
Generating formally certified
bounds on values and round-off

errors
Marc DAUMAS and Guillaume MELQUIOND

LIP Computer Science Laboratory

UMR 5668 CNRS–ENS Lyon–INRIA–UCBL

Lyon, France

Generating formally certified bounds on values and round-off errors – p. 1

Introduction

Formal certification of software is spreading. But
investigating numerical problems is still limited.

Certifying a numerical code is tedious and error-prone.

Tools for naive users are necessary.

Generating formally certified bounds on values and round-off errors – p. 2

Introduction

Formal certification of software is spreading. But
investigating numerical problems is still limited.

Certifying a numerical code is tedious and error-prone.

Tools for naive users are necessary.

Certification goals:
variables are bounded (e.g. no square root of a
negative number, etc), so that no exceptional
behavior is triggered,
round-off errors are contained, so that the final
result of an algorithm is sufficiently accurate.

Generating formally certified bounds on values and round-off errors – p. 2

Introduction

Certifying numerical properties on a program f .

x ∈ [a, b] =⇒ f̃(x) ∈ [c, d]

↑ ↑ ↑

given Formal proof given or

automatically generated deduced

Generating formally certified bounds on values and round-off errors – p. 3

Introduction

Certifying numerical properties on a program f .

x ∈ [a, b] =⇒ f̃(x) ∈ [c, d]

↑ ↑ ↑

given Formal proof given or

automatically generated deduced

Constraints on f :
loops are static,
no branching,
equivalent to single assignment.

These constraints are handled by other classical
certification tools.

Generating formally certified bounds on values and round-off errors – p. 3

Outline

The example of an aeronautical application.
Robustness is critical, the implementation needs to be
certified. Yet the algorithm is mathematically simple, its
study should not require much human expertise.

Methods used to analyze numerical programs.
Bounds on variable are computed through interval
arithmetic, and round-off errors are propagated
through forward error analysis.

Formal proofs.
Why a formal proof? Conclusion and perspectives.

Generating formally certified bounds on values and round-off errors – p. 4

Safety distances between aircrafts

Conversion from geodetic to euclidean data.

φ0 ← (φ1 + φ2)/2

rp0 ← Rp(φ0)

sN1 ← vN1/Rm(φ1)

sN2 ← vN2/Rm(φ2)

px ← (λ1 − λ2) ∗ rp0

py ← (φ1 − φ2) ∗Rm(φ0)

vx1 ← vE1 ∗ rp0/Rp(φ1 + sN1 ∗ tr)

vx2 ← vE2 ∗ rp0/Rp(φ2 + sN2 ∗ tr)

Generating formally certified bounds on values and round-off errors – p. 5

Safety distances between aircrafts

Earth local radii (WGS84):

Rp(φ) =
a

1 + (1− f)2 tan2 φ

Rm(φ) =
a(1− e2)

(1− e2 sin2 φ)3/2

Generating formally certified bounds on values and round-off errors – p. 6

Safety distances between aircrafts

Earth local radii (WGS84):

Rp(φ) =
a

1 + (1− f)2 tan2 φ

Rm(φ) =
a(1− e2)

(1− e2 sin2 φ)3/2

Use of approximations (introduces truncation errors):

x ← 511225× 2−18 − φ2

R̂p(φ) ← 4439091 · 2−2 + x× (9023647 · 2−2 + x× (

13868737 · 2−6 + x× (13233647 · 2−11 + x× (

−1898597 · 2−14 + x× (−6661427 · 2−17)))))

Generating formally certified bounds on values and round-off errors – p. 6

Containing the error

Taking into account measurement errors on input,
truncation errors on algorithm, and rounding errors
during computations.

Numerical properties of the program are described by
a formal proof, automatically certified with the Coq
proof checker.

Generating formally certified bounds on values and round-off errors – p. 7

Containing the error

Parts of the Coq script:
Variable V_vx_2: float.

Hypothesis H_vx_2: (Div_float V_T8 V_Rp_2_c0 V_vx_2).

Definition B_16 := (Eint_bound Cl_16 Cu_16 V_Rp_a3).

...

Definition Ce_195 := (Float ‘1‘ ‘-11‘).

Lemma E_195: ... -> B_16 -> ... ->

(Eint_error Ce_195 V_vx_2 R_vx_2).

The last lemma can be read as follow.
Hypotheses:
Hvx2 : ṽx2 ← t̃8 � Rp2c,
B16 : Rp3 = 13233647× 2−11,
...

Conclusion: |vx2 − ṽx2| ≤ 2−11.

Generating formally certified bounds on values and round-off errors – p. 8

Outline

The example of an aeronautical application.
Robustness is critical, the implementation needs to be
certified. Yet the algorithm is mathematically simple, its
study should not require much human expertise.

Methods used to analyze numerical programs.
Bounds on variable are computed through interval
arithmetic, and round-off errors are propagated
through forward error analysis.

Formal proofs.
Why a formal proof? Conclusion and perspectives.

Generating formally certified bounds on values and round-off errors – p. 9

Bounding the variables

Compute the bounds by interval arithmetic.
For each floating point operator �, define an interval
operator such that
∀A,B ∈ IF, A�B ⊇ {c̃ ∈ F|ã ∈ A, b̃ ∈ B, c = ã�b̃}

Generating formally certified bounds on values and round-off errors – p. 10

Bounding the variables

Compute the bounds by interval arithmetic.
For each floating point operator �, define an interval
operator such that
∀A,B ∈ IF, A�B ⊇ {c̃ ∈ F|ã ∈ A, b̃ ∈ B, c = ã�b̃}

Floating point operators are monotone:
if A = [a, a] and B = [b, b], then we define

A⊕ B = [a⊕ b, a⊕ b],

A	 B = [a	 b, a	 b],

A⊗ B =
[min(a⊗ b, a⊗ b, a⊗ b, a⊗ b),

max(a⊗ b, a⊗ b, a⊗ b, a⊗ b)],

etc.

Generating formally certified bounds on values and round-off errors – p. 10

Bounding the variables

Floating-point interval operators:

A⊕B = [a⊕ b, a⊕ b],

A	B = [a	 b, a	 b],

A⊗B =
[min(a⊗ b, a⊗ b, a⊗ b, a⊗ b),

max(a⊗ b, a⊗ b, a⊗ b, a⊗ b)],

This is an exotic interval arithmetic implementation: the
computed bounds are not to be rounded up or down.

Hence we use the Boosta interval arithmetic library.
It is combined with the SoftFloat library to provide
support for all floating point formats.

a
Brönnimann, Melquiond, Pion, http://www.boost.org/libs/numeric/interval/

Generating formally certified bounds on values and round-off errors – p. 11

http://www.boost.org/libs/numeric/interval/

Bounding the errors

Errors are also bounded by intervals (ṽ ∈ F, v ∈ R):
absolute error: v − ṽ ∈ Aṽ,v,
relative error: v/ṽ − 1 ∈ Rṽ,v for v and ṽ of same
sign.

Generating formally certified bounds on values and round-off errors – p. 12

Bounding the errors

Errors are also bounded by intervals (ṽ ∈ F, v ∈ R):
absolute error: v − ṽ ∈ Aṽ,v,
relative error: v/ṽ − 1 ∈ Rṽ,v for v and ṽ of same
sign.

Absolute error of the multiplication:

x× y − x̃⊗ ỹ = (x× y − x̃× ỹ) + (x̃× ỹ − x̃⊗ ỹ)

= (x− x̃)ỹ + (y − ỹ)x̃ + (x− x̃)(y − ỹ) + ε0

Ax×y,x̃⊗ỹ ⊆ Ax,x̃Ỹ + Ay,ỹX̃ + Ax,x̃Ay,ỹ + A0
x̃⊗ỹ

ε0 ∈ A0
x̃⊗ỹ is the rounding error.

Generating formally certified bounds on values and round-off errors – p. 12

Bounding the errors

Absolute error of the multiplication:

x× y − x̃⊗ ỹ = (x× y − x̃× ỹ) + (x̃× ỹ − x̃⊗ ỹ)

= (x− x̃)ỹ + (y − ỹ)x̃ + (x− x̃)(y − ỹ) + ε0

Ax×y,x̃⊗ỹ ⊆ Ax,x̃Ỹ + Ay,ỹX̃ + Ax,x̃Ay,ỹ + A0
x̃⊗ỹ

This is traditional interval arithmetic:
interval operators deal with real numbers,
interval bounds are rounded up and down through
MPFR.

Generating formally certified bounds on values and round-off errors – p. 13

Outline

The example of an aeronautical application.
Robustness is critical, the implementation needs to be
certified. Yet the algorithm is mathematically simple, its
study should not require much human expertise.

Methods used to analyze numerical programs.
Bounds on variable are computed through interval
arithmetic, and round-off errors are propagated
through forward error analysis.

Formal proofs.
Why a formal proof? Conclusion and perspectives.

Generating formally certified bounds on values and round-off errors – p. 14

Formal proof

Automatically computing bounds on variables and
errors may suffer from limitations or bugs from the
tools. Examples:

no support for subnormal numbers,
a problem in the underlying arithmetic libraries.

Generating formally certified bounds on values and round-off errors – p. 15

Formal proof

Automatically computing bounds on variables and
errors may suffer from limitations or bugs from the
tools. Examples:

no support for subnormal numbers,
a problem in the underlying arithmetic libraries.

Two solutions:
1. certify the tools and their libraries,
2. generate a formal proof along the computations.

Generating formally certified bounds on values and round-off errors – p. 15

Oracles

The tool is external, not tied to any proof checker. It
can act as an oracle and simplify the proof.

If the user just wants the tool to prove |x− x̃| < 1.5,
no need to generate the complex proof of the
optimal bound |x− x̃| < 1.43569726.
The shorter the numbers are, the faster
multi-precision floating point arithmetic is. Simpler
proofs are validated faster.

Generating formally certified bounds on values and round-off errors – p. 16

Conclusion

Certifying the numerical behavior of a program is a
tedious task:

tools are a necessity,
they should not require extensive knowledge on the
domain.

Advantage of our approach to formal proof:
no need for a blind faith in the tools,
results are usable in an extensive formal
certification of a program.

Generating formally certified bounds on values and round-off errors – p. 17

Perspectives

Interface our tools with Why:
a software verification tool,
it generates proof obligations for Coq, PVS, etc.

Handle alternate computer arithmetics:
floating point, double-double,
fixed point arithmetic.

Generate formal proofs for other proof checkers.

Generating formally certified bounds on values and round-off errors – p. 18

Questions?

Url: http://lipforge.ens-lyon.fr/www/gappa/

Email: guillaume.melquiond@ens-lyon.fr

Generating formally certified bounds on values and round-off errors – p. 19

http://lipforge.ens-lyon.fr/www/gappa/
guillaume.melquiond@ens-lyon.fr

	Introduction
	Introduction

	Introduction
	Introduction

	Outline
	Safety distances between aircrafts
	Safety distances between aircrafts
	Safety distances between aircrafts

	Containing the error
	Containing the error
	Outline
	Bounding the variables
	Bounding the variables

	Bounding the variables
	Bounding the errors
	Bounding the errors

	Bounding the errors
	Outline
	Formal proof
	Formal proof

	Oracles
	Conclusion
	Perspectives

