
in Proc. ACM Symposium on User Interface Software and
Technology (UIST 2000), San Diego, CA, November 2000,
ACM Press, in press.

© 2000, Association for Computing Machinery

The Architecture and Implementation of CPN2000,
A Post-WIMP Graphical Application

Michel Beaudouin-Lafon* and Henry Michael Lassen
Department of Computer Science - University of Aarhus

IT-Parken - Aabogade 34
8200 Aarhus N - Denmark

E-mail: mbl@daimi.au.dk, hml@daimi.au.dk

ABSTRACT
We have developed an interface for editing and simulating
Coloured Petri Nets based on toolglasses, marking menus
and bi-manual interaction, in order to understand how novel
interaction techniques could be supported by a new
generation of user interface toolkits. The architecture of
CPN2000 is based on three components: the Document
Structure stores all the persistent data in the system; the
Display Structure represents the contents of the screen and
implements rendering and hit detection algorithms; and the
Input Structure uses "instruments" to manage interaction.
The rendering engine is based on OpenGL and a number of
techniques have been developed to take advantage of 3D
accelerated graphics for a 2D application. Performance data
show that high frame rates have been achieved with off-the-
shelf hardware even with a non-optimized redisplay. This
work paves the way towards a post-WIMP UI toolkit.

KEYWORDS: User interface toolkit, Advanced interaction
techniques, Post-WIMP interfaces, Two-handed input,
Instrumental interaction, OpenGL, Coloured Petri nets.

INTRODUCTION
Interaction techniques for desktop workstations have
changed little since the creation of the Xerox Star in the
early eighties. The vast majority of today's interfaces are
still based on a single mouse and keyboard to manipulate
windows, icons, menus, dialog boxes, and to drag and drop
objects on the screen. While these WIMP interfaces are now
ubiquitous, they are also reaching their limits: as new
applications become more powerful, the corresponding
interfaces become more complex. Since implementing new
interaction techniques is notably difficult, interface
designers and developers prefer to use the limited vocabulary
offered by traditional widget sets.

A number of novel interaction techniques have been
developed over the past decade, but few have found their
way into commercial products. Toolglasses [9] and Marking
menus [16] for example have been shown to be

significantly more efficient than traditional palettes and
menus, yet they are not available in commercial toolkits.

In order to foster the diffusion of post-WIMP interaction
techniques into real applications, two problems must be
addressed. The first is to study how these interaction
techniques can be combined with each other and with more
traditional techniques. This requires defining new interaction
models, such as Instrumental Interaction [2] that encompass
a wider range of interaction techniques. The second problem
is to provide software support in the form of a toolkit or
framework that allows application developers to incorporate
post-WIMP interaction techniques as flexibly as they do
with today's widget toolkits. Toolkits include an abstract
interaction model and a set of modular interaction
techniques. Two strategies for developing toolkits involve
different trade-offs. Building the toolkit directly from the
interaction model, with several demonstration applications,
provides an early test of the ideas but raises questions about
scalability and use within real applications. The alternative
is to begin with a large-scale application based on the
interaction model so as to identify the specific elements of
the toolkit. This strategy permits testing the applicability
of the model first, but risks compromising the generality of
the toolkit when it is built.

The CPN2000 project
We chose the latter strategy and implemented the concept of
Instrumental Interaction into the redesign of a complex
application: CPN2000. The project is a complete redesign
of Design/CPN, a graphical editor and simulator of
Coloured Petri Nets (CPNs). Design/CPN has a standard
WIMP interface, based on direct manipulation, menus and
dialog boxes. It is in use by over 600 organizations around
the world, in both academia and industry. Production CPNs
can have over a thousand places, transitions and arcs,
structured into a hundred modules or more.

The CPN2000 project started in March 1999. We used a
highly participatory design process, involving the users
throughout the design process [21]. Version 1 of CPN2000
was released in April 2000 and is in use by a small group
of CPN designers for production work. We are conducting a
longitudinal study to inform the iterative design process.

* Author's current address: LRI, Bât 490, Université Paris-Sud,
91405 Orsay Cedex, France. Email: mbl@lri.fr

- 2 -

The CPN2000 interface uses a combination of traditional,
recent and new interaction techniques, e.g. tool palettes,
toolglasses, and magnetic guidelines. Integrating these
interaction techniques together in a consistent way in a
single tool proved quite challenging. We wanted to design a
system that would strike a better balance between power and
simplicity than current WIMP interfaces. This led us to
define three design principles: reification, polymorphism
and reuse [1]. Reification states that any entity in the
interface should be accessible as a first-class object.
Polymorphism states that commands should apply to as
many different types as possible. Reuse states that any
output generated by the system and any input to the system
should be reusable later, e.g. in the form of macros.

The resulting interface has no menu bars, no pull-down
menus, no scrollbars, no dialog boxes and no notion of
selection. Instead, it uses a unique combination of floating
palettes, toolglasses and hierarchical marking menus, a
novel windowing model based on pages and binders, and
several new interaction techniques such as magnetic
guidelines to align objects and bi-manual interaction to
manipulate objects. This interface supports all the functions
of the previous Design/CPN application and more, yet we
have empirical evidence [21, 1] that it is both simpler to
use and more powerful. Implementing this interface required
that we started from scratch: most toolkits do not support
our graphical model (e.g. transparency and non-rectangular
windows) nor our input model (bi-manual input). We
decided to use OpenGL for output, and to design and
implement our own input management, based on the
Instrumental Interaction model [2]. The next section gives
an overview of Coloured Petri Nets and the CPN2000
interface (see [1] for more details).

THE CPN2000 INTERFACE

Coloured Petri Nets
A Petri net is a bipartite graph with nodes called places
(depicted as circles or ellipses) and transitions (depicted as
rectangles). Edges of the graph are called arcs and can only
connect places to transitions and transitions to places.
Places hold tokens that represent the current state of the
system. Simulating the net involves "firing" transitions to
move tokens from place to place.

Coloured Petri nets [14] are an extension of Petri Nets for
modeling complex systems. Tokens belong to color sets
similar to data types in programming languages. Arcs are
labeled with pattern-matching expressions that describe
which tokens are used when a transition is fired. Typically,
colors allow a conventional Petri net to be "folded" onto
itself, making models much smaller. In addition CPNs are
hierarchical. A transition can be described by a subnet,
equivalent to macro-substitution in a textual language.

Graphically, a CPN looks like a traditional Petri net, with
additional text inscriptions on the places, transitions and
arcs. A CPN may consist of several diagrams. Graphical
annotations describe how the diagrams compose the net.

Overall interface
The CPN2000 interface requires a traditional mouse and
keyboard, plus a trackball (or other locator) for the non-
dominant hand. For simplicity, we assume a right-handed
user, but the mouse and trackball can be swapped for left-
handed users. A large window, called the workspace, holds
an index to the left, a set of floating palettes, which can be
turned into toolglasses, and a set of window-like objects
called binders that contain pages (figure 1). The pages in a
binder are accessible by tabs similar to those found in
tabbed dialogs. A page can be moved within or between
folders by dragging its tab, or moved to the workspace,
which creates a new binder holding it. The index contains
an entry for each tool palette. When loading a CPN model,
a new entry is created in the index, with a sub-entry for each
diagram in the model. Dragging entries of the index onto
the workspace creates one of the objects above (floating
palette, toolglass or page within a binder).

Interaction techniques
Floating palettes are similar to those found in traditional
interfaces: clicking a tool activates it. The tool is then held
in the right hand and applied by clicking or dragging.
Unlike traditional interfaces, there is no notion of selection
and therefore no selection tool. This avoids the problem of
unwanted switching to the selection tool found in
traditional graphical editors. To deactivate the tool in hand,
one clicks on the tool again in the tool palette.

Direct manipulation (i.e. clicking or dragging objects by
clicking them directly) is used for frequent operations such
as moving objects, panning the content of a view and
editing text. When a tool is held in the right hand, direct
manipulation actions are still available via a long click, i.e.
pressing the mouse button, waiting for a short delay
(300ms) until the cursor changes, and then either dragging
or releasing the mouse button. Because of the visual
feedback, this multiplexing of tools in the right hand is
easily understood by users.

Bi-manual manipulation is a variant of direct manipulation
that involves using both hands for a single task. It is used
to resize objects (binders, places, transitions, etc.) and to
zoom the content of a page. The interaction is similar to
holding an object with two hands and stretching or
shrinking it. Bi-manual interaction could also be used to
control the orientation and position of an object as in T3
[18]. This might be used in the future to control the
orientation of our magnetic guidelines.

Toolglasses [9] are positioned with the left hand and
operated by a click-through with the right hand. Click-
through tools take precedence over the tool that may be held
in the right hand; however the long-click manipulations are
still available. When the click-through tool requires a drag
action to specify an object size, the toolglass disappears
while the mouse is dragged. The toolglass is turned into a
palette, and vice versa, by clicking the right button on the
trackball (left hand). We call these actions picking up and
dropping the toolglass.

Figure 1: The CPN2000 interface, showing the index (top-left), three binders with multiple pages, a tool palette
(bottom), a toolglass (top-right) and a hierarchical marking menu (center). The top page has magnetic guidelines.
The bottom binders show two views of the same diagram at different sales, with simulation information in the right one.

Marking menus [16] are available throughout the interface
by clicking the right mouse button. The commands in these
contextual marking menus are also available in
palettes/toolglasses. Our marking menus have at most eight
entries per menu and at most one level of sub-menus.

Magnetic guidelines [1] are used to align objects. They
combine some aspects of snap-dragging [12] and graphical
tabs [7]. Objects snap to a guideline when moved close to
it, and can be detached by dragging them away. Moving the
guideline moves the objects attached to it. The current
system supports horizontal and vertical guidelines. Objects
can be attached to both simultaneously.

Keyboard input is used only to edit text. Some navigation
commands are available at the keyboard to make it easier to
edit several inscriptions in a row without having to move
the hands to the mouse and trackball. Keyboard modifiers
and shortcuts are not necessary since most of the interaction
is carried out with the two hands on the locator devices.

An important characteristic of the interface is that it
supports multiple working styles. Tool palettes are efficient
when a single tool needs to be applied to multiple objects;
marking menus are more efficient when multiple commands

are applied to the same object in succession; toolglasses
support a mix of these and are quite efficient for creating a
structure with different types of objects (places, arcs,
transitions), and for editing the graphical attributes (color,
thickness) of a set of related objects, e.g. around a cycle.

SOFTWARE ARCHITECTURE
The system architecture is depicted in figure 2. The
Document Structure holds a set of Abstract Documents that
represent all persistent data in the system. The Abstract
Petri Net is the part that represents the CPN diagrams and
interfaces with the CPN simulator. The simulator runs as a
separate process and is not covered in this description. The
Display Structure is used for rendering the document
structure and for hit detection. The Input Structure manages
the interaction instruments that edit the documents.

The Document Structure
Abstract documents represent the persistent data of the
system, including the diagrams being loaded, the tools and
tool palettes, and the configuration of the workspace. This
structure must be both extensible and efficient. The file
format for storing the data in abstract documents is XML.

An abstract document is a collection of typed nodes. Since a
common operation is to enumerate all the nodes of a type T

Input

Structure

Document

Structure

Display

Structure

Abstract

Petri Net

hit detection

edit

show

notify

Figure 2: Main components of the architecture

Render

Canvas View Item

Composite

Scene
* *

*
* *

*

Figure 3: Class diagram of the display structure

or any of its subtypes, an abstract document dynamically
builds a representation of the hierarchy of the types of the
nodes it contains. Each node is stored in a list attached to
its type node. Objects of type T are enumerated by walking
down the tree rooted at the node representing type T and
enumerating all the nodes attached to it and its sub-nodes.

Nodes in abstract documents can be organized in a graph by
creating typed associations among them. The graph can
then be traversed in a number of ways. Any other structure
could be superimposed on a document. For example, a
spatial index such as in Pad++ [4] could be used to
optimize access by the display structure.

Abstract documents generate notifications when nodes are
added, removed or changed. The observers of these
notifications are the items of the display structure described
below as well as other nodes in the document structure. For
example, an arc needs to know when its place or transition
is moved or destroyed.

Abstract documents are used to represent interface elements
such as pages, binders, tool palettes and marking menus.
This means that instruments are first class objects that can
be stored in XML files and edited like any other object.
This also supports the customizability of the interface.

The Display Structure
The role of the display structure is to represent what is on
the screen. It is used both by the rendering algorithm to
update the screen and by the input structure for hit
detection. The display structure is a special scene graph,
similar to those found in 3D graphics toolkits such as
Inventor [26]. Typically, a 3D scene graph is a tree or DAG
(direct acyclic graph) of nodes. Some nodes represent state
changes, e.g., set the current color, while others represent
geometry information, e.g., draw a cube. Scene graphs tend
to be large and not optimized for rendering. Their structure
reflects the needs of the application rather than those of the
rendering algorithm.

Our display structure (figure 3) is slightly more abstract
than traditional scene graphs because we separate the
document structure from the display structure. Therefore the
document structure can be organized to suit the needs of the
application while the display structure can be optimized for
rendering and hit detection.

The root of the structure is a Canvas, representing the
whole screen. The Canvas contains an ordered set of Views,
stacked from back to front. Views correspond roughly to
windows in traditional window systems. Three special
views are always present: a background view (behind any
other view), a foreground view and an overlay view (both in
front of any other view). The overlay view takes advantage
of hardware overlay planes, when available, otherwise it is
the same as the foreground view. It contains mouse and
trackball cursors and other lexical feedback.

Each view may contain other views, for grouping. Unlike
hierarchical window systems, a sub-view is not enclosed in
(and clipped to) its parent view, unless the parent view has
clipping enabled. Views can be semi-transparent, i.e. the
views underneath them may show through, and they can
have any shape. This is how we support toolglasses.

The contents of a View is one or more Scenes, which are
stacked like overlapping layers as in, e.g., Xtv [3] or the
multi-layer model [10]. The Scene is not necessarily
enclosed in (and clipped to) its view, unless the view has
clipping enabled. We use different scenes to represent a
single document in order to control which parts of the
document structure is visible in a page, such as:
• main layer: places, transitions and arcs, no textual

inscriptions except the names of places and transitions;
• text layer: all text except names of places and transitions;
• guidelines: magnetic guidelines for aligning objects;
• simulation: tokens and messages related to the simulation
• annotations: error messages, help tips, etc.

A Scene can be shared among multiple Views. For
example, two pages may display the same diagram by
sharing the main layer and the text layer. One page may
show the guidelines layer while the other displays the
simulation layer, and each page may use a different scale.

Finally, the contents of a Scene is a set of Items. The Items
can be organized in a list, a tree or a DAG. Items are meant
to be lightweight objects: they typically contain a reference
to the node of the document structure that they represent,
and some information used solely by the redisplay and hit
detection algorithms. Since an observer design pattern is
used to notify the display structure of changes in the
document structure, multiple items can reference the same
document node. This supports multiple graphical
representations (as opposed to multiple views) of the same
document. For example, a CPN diagram can be shown as a

instr.prepare(target)

Idle

Empty Tool

Waiting

Active

startTool/

chooseInstr()

devEvent/

instr.handleEvent()

timeout/

setInstr(move)

pick(tool)

drop(tool)
finish

startMenu/

activateMenu(target)

devEvent/

instr.activate()

Figure 4: State machine for each hand

graph in one page and as a list of objects in another page by
using two scenes and two sets of items referencing the same
nodes in the abstract document, one for each representation.

The Input Structure
In most modern toolkits, input management is based on an
event-driven model where input events are dispatched to
widgets based on their location or some global state.
Widgets respond to events by invoking callbacks. Callbacks
are known to complicate programming [23] because they
create dependencies in the code that are not reflected in its
structure.

Our input structure is based on the Instrumental Interaction
model [2]. An interaction instrument is the association of a
physical part (the input device) and a logical part (the
representation on the screen). An instrument operates on a
node of the document structure called the target. When
receiving input events, an instrument provides feedback by
updating its on-screen representation and sends commands
to its target. The target responds to these commands by
updating its own state.

In the widget model, objects that want to respond to an
interaction with a widget need to set callbacks on that
widget. In our model, the instruments select a target and
send commands to it. This makes it easy to create new
instruments that operate on existing objects without
changing them. For example, it took less than two hours to
create a help instrument that works with any object in the
interface (including other instruments) and that is available
from contextual menus as well as in a tool palette.

Some instruments are generic. A generic instrument
contains "concrete" instruments that represent
implementations of the generic instrument for different
target types. When a generic instrument is activated, it
looks at the target object type and activates the concrete
instrument that corresponds to that type. For example the
move instrument is a generic instrument, with many
concrete instruments for moving places, transitions, bend
points of an arc, inscriptions, magnetic guidelines, pages,
binders, entries in the index, etc.

The representation of an instrument is itself an abstract (but
usually very simple) document. As explained before, this
makes it easy to edit instruments and load them from a file.
It also means that instruments can themselves be the targets
of other instruments. This is used to support interactive
customization of the interface. For example, a move
instrument can be used to drag a tool from one palette to
another. Finally, instruments, like other documents, can
have multiple graphical representations. This allows the
same instrument to be used in a palette and a menu.

Several instruments may be ready for use at any one time.
In our design, the user has instant access to up to five
instruments at a time:
• the tool selected in a palette and held in the right hand;
• the move/pan tool accessible with a long click with the

right hand, or with a short click when no tool is selected;

• the marking menu accessible with the right mouse button
• the toolglass that can be moved with the left hand and

clicked-through with the right hand;
• the resize/zoom tool accessible by bi-manual interaction

(left button press on trackball then click and drag mouse).

The input manager uses two state machines to manage the
activation of instruments, one for each hand (figure 4). The
transitions of the state machine are abstract events generated
by the input devices or the instrument. The Idle state has
two sub-states, Empty and Tool, describing whether a tool
has been selected (right hand) or a toolglass has been picked
up (left hand). Clicking the right mouse button generates a
startMenu event and goes into the Active state. Clicking
the left button on the mouse or trackball generates a
startTool event. According to the context, an instrument
and target are selected (chooseInstr), the state machine enters
the Waiting state and the instrument is informed that it may
be activated (prepare). If a timeout occurs, a long click has
been detected and the move instrument replaces the
previously-selected instrument. Other events cause the
machine to enter the Active state, where the instrument
receives all events. It interacts with its target by sending it
commands. Commands are first-class objects that can be
stored in a history, done, undone, and redone. Executing a
command normally results in some edit of the document
structure, which will be reflected on the screen at the next
redisplay. At some point the instrument generates a finish
event and the state machine is reset.

Since there are two state machines, one for each hand, it is
possible to execute parallel actions, e.g., moving an object
with the right hand while panning the contents of a page
with the left hand. For interactions that involve both hands,
such as resizing and zooming, one state machine sets the
state of the other to Active (if it is Idle) and passes it its
instrument and target. The two state machines therefore
send their respective events to the same instrument. A
future version of the tool will support single-display
groupware (see, e.g., MMM [8] or KidPad [6]) by assigning
one state machine per user hand.

USING OPENGL FOR RENDERING
We decided to use OpenGL [27] as our rendering engine for
several reasons. First, the performance of 3D accelerated
graphics is increasing faster than Moore's law, thanks to
applications such as video games driving the market, and
more and more of the rendering costs are off-loaded to the
graphics hardware, saving CPU cycles. Second, OpenGL is

a standard API, implemented by many vendors on the three
main platforms in use today: Windows, MacOS and Unix.
Third, OpenGL has a sophisticated graphics model that
supports transparency, lighting and texturing, opening the
door to advanced visual effects.

OpenGL can be seen as a state machine that processes two
types of requests through a rendering pipeline: geometry
requests are transformed into pixel values in a frame buffer,
and state requests affect the state of the rendering pipeline.
The rendering pipeline may be partially or completely
implemented in hardware, dramatically improving its
performance. Using OpenGL for rendering complex 2D
scenes has some important implications. First, we cannot
use the host window system to implement the windows in
our interface because toolglasses and mark-based interaction
require drawing outside the document windows. Second, the
OpenGL API is designed for applications that redisplay the
whole frame buffer whenever a change is made. This is
because, in 3D, even a small change in the position of an
object (e.g. a light or the camera) changes most of the
display. In addition, graphics hardware uses double-buffering
to avoid flicker: the application displays the frame in the
back-buffer while the front-buffer is being computed, then
swaps the front and back buffers. No hypothesis can be
made in general on the content of the back buffer after the
swap, so the application must redraw it from scratch.

These characteristics led us to a radical decision: we run the
application in one large OpenGL window and implement
our own windowing system inside that host window, called
the screen; the rendering algorithm redisplays the whole
screen at each frame. Unlike all commercial 2D applications
and toolkits and most of the research ones, we do not
implement an incremental redisplay algorithm, and we do
not use the host window system. This dramatically
simplifies the implementation of the rendering structure. As
shown in the performance data below, this approach proved
to work, and increase in graphics hardware performance will
make it more and more valid. It also means that interaction
is always smooth, whether the user just types in some text
or moves pages around while the simulation is running.
The rest of this section explains the most important aspects
of the rendering and hit detection algorithms.

Windowing and Clipping
Traditional window systems clip objects to their parent
window so they do not extend outside of it. OpenGL does
not provide windows so the rendering algorithm
implements its own clipping. We review three clipping
methods and present the one we have created.

Analytical clipping computes the visible part of each
object. This is often impractical, and graphics hardware is
of little help, if any, to make it efficient. A crude form of
analytical clipping consists in eliminating the objects that
are not visible at all, e.g. with a bounding box test, and use
another clipping technique for the objects that might be
visible. In our case, this could be used to insert in the
display structure only those nodes that may be visible. This
is not currently implemented in our system.

Using the depth buffer: The depth buffer is used for hidden-
surface removal in 3D applications and is implemented in
hardware on all recent graphics cards. It records the depth
value (z coordinate) of each pixel in the frame buffer so that
it can decide whether a new pixel is visible or not. Clipping
can be achieved with the depth buffer by drawing a shape
consisting of the whole screen with a hole for the window
at z=z0 and all the objects inside the window at z < z0. This
is inefficient because drawing large areas is expensive and it
makes it hard to use the depth buffer for anything else.

Scissoring is a stage in the OpenGL rendering pipeline
where the graphics primitives are clipped against a rectangle
parallel to the axes. This technique is very efficient, but
only applicable when the clipping shape is a rectangle.

Using the stencil buffer: The stencil buffer is less common
than the depth buffer on current hardware, but is available
on all middle and high-end graphics card. The stencil buffer
holds a value for each pixel of the frame buffer. When
stenciling is enabled, each pixel is tested against the stencil
buffer just before going through the depth test. For each
pixel p(x,y), the stencil test compares the value s(x,y) in
the stencil buffer with a reference value r. Depending on the
result of the comparison s(x,y) TEST r, the pixel passes the
stencil buffer or is not drawn. In addition, depending on the
result of the test, the content of the stencil buffer may be
changed according to an operation O P : It can be
incremented, decremented, or set to the reference value r.

To implement clipping, we assign a unique ID to each
clipping shape and we draw them in the stencil buffer with
their respective IDs. We call the resulting stencil buffer a
clip buffer. The algorithm is as follows:

clear the stencil buffer with value 0
id <- max
enable stencil test with TEST="<" and OP="set"
for each clipping shape from front to back

set stencil reference to r=id
draw the clipping shape
id <- id - 1

When the shape with ID id is drawn, the only pixels that
pass the stencil test are those for which s(x,y) < id. Since
previous shapes have been drawn with a greater ID, only the
pixels with value 0, i.e. the background, will pass the test.
In other words, only the visible part of the shape will pass
the stencil test and will be drawn. And since only the pixels
that pass the test update the stencil buffer, the new ID will
be written in the stencil buffer only where the shape is
visible. This seems convoluted, but the only way to change
the content of the stencil buffer is by drawing pixels that
pass the stencil test.

At the end of the above algorithm, the visible part of each
clipping shape is "painted" with that shape's ID in the clip
buffer. To clip an object to a shape with ID id, stenciling
must be enabled with a test s(x,y)=id before the object is
drawn. In order to minimize the number of changes to the
stencil reference value, all the objects clipped by the same
shape should be displayed together.

Figure 5: Using a gradient fill to contrast objects (left);
Hard shadow: opaque (middle left) and transparent
(middle right) ; Transparent soft shadow (right)

 (1) (2) (3) (1) (2) (3)

Figure 6: Scaling (2) vs. re-generating a font (3) when
zooming textured text (left) and outline text (right)

Note that the above algorithm also draws the clipping
shapes in the frame buffer, which would have to be done
with the other techniques as well, so its cost is minimal.
Also, recreating the clip buffer is unnecessary as long as the
clipping shapes do not change. Finally, the above
algorithm also works when the shapes are drawn in any
order, provided that they have been assigned decreasing IDs
from front to back. Since a stencil buffer is typically 4 to 8
bits deep, the maximum number of clipping shapes that can
be simultaneously dealt with is between 15 and 255. It is
possible to support an arbitrary number of clipping shapes
by drawing them and their contents by batches and clearing
the stencil buffer between each batch.

Two extensions to the above clipping algorithm are
necessary to support semi-transparent clipping shapes and
hierarchical clipping shapes. Transparency will be discussed
in the next subsection. To implement hierarchical clipping
shapes, we assign the IDs so that the ID of a shape is
greater than the ID of each of its sub-shapes and each of the
shapes behind it. This is easily accomplished by a preorder
traversal of the tree of shapes. Drawing the clip buffer is
accomplished by a post-order traversal so that each clipping
shape is drawn before it's sub-shapes, from front to back.

Displaying text and graphics
OpenGL is designed for 3D graphics and is specially
optimized for displaying large numbers of small convex
polygons (triangles or convex quads). This can be quite
challenging for displaying the type of graphics found in 2D
applications. For example, support for drawing lines is
minimal, and quite flaky on some graphics cards, and there
is no support for drawing text.

We have developed a library of simple 2D shapes, including
arbitrary polygons and polylines with straight and Bezier
segments, arrows, and ellipses. Each shape has a thickness
and a different color and transparency can be specified for the
center and the border of the shape, resulting in a gradient fill
(figure 5). Each shape can be drawn in fill, border or shadow
style. Fill style draws the regular shape, border style draws
its outline (the thickness of the outline can be specified),
and shadow style draws a soft shadow of the shape (the
offset and transparency of the shadow can be specified).

Soft shadows are particularly effective to convey the
impression of overlapping objects. We use them for the
borders of the pages and binders and as feedback when an
object is moved. Soft shadows are much more convincing
than hard shadows, but harder to compute. Computing exact
soft shadows requires a convolution operation [27] between
the shape of the light and the shape generating the shadow.

This is expensive because very few graphics cards
implement convolution in hardware. We use an analytical
approximation of soft shadows that corresponds to a circular
light source (figure 5) by computing a shape that is a fixed
distance from the reference path.

The three approaches to displaying text include: bitmaps,
outlines and textures. We use outlines and textures,
depending on the point size of the font: using textures gives
better results but uses up too much texture memory for
larger point sizes, and the difference in the quality of
rendering between textures and outlines is hardly noticeable
for larger point sizes. We use the Freetype engine
(http://www.freetype.org) to generate both the outlines and
the anti-aliased bitmaps of any TrueType font. Outlines are
turned into sets of triangles by a tessellation algorithm,
while bitmaps are turned into textures. In both cases, each
character is stored in an OpenGL display list, i.e. a sequence
of OpenGL requests accessible through a single call.

Text rendering dramatically affects the overall performance
of the rendering algorithm. On most graphics hardware,
enabling and disabling texturing is very expensive, and
swapping textures in and out is even more expensive. We
use caching and grouping to optimize the rendering of text:
several textures are kept in memory to minimize swapping
textures in and out; text items that use the same font are
drawn together when possible. When using textures, the
text looks better if the font has been rendered by the font
engine at the apparent point size, i.e. the actual point size
multiplied by the zooming factor. This is because TrueType
fonts contain hints to improve the readability of the
characters at small point sizes. Since generating a new font
is fairly expensive (1 to 2 seconds), it is not done during
zooming operations. Instead, text is scaled geometrically.
At the end of the interaction, the fonts are re-generated and
the text is redisplayed (figure 6). We plan to implement a
font cache on disk to speed up this operation.

The drawing model for 2D graphics is often described as
2D1/2: objects have a 2D geometry but have a rank order to
determine which one is in front when they overlap.
Rendering this type of scene can be done with the
traditional painter algorithm by displaying the objects from
back to front. With a 3D graphics model, we can take
advantage of the depth-buffer to display objects in any order
and yet get the correct result. All we need to do is assign a
z-value to each object consistent with its rank. If the scene
contains semi-transparent objects, e.g., the soft shadows
described above, the drawing order is more constrained: each
semi-transparent object must be drawn after any object it
overlaps. In addition, if semi-transparent objects overlap, it

is better to draw them from back to front, although the
difference is often hardly noticeable. Finally, the depth-
buffer must not be modified when transparent objects are
drawn, but the depth-test must be enabled so that the semi-
transparent objects that are behind opaque objects are
rendered correctly. The rendering algorithm is:

draw all opaque objects in any order
if there is at least one semi-transparent object

disable depth-buffer writes
draw all semi-transparent objects,

preferably from back to front
enable depth-buffer writes

Optimizing redisplay
As noted above, the depth-buffer lets us draw the objects in
a scene in any order, so we can pick an order that optimizes
performance. The problem is that the best order may depend
on the graphics hardware. On current graphics hardware,
some state change requests are very expensive. For
example, on our reference platform, enabling and disabling
texture mapping for each character, as opposed to each
string, degrades performance by a factor of 2. Therefore, it
is preferable to draw objects that use textures together, and
it is preferable to draw objects that use the same texture
(i.e. the same font at the same apparent point size) together.
So far we have only implemented these optimizations in
the display structure rendering on a per-view basis.

Another way to improve performance is to use display lists.
A display list stores an arbitrary sequence of OpenGL
requests and can be called with a single request. A display
list can call another display list, so the structure of display
lists is a tree or DAG. In the current implementation, we do
not take advantage of display lists except for drawing text.
The performance evaluation below shows that up to 50% of
the redisplay time is spent creating a large display list that
represents the whole screen. By breaking this list into a
hierarchy of smaller ones, only the display lists that are
affected by a change in the document structure need to be
rebuilt. Since most interactions change only a few nodes in
the document structure and therefore impact very few items
in the display structure, this strategy should reduce the time
to rebuild the display lists to almost zero, therefore
doubling the performance.

The last optimization technique we have implemented is the
use of the overlay buffer for lexical feedback. The overlay
buffer is a separate frame buffer that is superimposed over
the main frame buffer by the video system. Overlay buffers
are not always available and when they are, they have a
limited number of planes (from 2 to 8). When the overlay
buffer is available, we use it for displaying the mouse and
trackball cursors and the feedback of the ink when using
gestures to select an entry in a marking menu. This saves
redisplays of the main frame buffer. Otherwise, the lexical
feedback is displayed in the main frame buffer.

Hit detection
The display structure is used both for rendering and for hit
detection, i.e. to determine which object is at a given
position on the screen (typically the cursor position).

Application frameworks and user interface toolkits
traditionally implement hit detection by walking through
data structures to find out, analytically, which object is
under the given position. Indeed, we could have
implemented the same technique since we have all the
relevant information in the display an document structures.
However we decided to use an alternative approach based on
OpenGL's select mode. When the rendering pipeline is in
select mode, it does not draw into the frame buffer. Instead,
it constructs and returns a select buffer that contains the
information about all the object that have been drawn and
that intersect the viewing rectangle. By setting the viewing
rectangle to a tiny window around the cursor position, we
can find which objects are at or near the cursor. To optimize
this technique, we use a simplified drawing method for the
items when in select mode. This method does not set the
attributes such as color and texture that do not affect the
result of picking. This significantly speeds-up the redisplay.

One problem with using select mode is that hit detection
occurs before the stencil and depth tests in the graphics
pipeline. As a result, the invisible part of a clipped object
may be reported in the select buffer, and all objects at a
given position, not just the topmost one, are reported. To
address the first problem, we use two passes: the first pass
renders the clipping shapes only so we know which shape
(if any) was hit; the second pass renders only the objects
contained in that shape or, if no shape was hit, the objects
that are outside any clipping shape. This actually reduces
the number of rendered objects and speeds up hit detection.
The second problem is easy to solve since the z-coordinate
of the objects is stored by OpenGL in the select buffer, so
we just need to consider the object with the smallest z.
Knowing all the objects at a given position in the hit buffer
is actually useful when clicking through a toolglass since it
allows to identify the tool and the clicked-through object.

PERFORMANCE EVALUATION
The data reported in this section corresponds to version 1 of
CPN2000, which is fully functional and has been in use by
a small group of members of the CPN group for real work
for several months. Our reference platform is a HP/Kayak
XW with a 500 MHz Pentium II and a Visualize FX6
graphics card running Windows NT4. We also use a similar
PC with a Diamond FireGL 1 graphics card and a SGI
Visual PC 320 for testing. CPN2000 also runs on Unix
(SGI O2 and Octane) and Macintosh.

The system is implemented in Beta [19], a high-level,
compiled, strongly-typed object-oriented language based on
a single construct, the pattern, that unifies classes, objects
and methods. Beta is taught to all the students at University
of Aarhus, therefore all the programmers in the project were
fluent in Beta. However, most of them had no prior
knowledge of OpenGL, computer graphics, or
implementing highly interactive applications. The
implementation consists of 40000 lines of Beta code.

We have conducted a preliminary evaluation of the memory
footprint and display rates of the system. However, we
must stress that virtually no optimization has been carried

out on this version. The memory footprint is typically
between 10 and 12Mb when a medium-size CPN model is
loaded, compared to 7.5Mb for the former Design/CPN
tool. A break-down of memory usage shows that the
Document, Display and Input structures use only 3Mb of
the total, plus 1Mb for the texture cache. 2Mb are used by
the Beta runtime for garbage collection, and the remaining
4Mb are used by OpenGL and the rest of the Beta run-time.
While loading fonts, the Freetype engine may use up to an
additional 10Mb. The above-mentioned font cache could
save most of that overhead.

The table below summarizes the number of graphical
objects (polygons and characters) and the frame rates for
typical situations on the reference platform. The size of the
display window is 1280x1024, and all measurements are
made with a semi-transparent toolglass on the screen.

Content of Display #objects fps
Empty workspace 91 50
One binder with five pages 559 22
Two binders with five pages each 941 15
Five binders with one page each 2714 12
Five binders with text layer disabled 702 16

A frame rate of 15 fps (frames per second) or more is
smooth enough for our interaction techniques, including
moving pages and toolglasses, and panning or zooming
their content. A close analysis of the profiling information
shows that 50% of redisplay time is currently spent re-
building the global display list that holds everything on the
screen. (See the solution to this problem presented above.)
Also, profiling data shows that displaying text is time-
consuming, as shown by the last two lines in the table
above. But our strategy of full-screen redisplay of a large
OpenGL window is clearly successful and the increase in
performance of graphics cards will only make things better:
the FireGL1 came out less than one year after the Visualize
FX6, costs a fraction of its price and is 30% faster!

SUMMARY AND DISCUSSION
The key property of the CPN2000 architecture is its
flexibility. The Document Structure is a "soup" of nodes on
top of which the application can create its own structure. It
unifies the representation of application data and user
interface elements, allowing the interaction instruments and
the rendering algorithm to work with both. The Display
Structure supports a rich graphics model, including
multiple views, multiple layers, transparency, arbitrary
clipping shapes, high-quality text and soft shadows. The
rendering algorithm already exhibits high frame rates but
still can be improved. Finally, the Input Structure
implements a complex combination of interaction
techniques and can easily support multiple simultaneous
users (single-display groupware). Moreover, interaction
instruments can be created independently of the objects they
operate on, in contrast with widget-based toolkits.

Even though CPN2000 is not a toolkit, it can be compared
with the current state of the art in user interface toolkits.
Jazz [5] is based on a scene-graph technology close to ours

although, like Inventor [26], it does not clearly separate the
document and display structures. Unlike InterViews [20],
Pad++ [4] and Amulet [22], we do not implement an
incremental redisplay but use hardware accelerated graphics
to render full frames at each redisplay. Toolglasses and
Magic Lenses have been implemented in different
environments (Cedar [9], X [23], and SubArctic [13]) with
different methods. We use transparency for Toolglasses;
Magic Lenses are not supported yet but can be implemented
within our display structure with a variant of the Model-In
Model-Out technique [9].

Amulet [22] and SubArctic [13] rely heavily on one-way
constraints to describe the dependencies in the system while
we use only a simple observer pattern to propagate changes
in the document structure. We will need a constraint solver
for layout to support more general magnetic guidelines, but
we believe that a specialized solver will be easier to
implement and more efficient than a general one.

CPN2000 exhibits a unique combination of interaction
techniques, an area with little previous work, to our
knowledge (see [17] for an example). KidPad [6] supports
multiple input devices with combinations of actions similar
to our bi-manual techniques. Hinckley uses a single Petri
net [11] to describe two-handed input, while we combine
simpler state machines. Myers' interactor model [24] was
designed for widget-based toolkits, and has not been used for
bi-manual interaction or toolglasses. We discovered that
combining interaction techniques was tricky and cannot be
done in general by simply juxtaposing them. Therefore
additional work is necessary to facilitate such combinations.

Our architecture model is quite different from MVC [15].
Even though the documents can be seen as models, the
display structure as a set of views and the interaction
instruments as controllers, there is no equivalent to the
MVC triplets that constitute a traditional Smalltalk
application. This is because the associations between these
three structures change over time, while MVC triplets are
mostly static. For example, the link between an instrument
and its target node in the document structure changes each
time the instrument is activated. This approach eliminates
the need for callbacks by localizing the code that manages
an interaction within the interaction instruments. This
dramatically simplifies the development of the system.

CONCLUSION AND FUTURE WORK
We have described the architecture and implementation of
CPN2000 and shown how it supports a combination of
advanced interaction techniques in a post-WIMP interface.
Our experience with the framework during the multiple
iterations of the design process, makes us confident that it
can be reused to create graphical interfaces based on the
same or a different set of interaction techniques.

The next step will be to turn this framework into a separate
toolkit. This toolkit must include a large collection of
traditional and post-WIMP interaction techniques, additional
services such as animation and layout, and a richer set of
graphical objects and rendering effects. More challenging is

the execution of several applications within the same
OpenGL context, e.g., to mix CPN diagrams, text
documents and spreadsheets in the workspace and support
instruments that work across these document types. This
probably requires a client-server architecture similar to that
of X Windows but where the server would provide high-
level interaction services, not just windowing and graphics.
This would be a significant step towards a document-
centered environment and an alternative to current desktops.

ACKNOWLEDGMENTS
CPN2000 is a team effort: Our thanks to Kurt Jensen,
Søren Christensen, Wendy Mackay, Peter Andersen, Paul
Janecek, Mads Jensen, Kasper Lund, Kjeld Mortensen,
Stephanie Munck, Katrine Ravn and Anne Ratzer for their
work on the design and implementation of the system and
their enthusiasm for the project. We are also indebted to the
members of the CPN group at the University of Aarhus for
their participation in the design and evaluation activities.
Project URL: http://www.daimi.au.dk/CPnets/CPN2000.

This work is supported by the University of Aarhus, the
Danish Centre for IT Research (CIT), Hewlett-Packard and
Microsoft Research.

REFERENCES
1 . Beaudouin-Lafon, M. & Mackay, W. Reification,

Polymorphism and Reuse: Three Principles for Designing
Visual Interfaces . In Proc. Conference on Advanced Visual
Interfaces, AVI 2000, Palermo, Italy, May 2000, ACM
Press, 2000, p.102-109.

2 . Beaudouin-Lafon, M. Instrumental Interaction: An
Interaction Model for Designing Post-WIMP User
Interfaces. In Proc. Human Factors in Computing Systems,
CHI'2000, ACM Press, 2000.

3 . Beaudouin-Lafon, M., Berteaud, Y., Chatty, S. Creating
direct manipulation applications with Xtv. Proc. European
X Window System Conference, EX'90, London, Nov 1990.

4 . Bederson, B. & Meyer, J. Implementing a Zooming
Interface: Experience Building Pad++. Software Practice
and Experience, 28(10):1101-1135, August 1998.

5 . Bederson, B. B. & McAlister, B. Jazz: An Extensible
2D+Zooming Graphics Toolkit in Java. Tech Report
HCIL-99-07, Computer Science Department, University of
Maryland, College Park, MD.

6 . Benford, S., et al. Designing Storytelling Technologies
to Encourage Collaboration Between Young Children. In
Proc. ACM Human Factors in Computing Systems, CHI
2000, ACM Press, 2000, p. 556-563.

7 . Bier, E. & Stone, M. Snap-dragging. In Proc. ACM
SIGGRAPH, ACM Press, 1986, 20(4):233-240.

8 . Bier, E. & Freeman, S. MMM: A User Interface
Architecture for Shared Editors on a Single Screen. In Proc.
ACM Symposium on User Interface Software and
Technology, UIST'91, ACM Press, p. 109-118.

9 . Bier, E., Stone, M., Pier, K., Buxton, W., De Rose, T.
Toolglass and Magic Lenses : the See-Through Interface.
In Proc. ACM SIGGRAPH, ACM Press, 1993, p. 73-80.

10. Fekete, J-D. & Beaudouin-Lafon, M. Using the Multi-
layer Model for Building Interactive Graphical

Applications. In Proc. ACM Symposium on User Interface
Software and Technology, UIST'96, ACM Press, p. 79-86.

11. Hinckley, K. , Czerwinski, M., Sinclair, M. Interaction
and Modeling Techniques for Desktop Two-Handed Input.
In Proc. ACM Symposium on User Interface Software and
Technology, UIST'98, ACM Press, p. 49-58.

12. Hashinoto, O & Myers, B. Graphical Styles for Building
User Interfaces by Demonstration. In Proc. ACM
Symposium on User Interface Software and Technology,
UIST'92, ACM Press, p. 117-124.

13. Hudson, S. & Smith, I. Ultra-Lightweight Constraints. In
Proc. ACM Symposium on User Interface Software and
Technology, UIST'96, ACM Press, p. 147-155.

14. Jensen, K. Coloured Petri Nets: Basic Concepts (Vol. 1,
1992), Analysis Methods (Vol. 2, 1994), Practical Use
(Vol. 3, 1997). Monographs in Theoretical Computer
Science. Springer-Verlag, 1992-97.

15. Krasner, G. & Pope, S. A Description of the Model-View-
Controller User Interface Paradigm in the Smalltalk-80
System. J.Object-Oriented Programming 1(3):26-49,1988

16. Kurtenbach, G. & Buxton, W. User Learning and
Performance with Marking Menus. In Proc. Human Factors
in Computing Systems, CHI'94, ACM, 1994, p. 258-264.

17. Kurtenbach, G. and Buxton, W. Issues in Combining
Marking and Direct Manipulation Techniques. In Proc.
ACM Symposium on User Interface Software and
Technology, UIST'91, ACM Press, p. 137-144.

18. Kurtenbach, G., Fitzmaurice, G., Baudel, T., Buxton. W.
The Design of a GUI Paradigm based on Tablets, Two-
hands, and Transparency. In Proc. ACM Human Factors in
Computing Systems, CHI'97, ACM Press, 1997, p. 35-42.

19. Lehrmann Madsen, O., Møller-Pedersen, B. & Nygaard, K.
Object-Oriented Programming in the Beta Programming
Language, Addison-Wesley, 1993.

20. Linton, M., Vlissides, J., Calder, P. Composing User
Interfaces with InterViews. IEEE Computer, 22(2):8-22,
February 1989.

21. Mackay, W., Ratzer, A. & Janecek, P. Video Artifacts for
Design: Bridging the Gap between Abstraction and Detail.
In Proc. ACM Conference on Designing Interactive
Systems, DIS 2000, New York, August 2000, in press.

22. Myers, B. et al. The Amulet Environment: New Models for
Effective User Interface Software Development. IEEE
Trans. Software Engineering, 23(6):347-365, June 1997.

23. Myers, B. Separating Application Code from Toolkits:
Eliminating the Spaghetti of Call-Backs. In Proc. ACM
Symposium on User Interface Software and Technology,
UIST'91, ACM Press, p. 211-220.

24. Myers, B.A. A New Model for Handling Input. ACM Trans.
Information Systems, 8(3):289-320, 1990.

25. Stone, M., Fishkin, K., Bier, E. The Movable Filter as a
User Interface Tool. In Proc. Human Factors in Computing
Systems, CHI '94, ACM Press, 1994, p. 306-312.

26. Strass, P. IRIS Inventor, a 3D Graphics Toolkit. In Proc.
ACM Conference on Object-Oriented Programming,
Systems, Languages and Applications, OOPSLA '93, ACM
Press, 1993, p. 192-200.

27. Woo, M., Neider, J. & Davis, T. OpenGL Programming
Guide, Addison-Wesley, 1997.

