The Boost interval arithmetic library

Hervé Brönnimann, Guillaume Melquiond, Sylvain Pion

The Boost interval arithmetic library - p. 1

Introduction

- Interval computations are a way to extend the usual arithmetic on numbers to intervals on these numbers. Common uses of interval arithmetic are, for example, guaranteed equation solving and error bounding.
- Some libraries already exist but they are specialized in floating-point intervals. We propose a library that accepts any kind of bounds and a wide collection of interval types.
- The computation of determinant signs will serve as an application of the library.

BOOST library

BOOST is

- a repository of free peer-reviewed portable C++ libraries (52 libraries, two thousands subscribers),
- a test bed for future inclusion of libraries in the C++ standard (STL).
- The interval arithmetic library provides a single C++ class template interval and supporting functions:
 - +, -, ×, ÷, \sqrt{x} , |x|, x^y ,
 - trigonometric, hyperbolic, inverse functions,
 - set functions, comparison operators, and so on.

Interval arithmetic

Intervals:

- closed and convex sets of a totally ordered field \mathbb{F} .
- Representation by a pair of numbers:
 - bounded intervals: [a,b] with $a \in \mathbb{F}, b \in \mathbb{F}, a \leq b$,
 - unbounded intervals: $[-\infty,b]$, $[a,+\infty]$ and $[-\infty,+\infty]$,
 - empty intervals: [a, b] without $a \le b$.

Operations

Based on canonical set extensions:

- the extension G of $g : (\mathbb{F} \times \mathbb{F}) \to \mathbb{F}$ verifies $\forall X \subset \mathbb{F}, \forall Y \subset \mathbb{F}, G(X, Y) = \{g(x, y) \mid x \in X, y \in Y\},\$
- this approach offers the inclusion property and smallest enclosing intervals.
- Example: basic operations for bounded intervals
 - [a,b] + [c,d] = [a+c,b+d],
 - [a,b] [c,d] = [a-d,b-c],
 - $[a,b] \times [c,d] = [\min(ac,bc,ad,bd), \max(ac,bc,ad,bd)],$
 - $[a,b] \div [c,d] = [a,b] \times [1 \div d, 1 \div c] \text{ if } 0 \not\in [c,d]$

(division extended by enclosure).

Rounding

• The set of bounds does not have to be \mathbb{F} .

- Example: for real intervals, bounds can be restricted to rational or floating-point numbers.
- It involves rounded operations on bounds.
- Basic operations:
 - $[a,b] + [c,d] = [a \pm c, b \pm d],$
 - $[a,b] [c,d] = [a\underline{-}d,b\overline{-}c]$,
 - etc.

BOOST C++ interval class

interval<T, Policies>:

- T is the type of the bounds:
 - the library can handle any type of bounds (for which interval arithmetic is meaningful): integer, rational, floating-point numbers, etc.
- Policies is an optional argument describing properties of ${\mathbb F}$ and of the intervals.
- The policy-based design of the library allows it to handle all the common applications of interval arithmetic.

Policies

Rounding policy:

- it provides the arithmetic kernel on bounds:
 - $\overline{+}, \underline{\times}, \sqrt{x}, \overline{\cos},$ etc,
 - all the interval functions rely on this kernel,
- the default kernel of the library handles:
 - any exact type (integers, rationals, etc)
 - floating-point numbers

(elementary functions of the standard library are not adapted),

- the policy-based design allows the user to provide its own custom kernel:
 - for example, a MPFR-based policy can be used to compute elementary functions.

Policies

Checking policy:

- this policy decides how the interval template deals with:
 - empty intervals (handled, forbidden, ignored, etc),
 - unbounded intervals, invalid numbers, etc,
- the default policy forbids empty intervals, allows unbounded intervals, and ignores invalid numbers.

Comparison policy:

- there is no obvious total order on intervals: what is the result of [1,3] < [2,4]?
- this external policy allows to locally compare them,
- the default policy extends the total order of ${\mathbb F}$ in a partial order.

Example

Evaluation of the sign of a floating-point polynomial:

- interval library additional parts,
- = * + < >: interval operators.

```
int sign_polynomial(double x, double P[], int sz) {
    // Horner's scheme; no empty intervals and standard rounding
    interval<double> y = P[sz - 1];
    for(int i = sz - 2; i >= 0; i--)
        y = y * x + P[i];
```

// sign evaluation; comparison operators now follow the "certain" policy
using namespace compare::certain;
if (y > 0.) return 1;
if (y < 0.) return -1;
return 0;</pre>

Arithmetic properties of the library

- Unbounded intervals are correctly handled: $[-1,0] \times [5,+\infty] = [-\infty,0].$
- Division returns the smallest enclosing interval: [1,2] ÷ [0,1] = [1,+∞].
 Functions can also be used to compute a pair of intervals: [1,2] ÷ [-1,1] = [-∞,-1] ∪ [1,+∞].
- Empty intervals are handled if allowed by the policy: $([1,2] \cap [3,4]) + [5,6] = \emptyset.$

Efficient floating-point intervals

- Interval arithmetic with hardware floating-point bounds is usually done by using roundings toward $-\infty$ and $+\infty$ as provided by the *IEEE-754* standard.
- However, on many processors, the rounding mode is a global flag, its change breaks the execution flow and slows down interval computations.
- Solution:
 - only use one global rounding mode:
 - $a \pm b$ can be replaced by -((-a) b),
 - $a \times b$ by $-(a \times (-b))$, etc.

Comparison with other libraries

- Comparison with Profil/BIAS [1], Sun library [2], CGAL interval kernel [3] and MPFI [4]. Some drawbacks of these libraries:
 - they only deal with floating-point formats,
 - they have a fixed behavior with respect to empty intervals,
 - infix comparison operators, if available, are not usable for any order.

```
[1] http://www.ti3.tu-harburg.de/Software/PROFIL.html
[2] http://wwws.sun.com/software/sundev/previous/cplusplus/intervals/
[3] http://www.cgal.org/
[4] http://www.ens-lyon.fr/~nrevol/mpfi.html
```

Application of the library

- Sign of a determinant:
 - useful in computational geometry:
 "is a point inside or outside a sphere?"

- Interval arithmetic yields efficient dynamic filters for computational geometry by Brönnimann, Burnikel and Pion, 2001.
- A filter will give the exact sign of the determinant or answer it cannot compute it.

- a LU-decomposition with partial pivoting: $P \cdot A = L \cdot U$,
- $\operatorname{sign}(\det A) = \det P \times \prod_i \operatorname{sign}(u_{ii}),$

- a LU-decomposition with partial pivoting: $P \cdot A = L \cdot U$,
- $\operatorname{sign}(\det A) = \det P \times \prod_i \operatorname{sign}(u_{ii}),$
- Floating-point method:
 - $P \cdot A \approx L' \cdot U'$,
 - the result is not guaranteed since the decomposition is only an approximation.

- a LU-decomposition with partial pivoting: $P \cdot A = L \cdot U$,
- $\operatorname{sign}(\det A) = \det P \times \prod_i \operatorname{sign}(u_{ii}),$
- Naïve method with intervals:
 - interval decomposition: $P \cdot A \in [L''] \cdot [U'']$,
 - if no interval $[u_{ii}'']$ contains 0, then the sign of each u_{ii} is known. The sign of det A is guaranteed.

- a LU-decomposition with partial pivoting: $P \cdot A = L \cdot U$,
- $\operatorname{sign}(\det A) = \det P \times \prod_i \operatorname{sign}(u_{ii}),$
- *A posteriori* method:
 - floating-point decomposition: $P \cdot A \approx L' \cdot U'$,
 - compute floating-point matrices $U_{inv} \approx U'^{-1}$ and $L_{inv} \approx L'^{-1}$,
 - evaluation with intervals of $||U_{inv}L_{inv}PA I||$,
 - if the norm is < 1, the result of the floating-point algorithm is guaranteed.

Complexity and overhead

- In theory, interval computations are two times slower than floating-point computations. In practice, the overhead for multiplication and division is rather a factor 3 or 4.
- Time complexity, slowdown and overhead:

	operations		algorithm	multiplication
	number	interval	slowdown	overhead
fbating-point	$n^{3}/3$	0		
naïve	0	$n^{3}/3$	2.6 - 3	≈ 3.5
a posteriori	n^3	n^3	8 - 10	≈ 2

By careful design, the library can reach the optimal overhead for the *a posteriori* filter.

Some more thoughts

Spatial complexity:

- the a posteriori method only requires twice the space needed by the floating-point algorithm.
- Dealing with imprecise inputs:
 - the matrix is given by an interval enclosure [A],
 - both methods keep the same overall complexity.
- Small determinants:
 - speed and precision comparison of direct, block, naïve methods for 4×4 determinants.

Conclusion

We have designed a C++ interval arithmetic library:

- its policy-based design allows it to emulate a wide collection of interval types and to handle any kind of bounds,
- it is as fast as other optimized libraries when it comes to intervals with hardware floating-point bounds,
- it works on x86, Sparc, PowerPC, and can be easily adapted to other architectures.
- The library is available in the Boost repository: http://www.boost.org/

