
Isabelle/Circus : a Process Specification and
Verification Environment

Abderrahmane Feliachi, Marie-Claude Gaudel and Burkhart Wolff

1 Univ. Paris-Sud, Laboratoire LRI, UMR8623, Orsay, F-91405, France
2 CNRS, Orsay, F-91405, France

{Abderrahmane.Feliachi, Marie-Claude.Gaudel, Burkhart.Wolff}@lri.fr

Abstract. The Circus specification language combines elements for com-
plex data and behavior specifications, using an integration of Z and CSP
with a refinement calculus. Its semantics is based on Hoare and He’s
unifying theories of programming (UTP).

We develop a machine-checked, formal semantics based on a “shallow em-
bedding” of Circus in Isabelle/UTP (our semantic theory of UTP based
on Isabelle/HOL). We derive proof rules from this semantics and imple-
ment tactic support that finally allows for proofs of refinement for Circus
processes (involving both data and behavioral aspects).

This proof environment supports a syntax for the semantic definitions
which is close to textbook presentations of Circus.

Keywords: Circus, denotational semantics, Isabelle/HOL, Process Al-
gebras, Refinement

1 Introduction

Many systems involve both complex (sometimes infinite) data structures and
interactions between concurrent processes. Refinement of abstract specifications
of such systems into more concrete ones, requires an appropriate formalisation
of refinement and appropriate proof support.

There are several combinations of process-oriented modeling languages with
data-oriented specification formalisms such as Z or HOL or CASL; examples
are discussed in [3, 10, 17, 14]. In this paper, we consider Circus [18], a language
for refinement, that supports modeling of high-level specifications, designs, and
concrete programs. It is representative of a class of languages that provide fa-
cilities to model data types, using a predicate-based notation, and patterns of
interactions, without imposing architectural restrictions. It is this feature that
makes it suitable for reasoning about both abstract and low-level designs.

We present a “shallow embedding” of the Circus semantics enabling state
variables and channels in Circus to have arbitrary HOL types. Therefore, the en-
tire handling of typing can be completely shifted to the (efficiently implemented)
Isabelle type-checker and is therefore implicit in proofs. This drastically simpli-
fies the definitions, proofs, and makes the reuse of standardized proof procedures

possible. Compared to implementations based on a “deep embedding” such as
[19] this drastically improves the usability of the resulting proof environment.

Our representation brings particular technical challenges and contributions
concerning some important notions about variables. The main challenge was to
represent alphabets and bindings in a typed way that preserves the semantics
and improves deduction. We provide a representation of bindings without an
explicit management of alphabets. Hpwever, the representation of some core
concepts in the unifying theories of programming(UTP) and Circus constructs
(variable scopes and renaming) became challenging. Thus, we propose a (stack-
based) solution that allows the coding of state variables scoping with no need
for renaming. This solution is even a contribution to the UTP theory that does
not allow nested variable scoping. Some challenging and tricky definitions (e.g.
channels and name sets) are explained in this paper.

This paper is organized as follows. The next section gives an introduction to
the basics of our work: Isabelle/HOL, UTP and Circus with a short example of
a Circus process. In section 3, we present our embedding of the basic concepts of
the Circus language (alphabet, variables ...). We introduce also the representation
of the Circus actions and process, with an overview of the Isabelle/Circus syntax.
In section 4, we explain by an example, how Isabelle/Circus can be used to
write specifications. We give some details on what is happening “behind the
scenes” when the system parses each part of the specification. In the last part
of this section, we show how to write proofs based on specifications, and give a
refinement proof example.

2 Background

2.1 Isabelle, HOL and Isabelle/HOL

Isabelle [12] is a generic theorem prover implemented in SML. It is based on
the so-called “LCF-style architecture”, which makes it possible to extend a small
trusted logical kernel by user-programmed procedures in a logically safe way.
New object logics can be introduced to Isabelle by specifying their syntax and
semantics, by deriving its inference rules from there and program specific tactic
support for the object logic. Isabelle is based on a typed λ-calculus including
a Haskell-style type-system including type-classes (e.g. in α :: ord, the type-
variable ranges over all types that posses a partial ordering.)

Higher-order logic (HOL) [7, 1] is a classical logic based on a simple type sys-
tem. It provides the usual logical connectives like ∧ , ⇒ , ¬ as well as the
object-logical quantifiers ∀ x • P x and ∃ x • P x ; in contrast to first-order logic,
quantifiers may range over arbitrary types, including total functions f : : α⇒ β.
HOL is centered around extensional equality = : : α ⇒ α ⇒ bool. HOL is
more expressive than first-order logic, since, e. g., induction schemes can be ex-
pressed inside the logic. Being based on some polymorphically typed λ-calculus,
HOL can be viewed as a combination of a programming language like SML or

2

Haskell and a specification language providing powerful logical quantifiers rang-
ing over elementary and function types.

Isabelle/HOL is an instance of Isabelle with higher-order logic. It provides a
rich collection of library theories like sets, pairs, relations, partial functions lists,
multi-sets, orderings, and various arithmetic theories which only contain rules
derived from conservative, i. e. logically safe definitions. Setups for the automated
proof procedures like simp, auto, and arithmetic types such as int are provided.

2.2 Advanced Specification Constructs in Isabelle/HOL

Constant definitions. In its easiest form, constant definitions are definitional
logical axioms of the form c ≡ E where c is a fresh constant symbol not occurring
in E which is closed (both wrt. variables and type variables). For example:

definition upd::(α⇒β)⇒α⇒β⇒(α⇒β) ("_L_ := _M")
where upd f x v ≡ λ z. if x=z then v else f z

The pragma ("_L _ := _M") for the Isabelle syntax engine introduces the nota-
tion fLx:=yM for upd f x y. Moreover, some elaborate preprocessing allows for
recursive definitions, provided that it can establish a termination ordering; such
recursive definitions are thus internally reduced to definitional axioms.

Type definitions. Types can be introduced in Isabelle/HOL by different ways.
The most general way to safely introduce new types is the type definition using
typedef construct. This allows one to introduce a type as a non-empty subset
of an existing type. More precisely, the new type is specified to be isomorphic
to this non-empty subset. For instance:

typedef mytype = "{x::nat. x < 10}"

This definition requires that the set is non-empty: ∃ x. x∈{x::nat. x<10},
which is easy to prove in this case:

by (rule_tac x = 1 in exI, simp)

where rule_tac is a tactic that applies an introduction rule and exI corresponds
to the introduction of the existential quantification.

In the same way, the datatype command allows one to define inductive
datatypes. This command introduces a datatype using a list of constructors. For
instance, a logical compiler is invoked for the following introduction of the type
option:

datatype α option = None | Some α

which generates the underlying type definition and derives distinctness rules
and induction principles. Besides the constructors None and Some, the following
match-operator and his rules are also generated:

case x of None⇒ ... | Some a ⇒ ...

3

Extensible records. Isabelle/HOL’s support for extensible records is of par-
ticular importance for our work. Record types are denoted, for example, by:

record T = a::T1

b::T2

which implicitly introduces the record constructor La:=e1,b:=e2M and the up-
date of record r in field a, written as rLa:= xM. Extensible records are represented
internally by cartesian products with an implicit free component δ, i.e. in this
case by a triple of the type T1 × T2 × δ. The third component can be referenced
by a special selector more available on extensible records. Thus, the record T can
be extended later on using the syntax:

record ET = T + c::T3

The key point is that theorems can be established, once and for all, on T types,
even if future parts of the record are not yet known, and reused in the later
definition and proofs over ET-values. Using this feature, we can model the effect
of defining the alphabet of UTP processes incrementally while maintaining the
full expressivity of HOL wrt. the types of T1, T2 and T3.

2.3 Circus and its UTP Foundation

Circus is a formal specification language [18] which integrates the notions of
states and complex data types (in a Z-like style) and communicating parallel
processes inspired from CSP. From Z, the language inherits the notion of a
schema used to model sets of (ground) states as well as syntactic machinery to
describe pre-states and post-states; from CSP, the language inherits the concept
of communication events and typed communication channels, the concepts of
deterministic and non-deterministic choice (reflected by the process combinators
P �P ′ and P u P ′), the concept of concealment (hiding) P\A of events in A
occurring in in the evolution of process P . Due to the presence of state variables,
the Circus synchronous communication operator syntax is slightly different frome
CSP: P J n | c | n ′ KP ′ means that P and P ′ communicate via the channels
mentioned in c; moreover, P may modify the variables mentioned in n only, and
P ′ in n ′ only, n and n ′ being disjoint.

Moreover, the language comes with a formal notion of refinement based on
a denotational semantics. It follows the failure/divergence semantics [15], (but
coined in terms of the UTP [13]) providing a notion of execution trace tr, refusals
ref, and divergences. It is expressed in terms of the UTP [11] which makes it
amenable to other refinement-notions in UTP. The semantics allows for a rich
set of algebraic rules for specifications and their transitions to program models.

A simple Circus specification is FIG, the fresh identifiers generator given in
fig. 1:
Predicates and Relations. The UTP is a semantic framework based on an
alphabetized relational calculus. An alphabetized predicate is a pair (alphabet ,
predicate) where the free variables appearing in the predicate are all in the al-
phabet, e.g. ({x , y}, x > y). As such, it is very similar to the concept of a schema

4

[ID]

channel req
channel ret , out : ID

process FIG b= begin
state S == [idS : P ID]
Init b= idS := ∅

Out
∆S
v ! : ID

v ! /∈ idS
idS ′ = idS ∪ {v !}

Remove
∆S
x? : ID

idS ′ = idS \ {x?}

• Init ; var v : ID •
(µ X • (req → Out ; out !v → Skip 2 ret?x → Remove) ; X)

end

Fig. 1. The Fresh Identifiers Generator in (Textbook) Circus

in Z. In the base theory Isabelle/UTP of this work, we represent alphabetized
predicates by sets of (extensible) records, e.g. {A. x A > y A}.

An alphabetized relation is an alphabetized predicate where the alphabet is
composed of input (undecorated) and output (dashed) variables. In this case the
predicate describes a relation between input and output variables, for example
({x , x ′, y , y ′}, x ′ = x +y) which is a notation for: {(A,A’).x A’ = x A + y A},
which is a set of pairs, thus a relation.

Standard predicate calculus operators are used to combine alphabetized pred-
icates. The definition of these operators is very similar to the standard one, with
some additional constraints on the alphabets.

Designs and processes. In UTP, in order to explicitly record the termination
of a program, a subset of alphabetized relations is introduced. These relations
are called designs and their alphabet should contain the special boolean obser-
vational variable ok. It is used to record the start and termination of a program.
A UTP design is defined as follows in Isabelle:

(P ` Q) ≡ λ (A,A’). (ok A ∧ P (A,A’)) −→ (ok A’ ∧ Q (A,A’))

Following the way of UTP to describe reactive processes, more observational
variables are needed to record the interaction with the environment. Three ob-
servational variables are defined for this subset of relations: wait, tr and ref.
The boolean variable wait records if the process is waiting for an interaction
or has terminated. tr records the list (trace) of interactions the process has
performed so far. The variable ref contains the set of interactions (events) the
process may refuse to perform.

Some healthiness conditions are defined over wait, tr and ref to ensure that
a process satisfies some properties [5] (see table ??). Four healthiness conditions,

5

H 1 to H 4, are defined to characterize designs and three other ones, R1, R2 and
R3, for reactive processes.

Finally, a CSP process is a UTP reactive process that satisfies two additional
healthiness conditions called CSP1 and CSP2 (all well-formedness conditions
can be found in [9]). A process that satisfies CSP1 and CSP2 is said to be CSP
healthy.

3 Isabelle/Circus

Process ::= circusprocess Tpar∗ name = PParagraph∗ where Action
PParagraph ::= AlphabetP | StateP | ChannelP | NamesetP | ChansetP | SchemaP

| ActionP
AlphabetP ::= alphabet [vardecl+]
vardecl ::= name :: type
StateP ::= state [vardecl+]
ChannelP ::= channel [chandecl+]
chandecl ::= name | name type
NamesetP ::= nameset name = [name+]
ChansetP ::= chanset name = [name+]
SchemaP ::= schema name = SchemaExpression
ActionP ::= action name = Action
Action ::= Skip | Stop | Action ; Action | Action � Action | Action u Action

| Action \ chansetN | var := expr | guard & Action | comm → Action
| Schema name | ActionName | µ var • Action | var var • Action
| Action J namesetN | chansetN | namesetN K Action

Fig. 2. Isabelle/Circus syntax

The Isabelle/Circus environment allows the representation of processes in a
syntax which is close to the textbook presentations of Circus(see Fig. 2). Similar
to other specification constructs in Isabelle/HOL, this syntax is “parsed away”,
i. e. compiled into an internal representation of the denotational semantics of
Circus, which is a formalization in form of a shallow embedding of the (essentially
untyped) paper-and-pencil definitions by Oliveira et al. [13], based on UTP.
Circus actions are defined as CSP healthy reactive processes.

In the UTP representation of reactive processes we have given in a previous
paper [8], the process type is generic. It contains two type parameters that
represent the channel type and the alphabet of the process. These parameters
are very general, and they are instantiated for each specific process. This could
be problematic when representing the Circus semantics, since some definitions
rely directly on variables and channels (e.g assignment and communication). In
this section we present our solution to deal with this kind of problems, and our
representation of the Circus actions and processes.

In the following, we describe the foundation as well as the semantic definition
of the process operators of Circus. A distinguishing feature of Circus processes
are explicit state variables which do not exist in other process algebras like, e.g.,
CSP. These can be:

6

– global state variables, i. e. they are declared via alphabetized predicates in
the state section, or Z-like ∆ operations on global states that generate
alphabetized relations, or

– local state variables, i. e. they are result of the variable declaration statement
var var • Action. The scope of local variables is restricted to Action.

On both kind of state variables, logical constraints may be expressed.

3.1 Alphabets and Variables

In order to define the set of variables, the Circus language describes the alphabet
of its components, be it on the level of alphabetized predicates, alphabetized
relations or actions. We recall that these items are represented by sets of records
or sets of pairs of records, following the idea that an alphabet is used to estab-
lish a ”binding” of variables to values. The alphabet of a process is defined by
extending the reactive process alphabet (cf. Section 2.3) with the corresponding
variable names and types. Considering the example FIG , where the global state
variable idS is defined, this is reflected in Isabelle/Circus by the extension of
the process alphabet by this variable, i.e. by the extension of the Isabelle/HOL
record:

record α alpha = α alpha_rp + idS :: ID set

This introduces the record type alpha that contains the observational variables
of a reactive process, plus the variable idS. Note that our Circus semantic rep-
resentation allows “built-in” bindings of alphabets in a typed way. Moreover,
there is no restriction on the associated HOL type. However, the inconvenience
of this representation is that variables cannot be introduced “on the fly”; they
must be known statically i.e. at type inference time. Another consequence is
that a ”syntactic” operation such as variable renaming has to be expressed as a
”semantic” operation that maps one record type into another.

Updating and accessing global variables. Since the alphabets are repre-
sented by HOL records, i.e. a kind binding ”name 7→ value”, we need a certain
infrastructure to access data in them and to update them. The Isabelle repre-
sentation as records gives us already two functions (for each record)“select” and
“update”. The “select” function returns the value of a given variable name, and
the “update” functions updates the value of this variable. Since we may have
different HOL types for different variables, a unique definition for select and
update cannot be provided. There is an instance of these functions for each vari-
able in the record. The name of the variable is used to distinguish the different
instances: for the select function the name is used directly and for the update
function the name is used as a prefix e.g. for a variable named “x” the names of
the select and update functions are respectively x of type α and x_update.

Since a variable is characterized essentially by these functions, we define a
general type (synonym) called var which represents a variable as a pair of its
select and update function (in the underlying state σ).

7

types (β, σ) var = "(σ ⇒ β) * ((β ⇒ β) ⇒ σ ⇒ σ)"

For a given alphabet (record) of type σ , (β, the type σ)var represents
the type of the variables whose value type is β in this alphabet. One can then
extract the select and update functions from a given variable with the following
functions:

definition select :: "(β, σ) var ⇒σ ⇒ β"
where select f ≡ (fst f)

definition update :: "(β, σ) var ⇒ β ⇒ σ ⇒ σ "
where update f v ≡ (snd f) (λ _ . v)

Finally, we introduce a function called VAR to implement a syntactic trans-
lation of a variable name to an entity of type var.

syntax "_VAR" :: "id ⇒(β, σ) var" ("VAR _")
translations VAR x => (x, _update_ name x)

Note that in this syntactic translation rule, _update_ name x stands for the
concatenation of the string _update_ with the content of the variable x; the
resulting _update_x in this example is mapped to the field-update function
of the extensible record x_update by a default mechanism. On this basis, the
assignment notation can be written as usual:

syntax
"_assign" :: "id ⇒(σ ⇒ β) ⇒ (α, σ) action" ("_ ‘:=‘ _")

translations
"x ‘:=‘ E" => "CONST ASSIGN (VAR x) E"

and mapped to the semantics of the program variable (x,x_update) together
with the universal ASSIGN operator defined in Section 3.3.

Updating and accessing local variables. In Circus, local program variables
can be introduced on the fly, and their scopes are explicitly defined, as can
be seen in the FIG example. In textbook Circus, nested scopes are handled by
variable renaming which is not possible in our representation due to the implicit
representation of variable names. Instead, we represent local program variables
by global variables, using the var type defined above, where selection and update
involve an explicit stack discipline. Each variable is mapped to a list of values,
and not to one value only (as for state variables). Entering the scope of a variable
corresponds to adding a new value as the head of the corresponding values list.
Leaving a variable scope corresponds to removing the head of the values list.
The select and update functions correspond to selecting and updating the head
of the list.

Note that this encoding scheme requires to make local variables lexically
distinct from global variables; local variable instances are just distinguished from
the global ones by the stack discipline. The results in dynamic scoping which is
required by the operational semantics.

8

3.2 Synchronization infrastructure: Name sets and channels.

Name sets. An important notion, used in the definition of parallel Circus ac-
tions, is name sets as seen in Section 2. A name set is a set of variable names,
which is a subset of the alphabet. This notion cannot be directly expressed in our
representation since variable names are not explicitly represented. Its definition
is a bit tricky and relies on the characterization of the variables in our representa-
tion. As for variables, name sets are defined by their functional characterization.
Name sets are only used in the definition of the binding merge function MSt :
∀ v • (v ∈ ns1⇒ v ′ = (1.v)) ∧ (v ∈ ns2⇒ v ′ = (2.v)) ∧ (v /∈ ns1 ∪ ns2⇒ v ′ = v).

The disjoint name sets ns1 and ns2 are used to determine which variable
values (extracted from local bindings of the parallel components) are used to
update the global binding of the process. A name set can be functionally defined
as a binding update function, that copies values from a local binding to the
global one. For example, a name set NS that only contains the variable x can
be defined as follows in Isabelle/Circus:

definition NS lb gb ≡ x_update (x lb) gb

where lb and gb stands for local and global bindings, x and x_update are the
select and update functions of variable x. Then the merge function can be defined
by composing the application of the name sets to the global binding.

Channels. Reactive processes interact with the environment via synchroniza-
tions and communications. A synchronization is an interaction via a channel
without any exchange of data. A communication is a synchronization with data
exchange. In order to reason about communications in the same way, a datatype
channels is defined using the channels names as constructors. For instance, in:

datatype channels = chan1 | chan2 nat | chan3 bool

we declare three channels: chan1 that synchronizes without data , chan2 that
communicates natural values and chan3 that exchanges boolean values.

This definition makes it possible to reason globally about communications
since they have the same type. A drawback is that the channels may not have
the same type: in the above example the types of chan1, chan2 and chan3
are respectively of types channels, nat ⇒ channels and bool ⇒channels.
However, in the definition of some Circus operators, we need to compare two
channels, and one can’t compare for example chan1 with chan2 since they don’t
have the same type. A solution would be to compare chan1 with (chan2 v). The
types are equivalent in this case, but the problem remains because comparing
(chan2 0) to (chan2 1) will state inequality just because the communicated
values are not equal. We can of course define an inductive function over the
datatype channels to compare channels, but this is only possible when all the
channels are known a priori .

Thus, we add some constraint to the generic channels type: we require the
channels type to implement a function chan_eq that tests the equality of two

9

channels. Fortunately, Isabelle/HOL provides a construct for this kind of re-
striction: the type classes (sorts) seen in the first section. We define a type class
(interface) chan_eq that contains a signature of the chan_eq function.

class chan_eq =
fixes chan_eq :: "α ⇒α ⇒ bool"

begin end

Concrete channels type must implement the interface (class) “ chan_eq” that
can be easily defined for this concrete type. Moreover, one can use this class
to add some definition that depends on the channel equivalence function. For
example, a trace equivalence function can be defined as follows:

fun tr_eq where
tr_eq [] [] = True | tr_eq xs [] = False | tr_eq [] ys = False

| tr_eq (x#xs) (y#ys) = if chan_eq x y then tr_eq xs ys else False

This function will be applicable for traces of elements whose type belongs to the
sort chan_eq.

3.3 Actions and Processes

The Circus actions type is defined as the set of all the CSP healthy reactive
processes. The type (α,σ)relation_rp is the reactive process type where α is
of channels type and σ is a record extensions of action_rp, i. e. the global
state variables. On this basis, we can encode the concept of a process for a
family of possible state instances. We introduce the vital type action via the
type-definition:

typedef(Action)
(α::chan_eq,σ) action = {p::(α,σ)relation_rp. is_CSP_process p}
proof - {...} qed

As mentioned before, a type-definition introduces a new type by stating a set. In
our case it is the set of reactive processes that satisfy the healthiness-conditions
for CSP-processes, isomorphic to the new type.

Technically, this construct introduces two constants definitions Abs_Action
and Rep_Action respectively of type (α,σ) relation_rp ⇒(α,σ) action and
(α,σ)action ⇒(α,σ)relation_rp as well as the usual two axioms express-
ing the bijection Abs_Action(Rep_Action(X))=X and is_CSP_process p =⇒
Rep_Action(Abs_Action(p))=p where is_CSP_process captures the healthi-
ness conditions.

Every Circus action is an abstraction of an alphabetized predicate. Below, we
introduce the definitions of all the actions and operators using their denotational
semantics. We must provide for each action, the proof that this predicate is CSP
healthy. In this section we show all Circus basic actions and operators definitions.
We also show how a whole Circus process is represented in the UTP framework.
The environment contains the definitions of all the Circus operators shown in
the next section.

10

Moreover, the environment contains a proof for a theorem stating that every
reactive design — based on the above and the subsequent definitions — is CSP
healthy.

Basic actions. Stop is defined as a reactive design, with a precondition true
and a postcondition stating that the system deadlocks and the traces are not
evolving.

definition
Stop ≡ Abs_Action (R (true `λ(A, A’). tr A’ = tr A ∧ wait A’))

Skip is defined as a reactive design, with a precondition true and a post-
condition stating that the system terminates and all the state variables are not
changed. We represent this fact by stating that the more field is not changed,
since this field is mapped to all the state variables. Recall that the more-field is
a tribute to our encoding of alphabets by extensible records and stands for all
future extensions of the alphabet (e.g. state variables).

definition Skip ≡ Abs_Action (R (true ` λ (A, A’). tr A’ = tr A
∧ ¬ wait A’ ∧ more A = more A’))

The universal assignment action. In the previous section 3.1, we described
already how global and local variables were represented by access- and updates
functions introduced by fields in extensible records. In these terms, the ”lifting”
to the assignment action in Circus processes is straightforward:

definition
ASSIGN::"(β, σ) var ⇒(σ ⇒ β) ⇒ (α::ev_eq, σ) action"

where
ASSIGN x e ≡ Abs_Action (R (true ` Y))

where
Y = λ(A, A’). tr A’ = tr A ∧ ¬ wait A’ ∧

more A’ = (assign x (e (more A))) (more A)

where assign is the projection into the update operation of a semantic variable
described in section 3.1.

Communications. The definition of prefixed actions is based on the definition
of a special relation do_I. In the Circus denotational semantics, various forms of
prefixing were defined. In our theory, we define one general form, and the other
forms are defined as special cases.

definition do_I c x P ≡ X / wait o fst . Y
where
X = (λ (A, A’). tr A = tr A’ ∧ ((c ‘ P) ∩ ref A’) = {})
and
Y = (λ (A, A’). hd ((tr A’) - (tr A)) ∈ (c ‘ P) ∧

(c (select x (more A))) = (last (tr A’)))

11

where c is a channel constructor, x is a variable (of var type) and P is a pred-
icate. The do_I relation gives the semantics of an interaction: if the system is
ready to interact, the trace is unchanged and the waiting channel is not refused.
After performing the interaction, the new event in the trace corresponds to this
interaction.

The semantics of the whole action is given by the following definition:

definition Prefix c x P S ≡ Abs_Action(R (X ` Y)) ; S
where
X = true
and
Y = do_I c x P ∧ (λ (A, A’). more A’ = more A)

where c is a channel constructor, x is a variable (of type var), P is a predicate
and S is an action. This definition states that the prefixed action semantics is
given by the interaction semantics (do_I) composed with the semantics of the
continuation (action S).

Different types of communication are considered:

– Inputs: the communication is done over a variable.
– Constrained Inputs: the input variable value is constrained with a predicate.
– Outputs: the communications exchanges only one value.
– Synchronizations: only the channel name is considered (no data).

The semantics of these different forms of communications is based on the
general definition above.

definition read c x P ≡ Prefix c x true P
definition write1 c a P ≡ Prefix c (λs. a s, (λ x. λy. y)) true P
definition write0 c P ≡ Prefix (λ_.c) (λ_._, (λ x. λy. y)) true P

where read, write1 and write0 corresponds respectively to input , output and
synchronization, constrained input corresponds to the general definition.

We configure the Isabelle syntax-engine such that it parses the usual com-
munication primitives and gives the corresponding semantics:

translations
c ? p →P == CONST read c (VAR p) P
c ? p : b →P == CONST Prefix c (VAR p) b P
c ! p →P == CONST write1 c p P
a → P == CONST write0 (TYPE(_)) a P

Hiding. The hiding operator is interesting because it depends on a channel set.
This operator P \ cs is used to encapsulate the events that are in the channel set
cs. These events become no longer visible from the environment. The semantics
of the hiding operator is given by the following reactive process:

12

definition
Hide ::"[(α, σ) action , α set] ⇒(α, σ) action" (infixl "\")
where
P \ cs ≡ Abs_Action(R(λ (A, A’).

∃ s. (Rep_Action P)(A, A’(|tr :=s, ref := (ref A’) ∪ cs|))
∧ (tr A’ - tr A) = (tr_filter (s - tr A) cs))); Skip

The definition uses a filtering function tr_filter that removes from a trace
the events whose channels belong to a given set. The definition of this function
is based on the function chan_eq we defined in the class chan_eq. This explains
the presence of the constraint on the type of the action channels in the hiding
definition, and in the definition of the filtering function below:

fun tr_filter::"a::chan_eq list ⇒a set ⇒a list" where
tr_filter [] cs = []

| tr_filter (x#xs) cs = (if (¬ chan-in_set x cs)
then (x#(tr_filter xs cs))
else (tr_filter xs cs))

where the chan-in_set function checks if a given channel belongs to a channel
set using chan_eq as equality function.

Recursion. To represent the recursion operator “µ” over actions, we use the
universal least fix-point operator “lfp” defined in the HOL library for lattices
and we follow again [13]. The use of least fix-points in [13] is the most substantial
deviation from the standard CSP denotational semantics, which requires Scott-
domains and complete partial orderings. The operator lfp is inherited from the
“Complete Lattice class” under some conditions, and all theorems defined over
this operator can be reused. In order to reuse this operator, we have to show that
the least-fixpoint over functionals that enrich pairs of failure - and divergence
trace sets monotonely, produces an action that satisfies the CSP healthiness
conditions. This consistency proof for the recursion operator is the largest con-
tained in the Isabelle/Circus library.

In order to reuse the lfp operator and its inherited proofs, we must prove that
the Circus actions type defines a complete lattice. This leads to prove that the
actions type belongs to the “Complete Lattice class” of HOL. Since type classes
in HOL are hierarchic, we provide a proof in three steps. First, we prove that
the Circus actions type forms a lattice by instantiating the HOL “Lattice class”.
In the second step, we prove that actions type instantiates a subclass of lattices
called “Bounded Lattice class”. The last step is to prove the instantiation from
the “Complete Lattice class”. The details of these proofs are not given here.

Circus Processes. A Circus process is defined in our environment as a local
theory by introducing qualified names for all its components. This is very similar
to the notion of namespaces popular in programming languages. Defining a Circus
process locally allows us to encapsulate definitions of alphabet, channels, schema

13

expressions and actions in the same namespace. It is important for the foundation
of Isabelle/Circus to avoid the ambiguity between local process entities definitions
(e.g. FIG.Out and DFIG.Out in the example of section 4).

4 Using Isabelle/Circus

We describe the front-end interface of Isabelle/Circus. In order to support a
maximum of common Circus syntactic look-and-feel, we have programmed at
the SML level of Isabelle a compiler that parses and (partially) pretty prints
Circus process given in the syntax presented in Fig.2.

4.1 Writing specifications

A specification is a sequence of paragraphs. Each paragraph may be a declara-
tion of alphabet, state, channels, name sets, channel sets, schema expressions or
actions. The main action is introduced by the keyword where. Below, we illus-
trate how to use the environment to write a Circus specification using the FIG
process example presented in Figure 1.

circusprocess FIG =
alphabet = [v::nat, x::nat]
state = [idS::nat set]
channel = [req, ret nat, out nat]
schema Init = idS := {}
schema Out = ∃ a. v’ = a ∧ v’ /∈ idS ∧ idS’ = idS ∪ {v’}
schema Remove = x /∈ idS ∧ idS’ = idS - {x}
where var v · Schema Init; (µ X ·(req →Schema Out; out!v →Skip)

2 (ret?x →Schema Remove); X)

Each line of the specification is translated into the corresponding semantic oper-
ators discussed in the previous chapter. In the following, we describe the result
of executing each command:

– the compiler introduces a scope of local components whose names are qual-
ified by the process name (FIG in the example).

– alphabet generates a list of record fields to represent the binding. These
fields map names to value lists.

– state generates a list of record fields that corresponds to the state vari-
ables. The names are mapped to single values. This command, together with
alphabet command, generates a record that represents all the variables (for
the FIG example the command generates the record FIG_alphabet, that con-
tains the fields v and x of type nat list and the field idS of type nat set).

– channel introduces a datatype of typed communication channels (for the FIG
example the command generates the datatype FIG_channels that contains
the constructors req without communicated value and ret and out that
communicate natural values).

14

– schema allows the definition of schema expressions represented as an al-
phabetized relation over the process variables (in the example the schema
expressions FIG.Init, FIG.Out and FIG.Remove are generated).

– action introduces definitions for Circus actions in the process. These defi-
nitions are based on the denotational semantics of Circus actions. The type
parameters of the action type are instantiated with the locally defined chan-
nels and alphabet types.

– where introduces the main action as in action command (in the example the
main action is FIG.FIG of type (FIG_channels, FIG_alphabet)action).

4.2 Relational and Functional Refinement in Circus

The main goal of Isabelle/Circus is to provide a proof environment for Circus
processes. The “shallow-embedding” of Circus and UTP in Isabelle/HOL offers
the possibility to reuse proof procedures, facilities and theorem libraries already
existing in Isabelle/HOL. Moreover, once a process specification is encoded and
parsed in Isabelle/Circus, proofs of, eg, refinement properties can be developped
using the ISAR language for structured proofs.

To show in more details how to use Isabelle/Circus, we provide a small exam-
ple of action refinement proof. The refinement relation is defined as the universal
reverse implication in the UTP. In Circus, it is defined as follows:

definition A1 vc A2 ≡(Rep_Action A1) vutp (Rep_Action A2)

where A1 and A2 are Circus actions, vc and vutp stands respectively for refine-
ment relation on Circus actions and on UTP predicate.

This definition assumes that the actions A1 and A2 share the same alphabet
(binding) and the same channels. In general, refinement involves an important
data evolution and growth. The data refinement is defined in [16, 4] by backwards
and forwards simulations. In this paper, we restrict ourselves to a special case,
the so-called functional backwards simulation. This refers to the fact that the
abstraction relation R that relates concrete and abstract actions is just a function:

definition Simulation ("_ �_ _") where
A1 �R A2 = ∀ a b.(Rep_Action A2)(a,b) −→(Rep_Action A1)(R a,R b)

where A1 and A2 are Circus actions and R is a function mapping the corresponding
A1 alphabet to the A2 alphabet.

4.3 Refinement Proofs

We can use the definition of simulation to transform the proof of refinement
to a simple proof of implication by unfolding the operators in terms of their
underlying relational semantics. The problem with this approach is that the size
of proofs will grow exponentially with respect to the size of the processes. To
avoid this problem, some general refinement laws were defined in [4] to deal with
the refinement of Circus actions at operators level and not at UTP level. We
introduced and proved a subset of theses laws in our environment (see table 1).

15

P �S Q P ′ �S Q ′

P ; P ′ �S Q ; Q ′
SeqI

P �S Q g1 'S g2

g1&P �S g2&Q
GrdI

P �S Q x ∼S y

var x • P �S var y •Q
VarI

P �S Q x ∼S y

c?x → P �S c?y → Q
InpI

P �S Q P ′ �S Q ′

P u P ′ �S Q uQ ′
NdetI

P �S Q x ∼S y

c!x → P �S c!y → Q
OutI

[X �S Y]
....

P X �S Q Y mono P mono Q

µX • P X �S µY •Q Y
MuI

P �S Q P ′ �S Q ′

P2P ′ �S Q2Q ′
DetI

[Pre sc1 (S A)]
....

Pre sc2 A

[Pre sc1 (S A) sc2 (A,A′)]
....

sc1 (S A,S A′)

schema sc1 �S schema sc2
SchI

P �S Q

a → P �S a → Q
SyncI

P �S Q P ′ �S Q ′ ns1 ∼S ns ′1 ns2 ∼S ns ′2

PJns1 | cs | ns2KP ′ �S QJns ′1 | cs | ns ′2KQ ′
ParI

Skip �S Skip
SkipI

Table 1. Proved refinement laws

In table 1, the relations “x ∼S y” and “g1 'S g2” record the fact that the
variable x (repectively the guard g1) is refined by the variable y (repectively by
the guard g2) w.r.t the simulation function S .

These laws can be used in complex refinement proofs to simplify them at the
Circus level. More rules can be defined and proved to deal with more compli-
cated statements like combination of operators for example. Using these laws,
and exploiting the advantages of a shallow embedding, the automated proof of
refinement becomes surprisingly simple.

Coming back to our example, let us consider the DFIG specification below,
where the management of the identifiers via the set idS is refined into a set
of removed identifiers retidS and a number max, which is the rank of the last
issued identifier.

circusprocess DFIG =
alphabet = [w::nat, y::nat]
state = [retidS::nat set, max::nat]
schema Init = retidS’ = {} ∧max’ = 0
schema Out = w’ = max ∧ max’ = max+1 ∧ retidS’ = retidS - {max}
schema Remove = y < max ∧ y /∈ retidS ∧ retidS’ = retidS ∪ {y}

∧ max’ = max
where var w · Schema Init; (µ X ·(req →Schema Out; out!w →Skip)

2 (ret?y →Schema Remove); X)

16

We provide the proof of refinement of FIG by DFIG just instantiating the
simulation function R by the following abstraction function, that maps the un-
derlying concrete states to abstract states:

definition Sim A = FIG_alphabet.make (w A) (y A)
({a. a < (max A) ∧ a /∈ (retidS A)})

where A is the alphabet of DFIG, and FIG_alphabet.make yields an alphabet of
type FIG_Alphabet initializing the values of v, x and idS by their corresponding
values from DFIG_alphabet: w, y and {a. a < max ∧ a /∈ retidS}).

To prove that DFIG is a refinement of FIG one must prove that the main action
DFIG.DFIG refines the main action FIG.FIG. The definition is then simplified,
and the refinement laws are applied to simplify the proof goal. Thus, the full
proof consists of a few lines in ISAR:

theorem "FIG.FIG �Sim DFIG.DFIG"
apply (auto simp: DFIG.DFIG_def FIG.FIG_def mono_Seq

intro!: VarI SeqI MuI DetI SyncI InpI OutI SkipI)
apply (simp_all add: SimRemove SimOut SimInit Sim_def)

done

First, the definitions of FIG.FIG and DFIG.DFIG are simplified and the defined
refinement laws are used by the auto tactic as introduction rules. The second step
replaces the definition of the simulation function and uses some proved lemmas
to finish the proof. The three lemmas used in this proof: SimInit, SimOut and
SimRemove give proofs of simulation for the schema Init, Out and Remove.

5 Conclusions

We have shown for the language Circus, which combines data-oriented modeling
in the style of Z and behavioral modeling in the style of CSP, a semantics in
form of a shallow embedding in Isabelle/HOL. In particular, by representing
the somewhat non-standard concept of the alphabet in UTP, in form of exten-
sible records in HOL, we achieved a fairly compact, typed presentation of the
language. In contrast to previous work based on some deep embedding [19],
this shallow embedding allows arbitrary (higher-order) HOL-types for channels,
events, and state-variables, such as, e.g., sets of relations etc. Besides, systematic
renaming of local variables is avoided by compiling them essentially to global
variables using a stack of variable instances. The necessary proofs for showing
that the definitions are consistent — i. e. satisfy altogether is_CSP_healthy —
have been done, together with a number of algebraic simplification laws on Circus
processes.

Since the encoding effort can be hidden behind the scene by flexible extension
mechanisms of the Isabelle, it is possible to have a compact notation for both
specifications and proofs. Moreover, existing standard tactics of Isabelle such
as auto, simp and metis can be reused since our Circus semantics is represen-
tationally close to HOL. Thus, we provide an environment that can cope with

17

combined refinements concerning data and behavior. Finally, we demonstrate
its power — w.r.t. both expressivity and proof automation — with a small, but
prototypic example of a process-refinement.

In the future, we intend to use Isabelle/Circus for the generation of test-cases,
on the basis of [6], using the HOL-TestGen-environment [2].

6 Acknowledgement

We would like to thank Markarius Wenzel for his valuable help with the Isabelle
framework. Furthermore, we are greatly indebted to Ana Cavalcanti for her
comments on the semantic foundation of this work.

References

1. Peter B. Andrews. Introduction to Mathematical Logic and Type Theory: To Truth
through Proof. Kluwer Academic, 2nd edition, 2002. now published by Springer.

2. Achim D. Brucker and Burkhart Wolff. On theorem prover-based testing. Formal
Aspects of Computing, 2012. To appear.

3. Michael Butler. CSP2B: A practical approach to combining CSP and B. Formal
Aspects of Computing, 12:182–196, 2000.

4. A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. A Refinement
Strategy for Circus. Formal Aspects of Computing, 15(2 - 3):146 — 181, 2003.

5. A. L. C. Cavalcanti and J. C. P. Woodcock. A Tutorial Introduction to CSP in
Unifying Theories of Programming. In Refinement Techniques in Software Engi-
neering, volume 3167 of LNCS, pages 220 – 268. Springer-Verlag, 2006.

6. Ana Cavalcanti and Marie-Claude Gaudel. Testing for refinement in Circus. Acta
Informatica, 48(2):97–147, 2011.

7. Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic
Logic, 5(2):56–68, June 1940.

8. Abderrahmane Feliachi, Marie-Claude Gaudel, and Burkhart Wolff. Unifying the-
ories in Isabelle/HOL. In UTP 2010, 3rd Int. Symp. on Unifying Theories of
Programming, volume 6445 of LNCS, pages 188–206. Springer Verlag, 2010.

9. Abderrahmane Feliachi, Marie-Claude Gaudel, and Burkhart Wolff. Represent-
ing circus operational semantics in isabelle/hol. Technical Report 1547, LRI,
http://www.lri.fr/Rapports-internes, Université Paris-Sud XI, November 2011.

10. Clemens Fischer. How to combine Z with process algebra. In 11th Int. Conf. of Z
Users on The Z Formal Specification Notation, pages 5–23. Springer-Verlag, 1998.

11. C. A. R. Hoare and He Jifeng. Unifying Theories of Programming. Prentice Hall
International Series in Computer Science, 1998.

12. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL—A Proof
Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer-Verlag, 2002.

13. Marcel Oliveira, Ana Cavalcanti, and Jim Woodcock. A denotational semantics
for Circus. Electron. Notes Theor. Comput. Sci., 187:107–123, 2007.

14. Markus Roggenbach. CSP-CASL: a new integration of process algebra and alge-
braic specification. Theor. Comput. Sci., 354:42–71, 2006.

15. A. W. Roscoe, C. A. R. Hoare, and Richard Bird. The Theory and Practice of
Concurrency. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1997.

18

16. A. C. A. Sampaio, J. C. P. Woodcock, and A. L. C. Cavalcanti. Refinement in
circus. In L. Eriksson and P. A. Lindsay, editors, FME 2002: Formal Methods
– Getting IT Right, volume 2391 of Lecture Notes in Computer Science, pages
451—470. Springer-Verlag, 2002.

17. K. Taguchi and K. Araki. The state-based CCS semantics for concurrent Z spec-
ification. In 1st Int. Conf. on Formal Engineering Methods, ICFEM ’97, pages
283–292. IEEE, 1997.

18. J. C. P. Woodcock and A. L. C. Cavalcanti. The semantics of Circus. In ZB
2002: Formal Specification and Development in Z and B, volume 2272 of LNCS,
pages 184—203. Springer-Verlag, 2002.

19. Frank Zeyda and Ana Cavalcanti. Encoding Circus programs in ProofPowerZ. In
Unifying Theories of Programming, 2nd Int. Symp., UTP 2008, Revised Selected
Papers, volume 5713 of LNCS. Springer-Verlag, 2009.

19

