The Boost interval
arithmetic library

Hervé Bronnimann, Guillaume Melquiond, Sylvain Pion



Introduction

#» Interval computations are a way to extend the usual
arithmetic on numbers to intervals on these numbers.
Common uses of interval arithmetic are, for example,
guaranteed equation solving and error bounding.

» Some libraries already exist but they are specialized in
floating-point intervals. We propose a library that
accepts any kind of bounds and a wide collection of
Interval types.

#» The computation of determinant signs will serve as an

application of the library.

The Boost interval arithmetic library — p. 2



BoosT library

» BoOOSTIS

» a repository of free peer-reviewed portable C++
libraries (52 libraries, two thousands subscribers),

» atest bed for future inclusion of libraries in the
C++ standard (STL).

# The interval arithmetic library provides a single C++
class template i nt er val and supporting functions:

» _|_1 — X, +1 \/51
» trigonometric, hyperbolic, inverse functions,
» set functions, comparison operators, and so on.

B

The Boost interval arithmetic library — p. 3

x|, xY,




Interval arithmetic

#» Intervals:
» closed and convex sets of a totally ordered field F.

#» Representation by a pair of numbers:
» bounded intervals:
la, bl witha e F, b € F,a < b,
» unbounded intervals:
|[—00,b], |a,+oc] and [—oo, +00],
» empty intervals:
la, b] without a < b.

|

The Boost interval arithmetic library — p. 4



Operations

® Based on canonical set extensions:
» the extension G of g : (F x ) — I verifies
VX CF,VY CF,GX,)Y)={g(x,y) |z € X,y € Y},

» this approach offers the inclusion property and
smallest enclosing intervals.

#» Example: basic operations for bounded intervals

o

»
9
9

a,b] +
:CL, b -
a,b] x

a,b] +

c,d
c,d
c,d

c,d

a+c, b+ d,

a—d,b— ¢,

min(ac, be, ad, bd), max(ac, be, ad, bd)],
a,b] x [1+d,1+c]if0¢ |cd]

(division extended by enclosure).

|

The Boost interval arithmetic library — p. 5



Rounding

® The set of bounds does not have to be F.

» Example: for real intervals, bounds can be
restricted to rational or floating-point numbers.

» It involves rounded operations on bounds.
#» Basic operations:

s [a,b] + [c,d] = [a+c, b+d],

s |a,b] —|c,d] = |la—d, b—(],

s efc.

B

The Boost interval arithmetic library — p. 6



BoosT C++ 1 nterval class

® Interval <T, Policies>:

» T Is the type of the bounds:
s the library can handle any type of bounds (for
which interval arithmetic is meaningful): integer,
rational, floating-point numbers, etc.

» Pol i ci es Is an optional argument describing
properties of ¥ and of the intervals.

#® The policy-based design of the library allows it to
handle all the common applications of interval

arithmetic.

The Boost interval arithmetic library — p. 7



Policles

#» Rounding policy:
» It provides the arithmetic kernel on bounds:
s +, X, +/x, CoS, etc,
s all the interval functions rely on this kernel,
» the default kernel of the library handles:
s any exact type (integers, rationals, etc)
s floating-point numbers

(elementary functions of the standard library are not adapted),

» the policy-based design allows the user to provide
Its own custom kernel:
s for example, a MPFR-based policy can be used

to compute elementary functions.

The Boost interval arithmetic library — p. 8



Policles

#» Checking policy:

» this policy decides how the i nt er val template
deals with:
e empty Intervals (handled, forbidden, ignored, etc),
s unbounded intervals, invalid numbers, etc,

» the default policy forbids empty intervals, allows
unbounded intervals, and ignores invalid numbers.
#» Comparison policy:
» there is no obvious total order on intervals:
what is the result of [1, 3] < [2,4]?

» this external policy allows to locally compare them,

» the default policy extends the total order of F in a
partial order. I

The Boost interval arithmetic library — p. 9



Example

# Evaluation of the sign of a floating-point polynomial:
» Interval library additional parts,
s =*+ <>!Interval operators.

i nt sign_polynom al (double x, double P[], int sz) {
// Horner’s scheme; no empty intervals and standard rounding
| nterval <double>y = P[sz - 1];
for(int i =sz - 2;, 1 >=0; i--)
y =y * x+ Pi];

// sign evaluation; comparison operators now follow the “certain” policy
usi Nng nanespace conpare::certain;

if (y >0.) return 1;

if (y <0.) return -1;

return O;

| |

The Boost interval arithmetic library — p. 10



Arithmetic properties of the library

#» Unbounded intervals are correctly handled:
|—1,0] x [5,+00| = [—00,0].

#» Division returns the smallest enclosing interval:
11,2] = [0,1] = [1, +o0].
Functions can also be used to compute a pair of
intervals: [1,2] + |—1,1] = |[—oc0, —1] U [1, +0].

#» Empty intervals are handled if allowed by the policy:
(11,2 N [3,4]) + [5,6] = 0.

B

The Boost interval arithmetic library — p. 11



Efficient floating-point intervals

# Interval arithmetic with hardware floating-point bounds
IS usually done by using roundings toward —oc and
+o0 as provided by the IEEE-754 standard.

#» However, on many processors, the rounding mode is a
global flag, its change breaks the execution flow and
slows down interval computations.

» Solution:

» only use one global rounding mode:
s a + bcan be replaced by —((—a) — b),
s axbby—(ax (=b)), etc.

B

The Boost interval arithmetic library — p. 12



Comparison with other libraries

» Comparison with Profil/BIAS [1], Sun library [2], CGAL
Interval kernel [3] and MPFI [4].
Some drawbacks of these libraries:

» they only deal with floating-point formats,

» they have a fixed behavior with respect to empty
Intervals,

» Infix comparison operators, if available, are not
usable for any order.

[1] http://wwv. ti 3. tu- harburg. de/ Sof t war e/ PROFI L. ht
[2] htt p: // wws. sun. com sof t war e/ sundev/ pr evi ous/ cpl uspl us/ i nterval s/
[B] htt p://ww. cgal . org/

[4] http://ww. ens-1yon. fr/~nrevol /npfi.htm I

The Boost interval arithmetic library — p. 13


http://www.ti3.tu-harburg.de/Software/PROFIL.html
http://wwws.sun.com/software/sundev/previous/cplusplus/intervals/
http://www.cgal.org/
http://www.ens-lyon.fr/~nrevol/mpfi.html

Application of the library

#» Sign of a determinant:

» useful in computational geometry:

“Is a point inside or outside a sphere?”
Ar Qy a:% + aZ
.| b by b2+ b2
sign 5 5
b Cx Cy CpTtCy
de dy d2+d2

_ e e

# Interval arithmetic yields efficient dynamic filters for

computational geometry
by Bronnimann, Burnikel and Pion, 2001.

#» A filter will give the exact sign of the determinant or

answer it cannot compute It. I

The Boost interval arithmetic library — p. 14



Sign of a determinant

# Theoretical method to compute the sign of det A:
» a LU-decomposition with partial pivoting:
P-A=1L-U,
s sign(det A) =det P x ], sign(us),

|

The Boost

interval arithmetic library — p. 15



Sign of a determinant

#» Theoretical method to compute the sign of det A:
» a LU-decomposition with partial pivoting:
P-A=1L-U,
s sign(det A) =det P x ], sign(us),
# Floating-point method:
s P- A= L -U,
» the result is not guaranteed since the
decomposition Is only an approximation.

B

The Boost

interval arithmetic library — p. 16



Sign of a determinant

#» Theoretical method to compute the sign of det A:
» a LU-decomposition with partial pivoting:
P-A=1L-U,
s sign(det A) =det P x ], sign(us),
#» Naive method with intervals:
s interval decomposition: P- A € [L"] - [U"],
s if nointerval [u!;] contains 0, then the sign of each
u; 1S known. The sign of det A Is guaranteed.

B

The Boost interval arithmetic library — p. 17



Sign of a determinant

#» Theoretical method to compute the sign of det A:

» a LU-decomposition with partial pivoting:
P-A=L-U,

s sign(det A) =det P x ], sign(us),
#» A posteriori method:
» floating-point decomposition: P- A~ L' - U’,
s compute floating-point matrices U;,,, ~ U'~! and
Lipy =~ L',
» evaluation with intervals of ||U;,, L, PA — ||,
» If the normis < 1, the result of the floating-point

algorithm is guaranteed.

The Boost interval arithmetic library — p. 18




Complexity and overhead

# In theory, interval computations are two times slower

than floating-point computations.
In practice, the overhead for multiplication and division

IS rather a factor 3 or 4.
#» Time complexity, slowdown and overhead:

operations algorithm | multiplication
number interval | slowdown overhead
floating-point | n3/3 0
naive 0 n3/3 2.6 — 3 ~ 3.5
a posteriori n3 n3 8 — 10 ~ 2

® By careful design, the library can reach the optimal
overhead for the a posteriori filter.

B

The Boost interval arithmetic library — p. 19



Some more thoughts

#» Spatial complexity:
» the a posteriori method only requires twice the
space needed by the floating-point algorithm.

#® Dealing with imprecise inputs:
» the matrix is given by an interval enclosure [A],
» both methods keep the same overall complexity.

#» Small determinants:
» speed and precision comparison of direct, block,

naive methods for 4 x 4 determinants.

The Boost interval arithmetic library — p. 20



Conclusion

#» \We have designed a C++ interval arithmetic library:

» Its policy-based design allows it to emulate a wide
collection of interval types and to handle any kind of
bounds,

» Itis as fast as other optimized libraries when it
comes to intervals with hardware floating-point
bounds,

» It works on x86, Sparc, PowerPC, and can be easily
adapted to other architectures.

# The library is available in the Boost repository:

http://ww. boost. org/

The Boost interval arithmetic library — p. 21


http://www.boost.org/

Questions?



	Introduction
		extsc {Boost} library
	Interval arithmetic
	Operations
	Rounding
		extsc {Boost} C++ 	exttt {interval} class
	Policies
	Policies
	Example
	Arithmetic properties of the library
	Efficient floating-point intervals
	Comparison with other libraries
	Application of the library
	Sign of a determinant
	Sign of a determinant
	Sign of a determinant
	Sign of a determinant
	Complexity and overhead
	Some more thoughts
	Conclusion
	Questions?

