Generating formally certified bounds on values and round-off errors

Marc DAUMAS and Guillaume MELQUIOND

LIP Computer Science Laboratory
UMR 5668 CNRS–ENS Lyon–INRIA–UCBL
Lyon, France
Introduction

- Formal certification of software is spreading. But investigating numerical problems is still limited.
- Certifying a numerical code is tedious and error-prone.
- Tools for naive users are necessary.
Introduction

Formal certification of software is spreading. But investigating numerical problems is still limited.

Certifying a numerical code is tedious and error-prone.

Tools for naive users are necessary.

Certification goals:

- variables are bounded (e.g. no square root of a negative number, etc), so that no exceptional behavior is triggered,
- round-off errors are contained, so that the final result of an algorithm is sufficiently accurate.
Certifying numerical properties on a program f.

$x \in [a, b] \implies \overline{f(x)} \in [c, d]$

given \uparrow

Formal proof \uparrow

automatically generated \uparrow

given or deduced
Certifying numerical properties on a program f.

$x \in [a, b] \implies \overline{f(x)} \in [c, d]$

- given
- Formal proof
- automatically generated
- given or deduced

Constraints on f:
- loops are static,
- no branching,
- equivalent to single assignment.

These constraints are handled by other classical certification tools.
The example of an aeronautical application. Robustness is critical, the implementation needs to be certified. Yet the algorithm is mathematically simple, its study should not require much human expertise.

Methods used to analyze numerical programs. Bounds on variable are computed through interval arithmetic, and round-off errors are propagated through forward error analysis.

Formal proofs. Why a formal proof? Conclusion and perspectives.
Safety distances between aircrafts

Conversion from geodetic to euclidean data.

\[\phi_0 \leftarrow (\phi_1 + \phi_2)/2 \]
\[r_{p0} \leftarrow R_p(\phi_0) \]
\[s_{N1} \leftarrow v_{N1}/R_m(\phi_1) \]
\[s_{N2} \leftarrow v_{N2}/R_m(\phi_2) \]
\[px \leftarrow (\lambda_1 - \lambda_2) \times r_{p0} \]
\[py \leftarrow (\phi_1 - \phi_2) \times R_m(\phi_0) \]
\[vx_1 \leftarrow v_{E1} \times r_{p0}/R_p(\phi_1 + s_{N1} \times t_r) \]
\[vx_2 \leftarrow v_{E2} \times r_{p0}/R_p(\phi_2 + s_{N2} \times t_r) \]
Safety distances between aircrafts

Earth local radii (WGS84):

\[R_p(\phi) = \frac{a}{1 + (1 - f)^2 \tan^2 \phi} \]

\[R_m(\phi) = \frac{a(1 - e^2)}{(1 - e^2 \sin^2 \phi)^{3/2}} \]
Safety distances between aircrafts

Earth local radii (WGS84):

\[R_p(\phi) = \frac{a}{1 + (1 - f)^2 \tan^2 \phi} \]
\[R_m(\phi) = \frac{a(1 - e^2)}{(1 - e^2 \sin^2 \phi)^{3/2}} \]

Use of approximations (introduces truncation errors):

\[x \leftarrow 511225 \times 2^{-18} - \phi^2 \]
\[\hat{R}_p(\phi) \leftarrow 4439091 \cdot 2^{-2} + x \times (9023647 \cdot 2^{-2} + x \times (13868737 \cdot 2^{-6} + x \times (13233647 \cdot 2^{-11} + x \times (\ldots)))))) \]
Containing the error

- Taking into account measurement errors on input, truncation errors on algorithm, and rounding errors during computations.
- Numerical properties of the program are described by a formal proof, automatically certified with the Coq proof checker.
Parts of the Coq script:

Variable V_vx_2: float.
Hypothesis H_vx_2: (Div_float V_T8 V_Rp_2_c0 V_vx_2).
Definition B_16 := (Eint_bound Cl_16 Cu_16 V_Rp_a3).
...
Definition Ce_195 := (Float '1' '-11').
Lemma E_195: ... -> B_16 -> ... ->
 (Eint_error Ce_195 V_vx_2 R_vx_2).

The last lemma can be read as follow.

Hypotheses:
\[H_{vx2}: \tilde{\nu}_2 \leftarrow \tilde{t}_8 \odot R_{p2c}, \]
\[B_{16}: R_{p3} = 13233647 \times 2^{-11}, \]
...

Conclusion: \[|\nu_{x2} - \tilde{\nu}_{x2}| \leq 2^{-11}. \]
The example of an aeronautical application. Robustness is critical, the implementation needs to be certified. Yet the algorithm is mathematically simple, its study should not require much human expertise.

Methods used to analyze numerical programs. Bounds on variable are computed through interval arithmetic, and round-off errors are propagated through forward error analysis.

Formal proofs. Why a formal proof? Conclusion and perspectives.
Bounding the variables

Compute the bounds by interval arithmetic. For each floating point operator \(\Box \), define an interval operator such that

\[
\forall A, B \in \mathbb{IF}, A \Box B \supseteq \{ \tilde{c} \in \mathbb{F} | \tilde{a} \in A, \tilde{b} \in B, c = \tilde{a} \Box \tilde{b} \}
\]
Bounding the variables

- Compute the bounds by interval arithmetic. For each floating point operator \(\square \), define an interval operator such that
\[
\forall A, B \in IF, A \square B \supseteq \{ \tilde{c} \in F | \tilde{a} \in A, \tilde{b} \in B, c = \tilde{a} \square \tilde{b} \}
\]

- Floating point operators are monotone: if \(A = [a, \bar{a}] \) and \(B = [b, \bar{b}] \), then we define
\[
A \oplus B = [a \oplus b, \bar{a} \oplus \bar{b}],
\]
\[
A \ominus B = [a \ominus \bar{b}, \bar{a} \ominus b],
\]
\[
A \otimes B = [\min(a \otimes b, a \otimes \bar{b}, \bar{a} \otimes b, \bar{a} \otimes \bar{b}), \max(a \otimes b, a \otimes \bar{b}, \bar{a} \otimes b, \bar{a} \otimes \bar{b})],
\]

- etc.
Bounding the variables

Floating-point interval operators:

\[A \oplus B = [a \oplus b, \overline{a} \oplus \overline{b}], \]
\[A \ominus B = [a \ominus b, \overline{a} \ominus \overline{b}], \]
\[A \otimes B = \left[\min(a \otimes b, a \otimes \overline{b}, \overline{a} \otimes b, \overline{a} \otimes \overline{b}), \right. \]
\[\left. \max(a \otimes b, a \otimes \overline{b}, \overline{a} \otimes b, \overline{a} \otimes \overline{b}) \right]. \]

This is an exotic interval arithmetic implementation: the computed bounds are not to be rounded up or down.

Hence we use the Boosta interval arithmetic library.

It is combined with the SoftFloat library to provide support for all floating point formats.

\[^{a} \text{Brönnimann, Melquiond, Pion, } \text{http://www.boost.org/libs/numeric/interval/} \]
Bounding the errors

Errors are also bounded by intervals ($\tilde{v} \in \mathbb{F}$, $v \in \mathbb{R}$):

- **absolute error**: $v - \tilde{v} \in A_{\tilde{v},v}$,
- **relative error**: $v/\tilde{v} - 1 \in R_{\tilde{v},v}$ for v and \tilde{v} of same sign.
Bounding the errors

- Errors are also bounded by intervals ($\tilde{v} \in \mathbb{F}$, $v \in \mathbb{R}$):
 - **absolute error**: $v - \tilde{v} \in A_{\tilde{v},v}$,
 - **relative error**: $v/\tilde{v} - 1 \in R_{\tilde{v},v}$ for v and \tilde{v} of same sign.

- Absolute error of the multiplication:

 $$
x \times y - \tilde{x} \otimes \tilde{y} = (x \times y - \tilde{x} \times \tilde{y}) + (\tilde{x} \times \tilde{y} - \tilde{x} \otimes \tilde{y})
 = (x - \tilde{x})\tilde{y} + (y - \tilde{y})\tilde{x} + (x - \tilde{x})(y - \tilde{y}) + \epsilon_0
 \quad A_{x \times y, \tilde{x} \otimes \tilde{y}} \subseteq A_{x, \tilde{x}}\tilde{Y} + A_{y, \tilde{y}}\tilde{X} + A_{x, \tilde{x}}A_{y, \tilde{y}} + A_{\tilde{x} \otimes \tilde{y}}^0
 \quad \epsilon_0 \in A_{\tilde{x} \otimes \tilde{y}}^0 \text{ is the rounding error.}
$$
Bounding the errors

- **Absolute error of the multiplication:**

\[
x \times y - \tilde{x} \otimes \tilde{y} = (x \times y - \tilde{x} \times \tilde{y}) + (\tilde{x} \times \tilde{y} - \tilde{x} \otimes \tilde{y})
\]

\[
= (x - \tilde{x})\tilde{y} + (y - \tilde{y})\tilde{x} + (x - \tilde{x})(y - \tilde{y}) + \epsilon_0
\]

\[
A_{x \times y, \tilde{x} \otimes \tilde{y}} \subseteq A_{x, \tilde{x}} \tilde{Y} + A_{y, \tilde{y}} \tilde{X} + A_{x, \tilde{x}} A_{y, \tilde{y}} + A^0_{\tilde{x} \otimes \tilde{y}}
\]

- This is **traditional** interval arithmetic:
 - interval operators deal with **real** numbers,
 - interval bounds are **rounded** up and down through **MPFR**.
The example of an aeronautical application. Robustness is critical, the implementation needs to be certified. Yet the algorithm is mathematically simple, its study should not require much human expertise.

Methods used to analyze numerical programs. Bounds on variable are computed through interval arithmetic, and round-off errors are propagated through forward error analysis.

Formal proofs. Why a formal proof? Conclusion and perspectives.
Automatically computing bounds on variables and errors may suffer from limitations or bugs from the tools. Examples:

- no support for subnormal numbers,
- a problem in the underlying arithmetic libraries.
Automatically computing bounds on variables and errors may suffer from **limitations** or **bugs** from the tools. Examples:

- no support for subnormal numbers,
- a problem in the underlying arithmetic libraries.

Two solutions:

1. certify the tools and their libraries,
2. generate a **formal proof** along the computations.
The tool is external, not tied to any proof checker. It can act as an oracle and simplify the proof.

If the user just wants the tool to prove $|x - \tilde{x}| < 1.5$, no need to generate the complex proof of the optimal bound $|x - \tilde{x}| < 1.43569726$.

The shorter the numbers are, the faster multi-precision floating point arithmetic is. Simpler proofs are validated faster.
Certifying the numerical behavior of a program is a tedious task:
- tools are a necessity,
- they should not require extensive knowledge on the domain.

Advantage of our approach to formal proof:
- no need for a blind faith in the tools,
- results are usable in an extensive formal certification of a program.
Perspectives

- Interface our tools with Why:
 - a software verification tool,
 - it generates proof obligations for Coq, PVS, etc.
- Handle alternate computer arithmetics:
 - floating point, double-double,
 - fixed point arithmetic.
- Generate formal proofs for other proof checkers.