Formal Methods and Testing: Hypotheses, and
Correctness Approximations

Marie-Claude Gaudel

LRI, Paris-Sud University & CNRS, Orsay, France
mcg at lri.fr

Abstract. It has been recognised for a while that formal specifications can
bring much to software testing. Numerous methods have been proposed for
the derivation of test cases from various kinds of formal specifications,
their submission, and verdict. All these methods rely upon some hypotheses
on the system under test that formalise the gap between the success of a test
campaign and the correctness of the system under test.

1 Introduction

It has been recognised for a while that formal specifications and models can bring
much to software testing [16], [10]. In this extended abstract, we first precisely intro-
duce the distinction between specification testing, model checking, and implementa-
tion testing based on formal specifications. Then we focus on the specificities of the
latter one.

Actually, embedding implementation testing within a formal framework is far from
being obvious. One tests a system. A system is a dynamic entity. It raises tricky
issues such as observability and controllability, and sometimes specific physical con-
straints. A system is not a formula, even if it can be partially described as such. Thus,
testing is very different from program proving, even if it is related. Similarly, testing
is different from model checking, where verifications are performed on a known model:
when testing, the model corresponding to the system under test is unknown (if it was
known, testing would not be necessary...) and it is sometimes difficult to observe in
what state it is [20], [22]. These points have been successfully circumvented in several
testing methods based on formal specifications (or models) that use various and diverse
techniques such as graph theory, symbolic evaluation, proof techniques, constraint
solving, static analysis or model checking.

Explicitly or not, all these methods rely upon hypotheses on the system under test.
They provide some approximation of correctness that is correlated to these hypotheses.
In this talk we recall the notions of testability hypotheses and selection hypotheses
that were introduced in [4], and we show how they have been used or could be used on
various kinds of formal methods. We also address the issues of observation and control
of the system under test.



2 Testing Specifications, Checking Models, or Testing
Implementations?

Before starting some discussion on formal methods and testing, it is necessary to
introduce some terminology. Unfortunately, there is no consensus on these issues
among the various research communities working in the area of software.

There is not even an agreement on the meanings of the words “validation” and
“verification” [7] [3]. Similarly, the word “testing” is often used with different mean-
ings.

Looking in a dictionary, one gets definitions such as:

“subjecting somebody or something to challenging difficulties”

In the case of software and formal methods, the “somebody or something” and the
“challenging difficulties” are sometimes understood in different ways.

In most cases, the entity under test is a system, and the “challenging difficulties”
are inputs, or sequences of inputs, aiming at revealing some dysfunctions [4], [8], [12]
[13], [15], etc. In such cases, formal descriptions of the system are mainly used as
guidelines for the selection of (sequences of) inputs and for the verdict. We focus on
these approaches in Sections 3, 4 and 5.

2.1 Debugging or Testing Formal Specifications

In some other cases, testing is understood as debugging of formal descriptions or
models. The formal description is the subject of the test. The challenges are either
properties to be satisfied or refuted [14], or inputs for some simulation of the future
system, based on the formal description [19], [11].

As the main characteristic of formal specifications is the ability of reasoning, theo-
rem proving is used either to prove that a required property is a consequence of the
specification, or to refute a property that corresponds to a forbidden situation. The
choice of such challenges is far from being simple. It requires a very good expertise in
the application domain. As the specification may be wrong, is probably a good idea to
make this choice as independent of it as possible [2], even if some positive experi-
ments have been performed on mutation of formal specifications [6].

2.2 Checking Models ... or Testing them?

Model checking is similar in purpose: it aims at finding faults in so-called models
of software systems. These models are behavioural (Kripke Structures, Finite Auto-
mata, Finite State Machine, Labelled Transition Systems, or even program control
graphs), with a finite (but often huge) number of states labelled by atomic proposi-
tions. A model checker checks properties written in some temporal logic via an ex-
haustive exploration of the model, or some equivalent technique. Here also, the choice
of the temporal properties to be checked is far from being obvious.

Model checking could be seen as a special kind of testing where the subject is a
model and the challenges are temporal properties. Actually, there is some evolution in



this direction. Due to the state explosion problem new techniques have been proposed
that somewhat give up exhaustiveness: for instance, bounded model checking [5]
where only finite prefixes of traces are considered; or randomised exploration of models
until a target coverage quality is reached [17].

2.3 Testing Implementations

When testing implementations against a formal specification, the situation is dif-
ferent. As said in the introduction, the subject of the test is an executable system,
whose internal state is often unknown. The system under test is not a formal entity.
The only way to observe it is to interact via some specific (and often limited) inter-
face, submitting inputs and collecting outputs.

3 Specifications, Implementations, and Testing

Given a specification SP and a system under test SUT, any testing activity must be
based on a relation of satisfaction (sometimes called conformance relation) that we
note SUT sat SP. This relation is usually defined on a semantic domain common to
implementations and specifications (i.e. there is some domain D such that sat C DxD)
[4], [9], [20], but in some cases they may be different (sat C DI1xD2) [9].

3.1 Test Experiments, Exhaustiveness, and Testability

The satisfaction relation SUT sat SP is generally a large conjunction of elementary
properties (for instance it may begin by “for all traces in the specification...”). These
elementary properties are the basis for the definition of what is a test experiment, a
test data, and the verdict of a test experiment, i.e. the decision whether SUT passes a
test #. The satisfaction relation as a whole is used for the definition of an exhaustive
test set, Exhaust(SP).

However, an implementation's passing all the tests in the exhaustive test set does
not necessarily mean that it satisfies the specification. This is true for a class of rea-
sonable implementations. But a totally erratic system, or a diabolic one, may pass the
exhaustive test set and then fail. More formally, the implementation under test must
fulfil some basic requirements coming from the semantic domain considered for the
implementations. As an example, in the case of finite state machines [20], the im-
plementation must behave without memory of its history. Or when faced to non-
deterministic SUT, some reasonable assumptions on the way of controlling it, or on
the way of covering all the possible behaviours, are needed. We call such properties of
the implementation the testability hypothesis, or the minimal hypothesis. We will
note it Hmin(SUT).

Hmin, Exhaust, and sat must satisfy:



Hmin(SUT) = (SUT passes Exhaust(SP) [] SUT sat SP) . 1)

There are cases where several choices are possible for the pair <Hmin, Exhaust> .
When restricting the class of implementations under test, using for instance some
knowledge on the way it was developed, it is possible to lessen Exhaust(SP).

3.2 Selection Hypotheses, Uniformity, Regularity

A black-box testing strategy can be formalised as the selection of a finite subset of
Exhaust(SP). Let us consider as an example the classical partition testing strategy
(more exactly, it should be called sub-domain testing strategy). It consists in defining
a collection of (possibly non-disjoint) subsets that covers the exhaustive test set. Then
a representative element of each subset is selected and submitted to the implementa-
tion under test.

The choice of such a strategy corresponds to stronger hypotheses than Hmin on the
system under test. We call such hypotheses selection hypotheses. In this case, it is a
uniformity hypothesis. The system is assumed to uniformly behave on the test sub-
sets UTS;:

UTS, U ... U UTS, = Exhaust(SP), and

Vi=1,..,p, Vi€ UTS, SUT passes t = SUT passes UTS, 2)

Various selection hypotheses can be formulated and combined depending on some
knowledge of the program, some coverage criteria of the specification and ultimately
cost considerations. A regularity hypothesis uses a size function on the tests and has
the form “if the subset of Exhaust(SP) made up of all the tests of size less than or
equal to a given limit is passed, then Exhaust(SP) also is” (there is some similarity
with bounded model checking).

All these hypotheses are important from a theoretical point of view because they
express the gap between the success of a test strategy and correctness. They are also
important in practice because exposing them makes clear the assumptions made on the
implementation. It gives some indication of complementary verifications.

Weak selection hypotheses lead, via formula (1), to large test sets. Strong selection
hypotheses lead to smaller, more practicable test sets, with the risk that they may not
be fulfilled. The strongest selection hypothesis is the correctness assumption: in this
case, an empty test set is sufficient...

There exist various ways to select test sets in the framework of specification-based
testing. The most used are coverage criteria based on the specification. A well-known
example in the case of finite state machines is transition coverage [10]. It corresponds
to a testability hypothesis that the SUT is some deterministic FSM. Another ap-
proach is to select tests via a finite number of test purposes describing some behav-
iours that are considered to be important to test. Combining the specification and the
tests purposes, a finite number of test cases are generated. This kind of selection is



used for example in the TGV tool [9]. It can be formalised as some restriction of the
conformance relation combined with some selection hypotheses.

3.3 The Oracle Problem

The interpretation of the results of a test is often very difficult. This difficulty is
known as the oracle problem. The problem may be difficult for various causes.

The SUT may yield the results in a way that depends on some representation
choices and makes the comparison with the specified results difficult. The test is based
on a specification that is (normally) more abstract than the program. Thus program
results may appear in a form that is not obviously equivalent to the specified results.
This contradicts a common belief that the existence of a formal specification is suffi-
cient to directly decide whether a test is a success. In presence of complex data types,
it may be necessary to embed the tests into observable contexts, or to enrich the SUT
with some concrete equivalence function [22].

Similarly, when the specification is based on states and transitions, it may be diffi-
cult to check that the SUT is in an acceptable state after a test. It may require com-
plementing the test itself by some other tests for identifying the internal state [20].

4 Axioms, Pre-conditions and Post-conditions

Historically the above framework has been developed for algebraic specifications [4],
[22]. Test data are just instantiated axioms of the specification and test experiments
consist in their evaluation by the SUT to check that they are satisfied. The exhaustive
test set is the set of all closed instances of the axioms of the specification. The test-
ability hypothesis on the SUT is that all the functions of the signature are imple-
mented in a deterministic way, and that there is no junk (no unspecified values). A
basic testing strategy is to cover once every axiom. It corresponds to uniformity hy-
potheses on the domains of their variables. This strategy can be refined by composing
axioms (unfolding functions) in order to get a better coverage of sub-cases, i.e. weaker
uniformity hypotheses. In the case of positive conditional axioms, this method has
been automated by the LOFT constraint solver [4].

In the case of VDM, Jeremy Dick and Alain Faivre [12] have proposed to reduce
the pre conditions and post conditions into disjunctive normal forms (DNF), creating a
set of disjoint input sub-domains for each operation of the specification. This provides
a nice way of discovering uniformity hypotheses. As VDM is state-based, it is not
enough to partition operations domains: thus the authors give a method of extracting a
finite state automaton from the specification. It uses the uniformity sub-domains of
the operations to perform a partition of the states. Given this finite state automaton
one can use one of the testing methods mentioned in the next section. This work has
been influential on several researches on testing based on formal methods close to
VDM, such as Z, or B, that are too numerous to be all cited here.



More recently, similar ideas have been used in the KORAT framework for testing
Java methods specified by JML preconditions and post conditions [8]. KORAT de-
rives from the precondition “all non isomorphic test cases up to a given small size”,
i.e. the selection is based on a combination of uniformity and regularity hypotheses.

5 Behavioural Models, FSM, LTS, etc

Historically, finite state machines (FSM) have been the first formal descriptions used
as basis for automatic test derivation [10]. Originally, there was a testability hypothe-
sis that the SUT behaves as a FSM with the same number (or a larger known number)
of states as the specification FSM. The conformance relation was equivalence. These
choices were adequate for hardware testing, which was the original motivation. The
excellent survey by Lee and Yannakakis presents extensions to more elaborated con-
formance notions, and to extended state machines [20]. Similar approaches have been
developed in the area of communication protocols, based on labelled transition sys-
tems (LTS) or variants of them [9]. In [15] and [21] we have stated the underlying
notions of testability hypotheses, exhaustive test sets, and selection hypotheses for
these approaches.

For some years, there is a fruitful cross-fertilisation between these so-called model-
based testing methods and model checking techniques (cf. [1] [18], [23] among many
others). For instance, the ability of model checker to provide counterexamples can be
used to produce test sequences that satisfy a property P by model-checking the prop-
erty “always not P”. Model checkers are now among the major tools for testing based
on formal specification, together with constraint solvers, theorem provers, and sym-
bolic interpreters.

6 Conclusion

There has been a lot of work on test cases derivation from formal descriptions. It is
our claim that formal approaches bring more than that to testing. They make it possi-
ble to state the underlying hypotheses associated with test strategies and thus to ex-
press the correctness approximation they introduce. This open a lot of possibilities,
first for identifying complementary verifications, second for assessing these approxi-
mations.

References

1. Ammann, P. E., Black, P.E., Majurski, W.OO Using model checking to generate tests
from specifications. IEEE International Conference on Formal Engineering Methods
(ICFEM'98), IEEE , (1998) 46-54.



2. Arnold, A., Gaudel, M.-C., Marre B.: An experiment on the validation of a specification
by heterogeneous formal means. 5th IFIP working conference on Dependable Comput-
ing for Critical Applications, Urbana Champaign, (1995) 24-34.

3. Avizienis, A., Laprie, J-C., Landwehr, C., Randell, B.: Basic Concepts and Taxonomy
of Dependable and Secure Computing. IEEE Trans. on Dependable and Secure Comput-
ing, vol. 1, n° 1, (2004) 11-33.

4. Bernot, G., Gaudel, M.-C., Marre B.: Software Testing based on Formal SpecificationsC
a theory and a tool. Software Engineering Journal, vol. 6, n° 6, (1991) 387-405.

5. Biere, A., Cimatti, A., Clarke, E., Zhu, Y. Symbolic model checking without BDDs.
TACAS’ 99, LNCS n° 1579, Springer-Verlag (1999) 193-207

6. Black, P.E., Okun, V., Yesha, Y.COMutation Operators for Specifications. IEEE Interna-
tional Conference on Automated Software Engineering (ASE2000), IEEE (2000) 81-88.

7. Boehm, B. W.: Software Engineering Economics, Prentice Hall (1981).

8. Boyapati, C., Khurshid, S., Marinov, D.: KORAT: automated testing based on Java
predicates. ACM International Symposium on Software Testing and Analysis, (2002)
123-133.

9. Brinksma, E., Tretmans, J.: Testing Transition Systems, an annotated bibliography.
Lecture Notes in Computer Science n°® 2067, Springer-Verlag (2001) 187-195.

10. Chow, T. S.: Testing Software Design Modeled by Finite-State Machines. IEEE Trans-
actions on Software Engineering, vol. SE-4, n°® 3, (1978) 178-187.

11. Desovski, D.: Combining Testing and Model Checking for Verification of High Assur-
ance Systems. IEEE Int. Symp. on High Assurance Software Engineering, IEEE (2004).
12. Dick, J., Faivre, A.: Automating the Generation and Sequencing of test cases from
model-based specifications. International Symposium of Formal Methods Europe, Lec-

ture Notes in Computer Science n°670, Springer-Verlag (1993) 268-284.

13. Farchi, E., Hartman, A., Pinter, S. S.: Using a model-based test generator to test for
standard conformance. IBM Systems Journal, vol. 41, n° 1, (2002) 89-110.

14. Garland, S.J, Guttag, J.V.: Using LP to Debug Specifications. IFIP TC2 Working Con-
ference on Programming Concepts and Methods, North-Holland (1990).

15. Gaudel, M.-C., James, P. R.: Testing Algebraic Data Types and Processes : a unifying
theory. Formal Aspects of Computing, 10(5-6), (1999) 436-451.

16. Goodenough, J. B., Gerhart, S.: Toward a Theory of Test Data Selection. IEEE Transac-
tions on Software Engineering, vol. SE-1, n°® 2, (1975) 156-173.

17. Grosu, R., Smolka, S. A.: Monte Carlo Model Checking. TACAS 2005, Lecture Notes
in Computer Science n° 3440, Springer-Verlag, (2005) 271-286.

18. Hamon, G., de Moura, L, Rushby, J.: Generating Efficient Test Sets with a Model
Checker. IEEE Int. Conf. on Software Engineering and Formal Methods, IEEE, (2004)
261-270.

19. Kemmerer, R.A.: Testing Formal Specifications to Detect Design Errors. IEEE Transac-
tions on Software Engineering, vol. SE-11, no 1 (1985) 32-43.

20. Lee, D, Yannakakis, M.: Principles and methods of Testing Finite State Machines — a
survey. The Proceedings of IEEE, vol. 84, n° 8, (1996)1089-1123.

21. Lestiennes, G., Gaudel, M.-C.: Testing Processes from Formal Specifications with
Inputs, Outputs, and Data Types. 13th IEEE Int. Symp. on Software Reliability Engi-
neering (ISSRE-2002), IEEE, (2002) 3-14.

22. Machado, P. D. L,: On Oracles for Interpreting Test Results against Algebraic Specifi-
cations. Lecture Notes in Computer Science n° 1548, Springer-Verlag (1998) 502-518.
23. Peled, D., Vardi, M., Yannakakis, M.: Black Box Checking. Proceedings of

FORTE/PSTV, Kluwer (1999) 225-240.



