
OPENDPI: A TOOLKIT FOR DEVELOPING
DOCUMENT-CENTERED ENVIRONMENTS

Olivier Beaudoux
ESEO, Computer Science Department & Laboratoire de Recherche en Informatique / INRIA Futurs*

4 rue Merlet de la Boulaye, 49009 Angers, France
olivier.beaudoux@eseo.fr

Michel Beaudouin-Lafon
Laboratoire de Recherche en Informatique / INRIA Futurs

Universit́e Paris-Sud, LRI - Bt 490, 91405 Orsay - France
mbl@lri.fr

Keywords: Document centered systems, interaction model, active components, GUI toolkits

Abstract: Documents are ubiquitous in modern desktop environments, yet these environments are based on the notion of
application rather than document. As a result, editing a document often requires juggling with several applica-
tions to edit its different parts. This paper presents OpenDPI, an experimental user-interface toolkit designed
to create document-centered environments, therefore getting rid of the concept of application. OpenDPI relies
on the DPI (Document, Presentation, Instrument) model: documents are visualized through one or more pre-
sentations, and manipulated with interaction instruments. The implementation is based on a component model
that cleanly separates documents from their presentations and from the instruments that edit them. OpenDPI
supports advanced visualization and interaction techniques such as magic lenses and bimanual interaction.
Document sharing is also supported with single display groupware as well as remote shared editing. The pa-
per describes the component model and illustrates the use of the toolkit through concrete examples, including
multiple views and concurrent interaction.

1 INTRODUCTION

1.1 Documents versus Applications

The fact that the document is the main object of in-
terest within interactive workspaces had been identi-
fied 25 years ago : “The document is the heart of the
world, and unifies it” (Johnson et al., 1989). However,
today’s environments are mainly based on the appli-
cation concept where every application is dedicated
to a specific kind of data. Users are thus forced to
juggle between applications in order to edit a single
document. Software publishers react to this fact by
proposing three different and complementary strate-
gies:

1. Building small applications within larger ones –
For example, both Word and PowerPoint (which
are provided within a single software package) in-
clude two different small-applications dedicated to
vectorial drawings.

2. Open architecture based on plug-ins – For exam-
ple, many plug-ins are available for the PhotoShop
application, thus extending its initial functionalities
by following users’ needs.

3. Software suite with common interfaces – For exam-
ple, Photoshop, Illustrator, GoLive and InDesign
applications have a common look and feel to their
graphic interfaces and some common tools, thus re-
sulting in a more natural interaction since swapping
from one application to another is less visible.

These three approaches aim at positioning the docu-
ment in the heart of the interaction rather than the ap-
plication. However, they don’t reach their goals since
users still have to juggle between more than one appli-
cation and document in order to achieve a single task.
They try to make applications less visible by reducing
their gap, but they remain centered on the application
concept.

1.2 Interactions and Documents

The document concept often suggests the data that
documents can contain. However, it could be relevant
to specify the semantic of actions they can handle in
addition to the semantic of their data, such as Web
services which aim at specifying “interfaces” of of-
fered services (W3C, 2001). We have built our model
in this direction : it defines how documents can be
perceived by users and, above all, how users can (in-



Figure 1: Two presentations of a shape
(opendpi.scenarios.Presentations)

ter)act on documents. We provide a model that com-
bines a document model and an interaction model in a
unifying way. In so doing, we offer a generic mecha-
nism which makes data independent from actions that
can be done on this data, and actions independent
from interactions that can induce these actions.

1.3 Structure of this Paper

The second section describes the core component
model of DPI. It explains how this component model
is used to define the three main components D, P, and
I, and how such components communicate with each
other. In the third section, we focus on the benefits
of using a single and generic model for all interac-
tive components by illustrating the resulting simplic-
ity of their implementation. In the fourth section, we
present the replication point concept as a general con-
cept that we use to provide basic groupware capabili-
ties and a full alternate rendering engine. We compare
the DPI model with other complementary approaches
and works in the fifth section. Finally, the implemen-
tation of the model in the OpenDPI toolkit and the
perspective of our work is discussed in the conclu-
sion.

2 THE CORE COMPONENT
MODEL

In the DPI (Document, Presentation, Instrument)
conceptual model, documents are visualized through
one or more presentations, and manipulated with
interaction instruments (Beaudoux and Beaudouin-
Lafon, 2001). The conceptual model defines the
structures of these three components and the way they
communicate. In this paper, we focus on the generic
component model that was used to build the OpenDPI
toolkit that implements the DPI model. By instantiat-
ing this component model, we allow the implementa-
tion of the three D, P and I components.

In order to explain the core component model and
its instantiation for the D, P and I components, we

use a simple example that tackles the main aspects of
our model (figure 1)1. It consists of two presentations
of a single shape (such as a rectangle): the first pre-
sentation displays the shape as a graphical object, and
the second presentation displays its properties within
textual fields.

2.1 Observable State

The state of a component is defined by both its proper
state and its structural state. Theproper statechar-
acterizes the property values of the component. For
example, the shape defines thex, y, width andheight
properties. Moreover, components can be themselves
composed in a hierarchical way, and they thus define
astructural state.

Depending on the context, the changes of compo-
nent states can interest other components. DPI com-
ponents are thus considered asobservableinstances in
the sense of the “observable / observer” design pattern
(Gamma et al., 1994). Each component class defines
a propertyobserver interfaceas the means of observ-
ing its proper state. For example, the shape of our
example defines the following interface:

interface ShapeObserver
extends PropertyObserver {2

void newWidth(double width);
void newHeight(double height);
void newX(double x);
void newY(double y);
// etc.

}
In a complementary way, the structure observer inter-
face, common to all component classes, is the means
of observing the structural state of components. In
order to simplify representation of DPI components,
we extend the UML notation in a way that clearly dis-
plays observable and observer interfaces, and their re-
lation (see figures 2 and 3): a black point depicts the
observable interface of components, and a white point
(respectively a white point combined with the aggre-
gation symbol) depicts a property observer interface
(respectively the structure observer interface) imple-
mented by the observers.

2.2 Applying the Model to
Documents

Documents are structured as trees where each node
is a DPI component. The domain data part of a doc-

1All given examples have been implemented
in classes mentioned in corresponding figures.
They can be tested by downloading OpenDPI at
http://www.eseo.fr/˜obeaudoux/opendpi

2In all this paper, we omit Java keywords public and pro-
tected for compactness.



Shape GeometryData ShapeForm

Text

4

1
has domain

data1
has domain

data

Figure 2: Components involved in the two presentations of
the shape

ument contains components that are observed by as-
sociated presentations. In turn, embedded presenta-
tions also contain node components which are typi-
cally graphic in nature.

The synchronism between presentations and do-
main data within a single document is based on the
observation mechanism. Figure 2 shows how the rect-
angle example is built:

• Domain data of the shape is defined in theGeom-
etryDatacomponent class through the four proper-
tiesxCenter, yCenter, widthandheight.

• The “Drawing” presentation contains one compo-
nent instance of theShapeclass. The shape com-
ponent observes every change in the domain data
through theGeometryDataObserverinterface in
order to update its own state consequently. More-
over, it observers its proper state that can vary
among user’s interactions through the above de-
fined ShapeObserverinterface in order to update
the domain data.

• The “Properties” presentation defines in theShape-
Form component that allows the edition of the do-
main data through fourTextcomponents. The form
observes the domain data in order to refresh text
fields consequently, and the proper state of its text
fields in order to update the domain data.

2.3 Action Producer and Consumer

2.3.1 Specifying Actions

The observation concerns the changes of component
states and thus does not allow communication be-
tween components out of such changes. An action
allows the transmission of a state independent of any
component: it is handled by the system in order to
link actions, from the users to the documents.

The state of an action is defined through a set of
properties. For example, the translate action simply
defines thedXanddYproperties that describe a move-
ment on the x and y axis:

class Translate extends Action {
double dX;
double dY;

double getDX() {return dX;}
void setDX(double dX) { this.dX = dX; }
// same code for dY property...

}
An action class only defines such a state and does not
characterize any behavior related to the action. This
a consequence of the polymorphic nature of actions
(Beaudouin-Lafon and Mackay, 2000): a polymor-
phic action has an imprecise semantic defined by the
action itself, and precise semantics defined by objects
that can consume the action. As a consequence, an
action class does not define in what manner the action
is to be executed or cancelled: this manner is defined
by consumers of actions.

2.3.2 Producer and Consumer Interfaces

The production of an action from a producer compo-
nent to a consumer component follows a cycle defined
through the definition of both producer and consumer
interfaces.

Theconsumer interfaceof an action classA is im-
plemented by all classes of components that define
their ability to consume instances ofA. It consists of
a set of four methods invoked by producers in the fol-
lowing order3:

1. Thecan-method carries out the feasibility test of
the action related to the current context.

2. Whenever the can-method has returned true, thebe-
gin-method is invoked and starts the action.

3. Thedo-method is then invoked and represents the
main loop of the action consumption.

4. Theend-method is finally invoked when the action
have to stop.

For example, the translate action defines the following
consumer interface:

interface TranslateConsumer{
extends Consumer {

boolean canTranslate(Producer p);
void beginTranslate(Producer prodpucer,);
void doTranslate(double dx, double dy);
void endTranslate(Producer p);

}
Theproducer interfaceof an action classA is imple-
mented by all classes of components that define their
ability to produce instances ofA. It specifies amin-
imal contractthat producers must satisfy in order to
be able to produce the action. For example, thepick-
color action defines a producer interface so that the
consumer provides its picked-color to the producer:

interface PickColorProducer extends Producer {
void colorPicked(Color c);

}
3The consumer interface also definedundo, redo and

echomethods that we do not describe in this paper.



Note that, however, most actions does not need to de-
fine an associated producer interface since their mini-
mal contract is empty. For example, thetranslateac-
tion does not defined a dedicated producer interface
since the translation does not need any specific con-
tract in order to be consumed.

In order to clarify the UML representation of DPI
components, we extend our component notation in or-
der to display the producer and consumer interfaces
(see figure 3): a black square depicts the producer in-
terface that qualifies the component which can pro-
duce the action, and a white square depicts the con-
sumer interface that qualifies the component which
can consume the action.

2.3.3 Concurrency

When multiple actions are produced on a component
at the same time, the state of the component may be
modified concurrently. In order to ensure data in-
tegrity, we have introduced themarking of compo-
nents.

The rule of marking is defined as follows: an ac-
tion that modifies a state of the consumer component
can be producedonly if no mark has been set on its
state. As soon as consumers perform such a mark-
ing while they consume actions, the previous rule for-
bids the production of concurrent actions. This is car-
ried out bycan-methods that return false whenever
concerned properties have been already marked. In
the following example, consuming a translation in-
duces the marking of both thex andy properties of
the shape thus forbidding any concurrent action (such
as another translation).

Moreover, the marking mechanism, shortly ex-
plained in this paper, is quite similar to fine grainlock-
ing techniques such as in DistEdit application (Knis-
ter and Prakash, 1990). However, they have signif-
icant differences: locking aims atensuringconsis-
tency of data while marking aims atavoiding con-
currentactions. As a consequence, a mark does not
need to explicitly and strictly forbid subsequent mod-
ification of the marked element (i.e. a set method can
be invoked on a marked property): it only forbits con-
current actions. In addition, a mark does not need to
be associated to a particular owner. These two points
make marking quite easy for programmers.

2.4 Applying the Model to
Instruments

Action chaining from users to documents is based
on the instrumental interaction (Beaudouin-Lafon,
2000). The physical part of instruments detects gestu-
ral actions (or gestures) made by users on human in-
put devices, then the logical part transforms the ges-

Hand
Translate
Detector

translate
gestureHidSensor

"X"

HidSensor
"button"

HidSensor
"Y"

Push
Detector

push
gesture

translate

push

rotate

scale

paint

Shape

Cursor

1

Physical part Logical part

Figure 3: The “hand” instrument

tures in intentional actions (or actions) that are pro-
duced by instruments and consumed by documents.

Figure 3 shows how the producer - consumer model
is used in combination with the observable - observer
model in order to build such a chaining. It illustrates
the production of the translate action by the “hand”
instrument and its consumption by the shape.

In order to be aware of the easiness of our approach,
we explain the figure by analyzing the pieces of code
for both theHandandShapecomponents. TheHand
component is defined as follows:

class Hand extends Tool implements
TranslateProducer,
TranslateGestureConsumer,
PushGestureConsumer

{
Translate translate;
Consumer shape;

void beginPushGesture(Producer p) {
shape = getPickedConsumer(translate);
if (shape != null)

translate.beginAction(shape);
}
void doTranslateGesture(

double dx, double dy) {
super.doTranslateGesture(dx, dy);
if (shape != null) {

translate.setDX(dx);
translate.setDY(dy);
translate.doAction();

}
}
void endPushGesture(Producer p) {

if (shape != null) {
translate.endAction();
shape = null;

}
}

}

The hand instrument is linked to the mouse and ob-
serves the proper states of the mousex, y and but-
ton sensors during its construction (not shown in the
code). This observation is delegated to two gesture



detector components: the translation detector pro-
duces atranslate gesturewhenever thex or y sen-
sor state changes, and the push gesture detector pro-
duces apush gesturewhenever thebutton sensor
state changes. When the push gesture starts (begin-
PushGesturemethod), the hand does apicking that
consists of finding which component located under
the cursorcanconsume the translate action. In the ex-
ample, the picking returns the shape. When the hand
consumes the translate gesture (doTranslateGesture
method), it updates the location of its cursor and in-
vokes the execution of the action on the picked shape.
Finally, when the push gesture stops (endPushGesture
method), the hand terminates the action.

In turn, theShapeclass involved in the consump-
tion phase is defined as follows:

class Shape extends Component
implements TranslateConsumer

{
boolean canTranslate(Producer p) {

return !isMarked(”x”) && !isMarked(”y”);
}
void beginTranslate(Producer p) {

mark(”x”); mark(”y”);
}
void doTranslate(double dx, double dy) {

setLocation(getX() + dx, getY() + dy);
}
void endTranslate(Producer p) {

unmark(”x”); unmark(”y”);
}

}
When the shape consumes a translation, it first mark
the modified properties: such a marking is checked
for by the producer before producing the translate ac-
tion. Then subsequent calls to the do-method are done
by the producer and the shape modifies itsx and y
properties accordingly. Finally, when the translate ac-
tion stops, the shape unmarks the previously marked
properties.

3 BENEFITS OF A GENERIC
MODEL

3.1 Direct Manipulation

The DPI component model allows the creation of
both direct and non-direct manipulation components.
This is a significant difference between standard
GUI toolkits and OpenDPI: traditional GUI toolk-
its are based on the widget model which does not
allow the definition of direct manipulation com-
ponents such as paint-brush, or magnetic guide
(opendpi.scenarios.Magnetism).

Figure 4 displays two painting tools: a paint-brush
(a) and and color-toolglass (b, c) (Bier et al., 1993).

Shape

PaintBrush

pick-color

paintpick-color

paint

(a) Paint-brush
component

(b) Color-toolglass

Hand

ColorToolglass

12

has buttons

click-through paint

Shape

Palette

translate

has content

1

ColorGlassButton

pick-up

paint
pick-color

pick-color

(c) Color-toolglass component

Figure 4: Painting tools (opendpi.scenarios.Toolglass)

Both these tools can produce the pick-color and paint
actions (on any shape component for example). Their
implementations follow strictly the same guidelines
as the ones previously explained for the translate ac-
tion example. The environment of the color-toolglass
is a little more complex but the code remains quite
simple:

1. The palette that contains the toolglass can be trans-
lated around the workspace. It can also be picked-
up by an instrument such as the hand instrument in
order to be used in a bimanual way (in the opposite
case, the toolglass behaves like a usual palette of
colors).

2. The toolglass contains 12 colored buttons that can
consume the click-through action. When the click-
through action is consumed, the button produces
in turn the paint action on the picked graphical
component located above the hand cursor (and thus
above the button).

As we can observe, each of the components involved
in this painting process are interactive components.
This allows the chaining of actions in many differ-
ent ways. For example, since the color glass-button
and the brush are graphics components, they can
be “painted”: by consuming the paint action, they
change their associated color. In the same way, their
color can be picked. Such combinations of painting
and color-picking can be done in many manners by
using any color toolglass or paint-brush. We there-
fore claim that using a common model forall inter-



(a) Two adapters
(opendpi.scenarios.Adapters)

TranslateToRotate
Adapter

rotate
GraphicsHand

translate

Shape Text

(b) Translate-to-rotate adapter component

Figure 5: Adapters (opendpi.scenarios.Adapters)

active objects will help to discover such mixing and
enriching interaction capabilities.

3.2 Genericity of Actions

Tool instruments naturally inherit from the genericity
of actions: they can operate in many contexts. We
have illustrated this point through the translate action
example: the translation can be produced in a com-
mon way on many components and is thus generic.
Moreover, it may be interesting to override its default
behavior defined in theShapeclass. For example,
when a UML component is translated, it may be use-
ful to translate a clone of the component rather than
the original component so that the time-consuming
computation of its linking is done when the interac-
tion ends. We have also experiment the genericity of
the paint action regarding image painting: when an
Imagecomponent consumes the paint action, it ap-
plies a filtering effect so that the painting color is re-
inforced.

3.3 Adapting Actions

In some circumstances, a user may want to apply an
action to a component but does not have any instru-
ment that could produce such an action. Rather than
purchase a new instrument, the user may prefer to add
an adapterto an existing instrument. Figure 5 illus-
trates how a translation→rotation adapter works:

1. The adapter is added to an instrument that can pro-
duce the translate action, e.g. the hand instrument.

2. When the hand instrument produces the translate
action, the adapter transforms the consumed trans-
lation into a produced rotation. The transformation
is based on a simple mathematical operation that
sets theangle property value of the rotate action
proportionally to thedX property of the translate
action.

The following code well illustrates the easiness of its
implementation:

class TranslateToRotateAdapter
extends Component implements
TranslateConsumer, RotateProducer

{
Rotate rotate;
Consumer shape;

boolean canTranslate(Producer p) {
shape =
getPickedConsumer(rotate, getX(), getY());

if (shape != null) return shape.canRotate(p)
else return false;

}
void beginTranslate(Producer p) {

rotate.beginAction(shape);
}
void doTranslate(double dx, double dy) {

rotate.setAngle(dx);
rotate.doAction();

}
void endTranslate(Producer p) {

rotate.endAction();
}

}

After checking for the rotation feasibility, the adapter
just replicates the production cycle from the translate
action to the rotate action. The implementation of
adapters remains so simple that it may be automated
so that users can specify their own adapters (for ex-
ample by setting the mathematical operation such as
the one underlined in the previous code).

Moreover, adapters can be used in order to relax the
marking of components. Figure 5-a shows theSlid-
ingTranslateAdapter(labelled “wizzz”) that trans-
form any concurrent translate actions into sliding-
translate actions by filtering the feasibility method on
the consumer.

3.4 Interoperability through Actions

The DPI component model allows theinteroperabil-
ity of actionsamong applications. For example, the
pick-color action could be done on an application by
an instrument provided by another application. As a
result, a color can be picked from any DPI application
and used to paint an object in any other DPI applica-
tion.

Another well-known interaction that allows the in-
teroperability among applications is the drag’n drop.



1..*

Container
Window

dropTabbedWindow

Tabbed
Window

Hand
dragAndDrop

contains

Figure 6: Drag & drop of tabbed windows
(opendpi.scenarios.DnDPage)

Figure 7: A local replication point
(opendpi.scenarios.Sharing)

However, such an interaction is not the easier one
that GUI toolkits implement. Figure 6 shows that,
from the DPI perspective, this interaction is not more
complex than others. It illustrates how a tabbed win-
dow may be dragged from a container window then
dropped into another container window:

1. The instrument produces thedrag-and-dropaction
on the selected tabbed window. This action con-
sists in taking the window, translating it on the
workspace, and finally dropping it on a targeted
container window.

2. When the drag & drop ends, the tabbed window
produces in turn thedropTabbedWindowaction to
the targeted container window. Note that, through-
out the dragging stage, the picking is used in con-
junction with the feasibility method in order to
check if the drop action can be produced.

4 REPLICATION POINT

A replication pointis an abstract object that, when
attached to two or more (mostly graphical) contain-
ersC1..n, cross-replicates the initial contents ofC1..n

and subsequently dispatches all user actions within a
containerCi to all the other containersCj 6=i. Figure 7
displays a replication point associated to two contain-
ers, a clipping rectangle (on the left) and a clipping
circle (on the right), that share their content (a rectan-
gle, an ellipse ant a text). While the user translates the
ellipse within the right container, the replication point
replicates the translation to the left container. Since
the left container has enabled the echoing mode (see
next section), the translate action is played through an

echo that consists in tagging the ellipse with the name
of the action when the action begins, then playing a
translation animation when the actions ends.

4.1 Application to Groupware

The remote replication point is a replication point
which is identified by its unique IP group address. It
defines the way of synchronizing shared components
among sharing containers. This synchronization in-
duces a strong spatial coupling of sharing contain-
ers since they have exactly the same contents, and a
strong temporal coupling since these contents remain
identical at any time.

In order to extend this synchronization behavior,
we introduce the concept of abehavior pointthat
can be attached to a component contained in or equal
to a container attached to a replication point. Such
behavior points define extended behaviors by relax-
ing the temporal and/or spatial coupling, thus result-
ing in a flexible coupling as defined in (Dewan and
Choudhary, 1992). For example, we have defined
anasynchronous pointthat relaxes the temporal cou-
pling by allowing users to work asynchronously on
the component from which the asynchronous point is
attached. In the same way, we provide awareness be-
havior points that allow the insertion of specific infor-
mation in sharing containers though this information
is not necessarily the same for each sharing container.
Such behavior points thus relax the spatial coupling.
For example, theechoing pointallows the perception
of a remote action produced inside the component
from which it is attached to through an echo of the ac-
tion (Beaudouin-Lafon and Karsenty, 1992) (see fig-
ure 7), rather than through the original execution the
action. Such an echo often consists of an animation
that “summarizes” the result of the action, thus avoid-
ing the need to display all the disturbing details of
remote actions.

It is important to note that the implementation of re-
mote sharing point does not provide any concurrency
control yet. At this time, the remote replication point
works locally between two or more separated appli-
cation instances (opendpi.scenarios.RemoteSharing).

4.2 Application to Alternate
Rendering

Figure 8 illustrates the use of replication points for
magnifying glasses, magic lenses (Bier et al., 1993),
and radar views. The radar view implementation is
trivial: a local replication point is both attached to
the radar rectangle and to the ”window” layer of the
scene. The magnifying glass also uses a local repli-
cation both attached to the glass content and to the
main layer of the scene. The magic lens uses the same



Figure 8: Radar view and (magic) lenses
(opendpi.scenarios.Rendering)

technique but the replicated main layer is attached to
an outline renderer. The use of replication points for
both the magnifying glass and the magic lens may be
found unusual. However, it is motivated by the in-
teraction consistency that OpenDPI guarantees: when
usersinteract abovelenses, the interaction remains
consistent. In figure 8, the user moves the outlined
rectangle in a consistent way: he must point the rect-
angle’s outline in order to translate it, which allows
the translation of the ellipse when pointing its masked
portion.

5 RELATED WORK

5.1 Document Centered Systems

OOE system extends the NextStep operating sys-
tem by allowing the edition of composite docu-
ments (Backlund, 1997). It is based on the display
PostScript capabilities of the NextStep: OOE appli-
cations share a common display language so that ar-
eas of documents edited through an application can
be displayed without alteration by any another appli-
cation. However, OOE only simplifies the way of
users swap between applications. OLE framework
allows the edition of composite documents by defin-
ing a communication protocol between applications
(Brockschmidt, 1995). Consequently, it promotes the
interoperability between applications. However, it is
based on the application concept, forces to use a com-
plex mechanism of interoperability, and does not al-
low action interoperability such as needed in the pick-
color example. OpenDoc framework (Apple, 1994) is
the closer approach to our model. It defines docu-
ments as a set of hierarchically structured and typed
parts. Each part is associated with its own content
model and interaction model, can be viewed through a
dedicatedpart viewer, and can be edited within a ded-
icatedpart editor. However, the granularity of part
editors and viewers are still high, there is no interop-
erability between editors, and the interface changes

from an editor to another.

5.2 User Interface Models

The main common point between the MVC model
(Krasner and Pope, 1988) and our DPI model is the
separation and the synchronization of domain data
from their presentation. Despite this fact, domain
data, presentation and instruments of DPI radically
differ respectively from the model, view and con-
troller of MVC. Firstly, the domain data is defined
through a detailed model organized as a tree structure.
The model of MVC rather focuses on defining prim-
itives (such as our property does) that can be viewed
and edited through widgets (view + controller pairs).
Secondly, the presentation is also defined through a
detailed model based on scene-graphs while the view
of MVC does not provide any display model. Finally,
the instrument should definitively not be compared
with the controller of MVC. The instrument concept
defines an overall interaction model while MVC does
not address any since it only deals with widgets.

5.3 Document Model

DOM specification (W3C, 2004) defines the docu-
ment as a tree where each node (called element) has a
state defined by a set of attributes and/or child nodes.
This definition is thus compatible with the proper and
structural states of DPI components: each DPI com-
ponent is a node and the DPI properties might be con-
sidered as DOM attributes. However, the DOM model
does not address any aspects of action that can be per-
formed on documents and their elements and, as a
consequence, does not define any interaction model.
Moreover, the concurrent modification of a document
is not taken into account.

5.4 Component Model

Using software components within workspaces is an
idea that appeared less than ten years ago. For ex-
ample, we can cite the COM architecture (Microsoft,
1995) and the JavaBeans component platform (Sun,
1997). The implementation of the DPI model has
some similarities with the JavaBeans approach (e.g.
the definition of properties and the intensive use of in-
trospection). However, the JavaBeans model, like the
COM architecture, is truly generic and aims atbuild-
ing applications by assembling components. In our
approach, we focus on components that cansubstitute
applications: our goals and motivation thus radically
differ. Moreover, the DPI model defines a generic
component model that aims at being instantiated in a
document and an interaction model, while component
software architectures do no address such a problem.



6 CONCLUSION AND
PERSPECTIVE

We have proposed in this article a component
model based on documents and instruments. It aims
to substitute the application concept to the software
component concept at the workspace level in order to
overcome the problem induced by the intensive use of
widgets in today’s workspaces. The proposed model
goes into the opposite direction from widgets: DPI
components are open-boxes that respect an unifying
contract, while widgets are black-boxes that aim at
masking the internal complexity.

The overall DPI model has been implemented in
the OpenDPI java toolkit4. It uses Piccolo for dis-
playing graphics (Bederson et al., 2000). It provides
its own high level management of multiple human
input devices under Linux and a standard one under
other operating systems. The toolkit is made of about
250 classes and 18000 lines of code. We have imple-
mented a set of interactive components through sce-
nario, such as the ones presented in this paper, that
are often considered too complex to develop. We
have noted that, by experimenting student projects,
the design and programming of new DPI components
is quite easy as soon as the DPI concepts are captured
(which was mainly done by analyzing sample codes).

Students have underlined the elegance of the ap-
proach and its unifying purpose. DPI components
can be implemented without many programming ef-
forts in varied contexts such as bimanual interaction
or single display groupware, with the ability to guar-
antee the interaction consistency. By defining the
replication point concept, the OpenDPI toolkit pro-
vides an alternate rendering engine that can be used
to build interaction-consistent magic lenses, and gives
the foundation of the groupware facet of the model.

The next step of our work consists of validating the
DPI model by implementing a software suite dedi-
cated to specific tasks. Such a tool will allow our ap-
proach to be more precisely qualified, based on the in-
tensive use of interactive components without any ap-
plication (except the kernel of OpenDPI), and to dis-
cover potential new problems that this approach may
induce. We are also about to refine the DPI model
by using well known standards. The document model
will be based on DOM and the presentation model
will be based on SVG (W3C, 2003). We will thus
extend DOM by specifying how the (inter)action and
collaboration aspects of DPI can be added on top of
it.

4http://www.eseo.fr/˜obeaudoux/opendpi

REFERENCES

Apple (1994). Opendoc technical summary. Technical doc-
umentation, Apple Computer Inc.

Backlund, B. E. (1997). OOE: A compound document
framework.ACM SIGCHI Bulletin, 29(1):68–75.

Beaudouin-Lafon, M. (2000). Instrumental interaction: An
interaction model for designing post-wimp interfaces.
In Proc. CHI’00, pages 446–453. ACM Press.

Beaudouin-Lafon, M. and Karsenty, A. (1992). Trans-
parency and awareness in a real-time groupware sys-
tem. InProc. UIST’92, pages 171–180. ACM Press.

Beaudouin-Lafon, M. and Mackay, W. (2000). Reification,
polymorphism and reuse: Three principles for design-
ing visual interfaces. InProc. AVI’00, pages 102–109.
ACM Press.

Beaudoux, O. and Beaudouin-Lafon, M. (2001). DPI: A
conceptual model based on documents and interaction
instruments. InProc. IHM-HCI’01, pages 247–263.
Springer Verlag.

Bederson, B. B., Meyer, J., and Good, L. (2000). Jazz: An
extensible zoomable user interface graphics toolkit in
java. InProc. UIST’00, pages 171–180. ACM Press.

Bier, E. A., Stone, M. C., Pier, K., Buxton, W., and DeRose,
T. D. (1993). Toolglass and magic lenses: the see-
through interface. InProc. of SIGGRAPH’93, pages
73–80. ACM Press.

Brockschmidt, K. (1995).Inside OLE, Second Edition. Mi-
crosoft Press.

Dewan, P. and Choudhary, R. (1992). A high-level and
flexible framework for implementing multiuser user
interfaces. ACM Trans. on Information Systems,
10(4):345–380.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1994). Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley.

Johnson, J., Roberts, T. L., Verplank, W., Smith, D. C., Irby,
C., Beard, M., and Mackey, K. (1989). The Xerox
Star: A retrospective.IEEE Computer, 22(9):11–29.

Knister, M. J. and Prakash, A. (1990). DistEdit: a dis-
tributed toolkit for supporting multiple group editors.
In Proc. CSCW’90, pages 343–355. ACM Press.

Krasner, G. E. and Pope, S. T. (1988). A cookbook for using
the Model-View-Controller user interface paradigm in
Smalltalk-80. Journal of Objet Oriented Program-
ming, pages 26–49.

Microsoft (1995). The component object model specifica-
tion. Specification Document.

Sun (1997). JavaBeans API specification. Specification
document.

W3C (2001). Web services description language (WSDL)
1.1. Technical report, Consortium W3C.

W3C (2003). Scalable vector graphics (SVG) 1.1 specifica-
tion. Technical report, Consortium W3C.

W3C (2004). Document object model (DOM) level 3 core
specification. Technical report, Consortium W3C.


