
The Boost interval
arithmetic library

Hervé Brönnimann, Guillaume Melquiond, Sylvain Pion

ECOLE NORMALE SUPERIEURE DE LYON

The Boost interval arithmetic library – p. 1

Introduction

Interval computations are a way to extend the usual
arithmetic on numbers to intervals on these numbers.
Common uses of interval arithmetic are, for example,
guaranteed equation solving and error bounding.

Some libraries already exist but they are specialized in
floating-point intervals. We propose a library that
accepts any kind of bounds and a wide collection of
interval types.

The computation of determinant signs will serve as an
application of the library.

The Boost interval arithmetic library – p. 2

BOOST library

BOOST is
a repository of free peer-reviewed portable C++
libraries (52 libraries, two thousands subscribers),
a test bed for future inclusion of libraries in the
C++ standard (STL).

The interval arithmetic library provides a single C++
class template interval and supporting functions:

+, −, ×, ÷,
√

x, |x|, xy,
trigonometric, hyperbolic, inverse functions,
set functions, comparison operators, and so on.

The Boost interval arithmetic library – p. 3

Interval arithmetic

Intervals:
closed and convex sets of a totally ordered field F.

Representation by a pair of numbers:
bounded intervals:
[a, b] with a ∈ F, b ∈ F, a ≤ b,
unbounded intervals:
[−∞, b], [a,+∞] and [−∞,+∞],
empty intervals:
[a, b] without a ≤ b.

The Boost interval arithmetic library – p. 4

Operations

Based on canonical set extensions:
the extension G of g : (F × F) → F verifies
∀X ⊂ F,∀Y ⊂ F, G(X,Y) = {g(x, y) | x ∈ X, y ∈ Y },
this approach offers the inclusion property and
smallest enclosing intervals.

Example: basic operations for bounded intervals
[a, b] + [c, d] = [a + c, b + d],
[a, b] − [c, d] = [a − d, b − c],
[a, b] × [c, d] = [min(ac, bc, ad, bd),max(ac, bc, ad, bd)],
[a, b] ÷ [c, d] = [a, b] × [1 ÷ d, 1 ÷ c] if 0 6∈ [c, d]
(division extended by enclosure).

The Boost interval arithmetic library – p. 5

Rounding

The set of bounds does not have to be F.
Example: for real intervals, bounds can be
restricted to rational or floating-point numbers.
It involves rounded operations on bounds.

Basic operations:
[a, b] + [c, d] = [a+c, b+d],

[a, b] − [c, d] = [a−d, b−c],
etc.

The Boost interval arithmetic library – p. 6

BOOST C++ interval class

interval<T, Policies>:
T is the type of the bounds:

the library can handle any type of bounds (for
which interval arithmetic is meaningful): integer,
rational, floating-point numbers, etc.

Policies is an optional argument describing
properties of F and of the intervals.

The policy-based design of the library allows it to
handle all the common applications of interval
arithmetic.

The Boost interval arithmetic library – p. 7

Policies

Rounding policy:
it provides the arithmetic kernel on bounds:

+, ×,
√

x, cos, etc,
all the interval functions rely on this kernel,

the default kernel of the library handles:
any exact type (integers, rationals, etc)
floating-point numbers
(elementary functions of the standard library are not adapted),

the policy-based design allows the user to provide
its own custom kernel:

for example, a MPFR-based policy can be used
to compute elementary functions.

The Boost interval arithmetic library – p. 8

Policies

Checking policy:
this policy decides how the interval template
deals with:

empty intervals (handled, forbidden, ignored, etc),
unbounded intervals, invalid numbers, etc,

the default policy forbids empty intervals, allows
unbounded intervals, and ignores invalid numbers.

Comparison policy:
there is no obvious total order on intervals:
what is the result of [1, 3] < [2, 4]?
this external policy allows to locally compare them,
the default policy extends the total order of F in a
partial order.

The Boost interval arithmetic library – p. 9

Example

Evaluation of the sign of a floating-point polynomial:
interval library additional parts,
= * + < >: interval operators.

int sign_polynomial(double x, double P[], int sz) {

// Horner’s scheme; no empty intervals and standard rounding

interval<double> y = P[sz - 1];

for(int i = sz - 2; i >= 0; i--)

y = y * x + P[i];

// sign evaluation; comparison operators now follow the “certain” policy

using namespace compare::certain;

if (y > 0.) return 1;

if (y < 0.) return -1;

return 0;

}

The Boost interval arithmetic library – p. 10

Arithmetic properties of the library

Unbounded intervals are correctly handled:
[−1, 0] × [5,+∞] = [−∞, 0].

Division returns the smallest enclosing interval:
[1, 2] ÷ [0, 1] = [1,+∞].
Functions can also be used to compute a pair of
intervals: [1, 2] ÷ [−1, 1] = [−∞,−1] ∪ [1,+∞].

Empty intervals are handled if allowed by the policy:
([1, 2] ∩ [3, 4]) + [5, 6] = ∅.

The Boost interval arithmetic library – p. 11

Efficient floating-point intervals

Interval arithmetic with hardware floating-point bounds
is usually done by using roundings toward −∞ and
+∞ as provided by the IEEE-754 standard.

However, on many processors, the rounding mode is a
global flag, its change breaks the execution flow and
slows down interval computations.

Solution:
only use one global rounding mode:

a + b can be replaced by −((−a) − b),
a × b by −(a × (−b)), etc.

The Boost interval arithmetic library – p. 12

Comparison with other libraries

Comparison with Profil/BIAS [1], Sun library [2], CGAL
interval kernel [3] and MPFI [4].
Some drawbacks of these libraries:

they only deal with floating-point formats,
they have a fixed behavior with respect to empty
intervals,
infix comparison operators, if available, are not
usable for any order.

[1] http://www.ti3.tu-harburg.de/Software/PROFIL.html
[2] http://wwws.sun.com/software/sundev/previous/cplusplus/intervals/
[3] http://www.cgal.org/
[4] http://www.ens-lyon.fr/~nrevol/mpfi.html

The Boost interval arithmetic library – p. 13

http://www.ti3.tu-harburg.de/Software/PROFIL.html
http://wwws.sun.com/software/sundev/previous/cplusplus/intervals/
http://www.cgal.org/
http://www.ens-lyon.fr/~nrevol/mpfi.html

Application of the library

Sign of a determinant:
useful in computational geometry:
“is a point inside or outside a sphere?”

bd
c

a

sign

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

ax ay a2
x

+ a2
y

1

bx by b2
x

+ b2
y

1

cx cy c2
x

+ c2
y

1

dx dy d2
x

+ d2
y

1

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

Interval arithmetic yields efficient dynamic filters for
computational geometry
by Brönnimann, Burnikel and Pion, 2001.

A filter will give the exact sign of the determinant or
answer it cannot compute it.

The Boost interval arithmetic library – p. 14

Sign of a determinant

Theoretical method to compute the sign of detA:
a LU-decomposition with partial pivoting:
P · A = L · U ,
sign(detA) = det P × ∏

i sign(uii),

The Boost interval arithmetic library – p. 15

Sign of a determinant

Theoretical method to compute the sign of detA:
a LU-decomposition with partial pivoting:
P · A = L · U ,
sign(detA) = det P × ∏

i sign(uii),

Floating-point method:
P · A ≈ L′ · U ′,
the result is not guaranteed since the
decomposition is only an approximation.

The Boost interval arithmetic library – p. 16

Sign of a determinant

Theoretical method to compute the sign of detA:
a LU-decomposition with partial pivoting:
P · A = L · U ,
sign(detA) = det P × ∏

i sign(uii),

Naïve method with intervals:
interval decomposition: P · A ∈ [L′′] · [U ′′],
if no interval [u′′

ii] contains 0, then the sign of each
uii is known. The sign of detA is guaranteed.

The Boost interval arithmetic library – p. 17

Sign of a determinant

Theoretical method to compute the sign of detA:
a LU-decomposition with partial pivoting:
P · A = L · U ,
sign(detA) = det P × ∏

i sign(uii),

A posteriori method:
floating-point decomposition: P · A ≈ L′ · U ′,
compute floating-point matrices Uinv ≈ U ′−1 and
Linv ≈ L′−1,
evaluation with intervals of ||UinvLinvPA − I||,
if the norm is < 1, the result of the floating-point
algorithm is guaranteed.

The Boost interval arithmetic library – p. 18

Complexity and overhead

In theory, interval computations are two times slower
than floating-point computations.
In practice, the overhead for multiplication and division
is rather a factor 3 or 4.
Time complexity, slowdown and overhead:

operations algorithm multiplication

number interval slowdown overhead

floating-point n 3/3 0

naïve 0 n3/3 2.6 − 3 ≈ 3.5

a posteriori n3 n3 8 − 10 ≈ 2

By careful design, the library can reach the optimal
overhead for the a posteriori filter.

The Boost interval arithmetic library – p. 19

Some more thoughts

Spatial complexity:
the a posteriori method only requires twice the
space needed by the floating-point algorithm.

Dealing with imprecise inputs:
the matrix is given by an interval enclosure [A],
both methods keep the same overall complexity.

Small determinants:
speed and precision comparison of direct, block,
naïve methods for 4 × 4 determinants.

The Boost interval arithmetic library – p. 20

Conclusion

We have designed a C++ interval arithmetic library:
its policy-based design allows it to emulate a wide
collection of interval types and to handle any kind of
bounds,
it is as fast as other optimized libraries when it
comes to intervals with hardware floating-point
bounds,
it works on x86, Sparc, PowerPC, and can be easily
adapted to other architectures.

The library is available in the Boost repository:
http://www.boost.org/

The Boost interval arithmetic library – p. 21

http://www.boost.org/

Questions?

The Boost interval arithmetic library – p. 22

	Introduction
		extsc {Boost} library
	Interval arithmetic
	Operations
	Rounding
		extsc {Boost} C++ 	exttt {interval} class
	Policies
	Policies
	Example
	Arithmetic properties of the library
	Efficient floating-point intervals
	Comparison with other libraries
	Application of the library
	Sign of a determinant
	Sign of a determinant
	Sign of a determinant
	Sign of a determinant
	Complexity and overhead
	Some more thoughts
	Conclusion
	Questions?

