Centre for IT Research (CIT), Hewlett-Packard and
Microsoft Research.

REFERENCES
1. Beaudouin-Lafon, M. & Mackay, W. Reification,

Polymorphism and Reuse: Three Principles for
Designing Visual Interfaces . In Proc. Conference on
Advanced Visual Interfaces, AVI 2000, Palermo, Italy,
May 2000, in press.
http://www.daimi.au.dk/~mbl/AVI2000

2. Beaudouin-Lafon, M. Instrumental Interaction: An
Interaction Model for Designing Post-WIMP User
Interfaces. In Proc. Human Factors in Computing
Systems, CHI'2000, ACM Press, 2000.

3. Bederson, B. & Meyer, J. Implementing a Zooming
Interface: Experience Building Pad++. Software
Practice and Experience, 28(10):1101-1135, August
1998.

4. Bier, E., Stone, M., Pier, K., Buxton, W., De Rose,
T. Toolglass and Magic Lenses : the See-Through
Interface. In Proc. ACM SIGGRAPH, ACM Press,
1993, p.73-80.

5. Casalta, D., Guiard, Y. and Beaudouin-Lafon, M.
Evaluating Two-Handed Input Techniques: Rectangle
Editing and Navigation. ACM Human Factors In
Computing Systems, CHI'99, Extended Abstracts,
1999, p. 236-237.

6. Fekete, J-D. & Beaudouin-Lafon, M. Using the Multi-
layer Model for Building Interactive Graphical
Applications. In Proc. ACM Symposium on User
Interface Software and Technology, UIST'96, ACM
Press, p. 79-86.

7. Guiard, Y. Asymmetric division of labor in human
skilled bimanual action: The kinematic chain as a
model. Journal of Motor Behavior, 19:486-517, 1987.

8. Haag, T.B. and Hansen, T.R. Optimising a Coloured
Petri Net Simulator. Master's Thesis, University of
Aarhus (Denmark), December 1994.

9. Janecek, P., Ratzer, A., and Mackay, W. Petri-Nets-
In-Use. In Proc. International Workshop on Coloured
Petri Nets, Aarhus, Denmark, 1999.

10. Jensen, K. Coloured Petri Nets: Basic Concepts (Vol.
1, 1992), Analysis Methods (Vol. 2, 1994), Practical
Use (Vol. 3, 1997). Monographs in Theoretical
Computer Science. Springer-Verlag, 1992-97.

11. Kurtenbach, G. & Buxton, W. User Learning and
Performance with Marking Menus. In Proc. Human
Factors in Computing Systems, CHI'94, ACM, 1994,
p.258-264.

12. Lehrmann Madsen, O., Møller-Pedersen, B. &
Nygaard, K. Object-Oriented Programming in the Beta
Programming Language, Addison-Wesley, 1993.

13. Mackay, W.E. Users and Customizable Software: A
Co-Adaptive Phenomenon. Ph.D. Dissertation,
Massachusetts Instititute of Technology, 1990.

14. Mackay, W.E. Triggers and barriers to customizing
software. In Proc. ACM Human Factors in Computing
Systems, CHI'91, ACM Press, 1991, p. 153-160.

15. Mackay, W., Ratzer, A. & Janecek, P. Video Artifacts
for Design: Bridging the Gap between Abstraction and
Detail. In Proc. ACM Conference on Designing
Interactive Systems, DIS 2000, New York, August
2000, in press.
http://www.daimi.au.dk/~mackay/DIS2000

16. Shneiderman, B. Direct Manipulation : a Step Beyond
Programming Languages. IEEE Computer 16(8):57-
69, 1983.

17. Strass, P. IRIS Inventor, a 3D Graphics Toolkit. In
Proc. ACM Conference on Object-Oriented
Programming, Systems, Languages and Applications,
OOPSLA '93, ACM Press, 1993, p.192-200.

18. Woo, M., Neider, J. & Davis, T. O p e n G L
Programming Guide, Addison-Wesley, 1997.

