Generating formally certified bounds on values and round-off errors

Marc DAUMAS and Guillaume MELQUIOND

LIP Computer Science Laboratory UMR 5668 CNRS–ENS Lyon–INRIA–UCBL Lyon, France

Generating formally certified bounds on values and round-off errors - p. 1

- Formal certification of software is spreading. But investigating numerical problems is still limited.
- Certifying a numerical code is tedious and error-prone.
- Tools for naive users are necessary.

- Formal certification of software is spreading. But investigating numerical problems is still limited.
- Certifying a numerical code is tedious and error-prone.
- Tools for naive users are necessary.
- Certification goals:
 - variables are bounded (e.g. no square root of a negative number, etc), so that no exceptional behavior is triggered,
 - round-off errors are contained, so that the final result of an algorithm is sufficiently accurate.

 \checkmark Certifying numerical properties on a program f.

• Certifying numerical properties on a program f.

- Constraints on f:
 - loops are static,
 - no branching,
 - equivalent to single assignment.
- These constraints are handled by other classical certification tools.

Outline

- The example of an aeronautical application. Robustness is critical, the implementation needs to be certified. Yet the algorithm is mathematically simple, its study should not require much human expertise.
- Methods used to analyze numerical programs. Bounds on variable are computed through interval arithmetic, and round-off errors are propagated through forward error analysis.

Formal proofs.

Why a formal proof? Conclusion and perspectives.

Safety distances between aircrafts

Conversion from geodetic to euclidean data.

 $\begin{aligned} \phi_0 &\leftarrow (\phi_1 + \phi_2)/2 \\ r_{p0} &\leftarrow R_p(\phi_0) \\ s_{N1} &\leftarrow v_{N1}/R_m(\phi_1) \\ s_{N2} &\leftarrow v_{N2}/R_m(\phi_2) \\ p_x &\leftarrow (\lambda_1 - \lambda_2) * r_{p0} \\ p_y &\leftarrow (\phi_1 - \phi_2) * R_m(\phi_0) \\ v_{x1} &\leftarrow v_{E1} * r_{p0}/R_p(\phi_1 + s_{N1} * t_r) \\ v_{x2} &\leftarrow v_{E2} * r_{p0}/R_p(\phi_2 + s_{N2} * t_r) \end{aligned}$

Safety distances between aircrafts

Earth local radii (WGS84):

$$R_p(\phi) = \frac{a}{1 + (1 - f)^2 \tan^2 \phi}$$
$$R_m(\phi) = \frac{a(1 - e^2)}{(1 - e^2 \sin^2 \phi)^{3/2}}$$

Safety distances between aircrafts

Earth local radii (WGS84):

$$R_p(\phi) = \frac{a}{1 + (1 - f)^2 \tan^2 \phi}$$
$$R_m(\phi) = \frac{a(1 - e^2)}{(1 - e^2 \sin^2 \phi)^{3/2}}$$

Use of approximations (introduces truncation errors):

$$\begin{array}{rcrcrcr}
x &\leftarrow 511225 \times 2^{-18} - \phi^2 \\
\hat{R}_p(\phi) &\leftarrow 4439091 \cdot 2^{-2} + x \times (9023647 \cdot 2^{-2} + x \times (13868737 \cdot 2^{-6} + x \times (13233647 \cdot 2^{-11} + x \times (1398597 \cdot 2^{-14} + x \times (-6661427 \cdot 2^{-17})))))
\end{array}$$

Generating formally certified bounds on values and round-off errors - p. 6

Containing the error

- Taking into account measurement errors on input, truncation errors on algorithm, and rounding errors during computations.
- Numerical properties of the program are described by a formal proof, automatically certified with the Coq proof checker.

Containing the error

Parts of the Coq script:

```
Variable V_vx_2: float.
Hypothesis H_vx_2: (Div_float V_T8 V_Rp_2_c0 V_vx_2).
Definition B_16 := (Eint_bound Cl_16 Cu_16 V_Rp_a3).
...
Definition Ce_195 := (Float `1` `-11`).
Lemma E_195: ... -> B_16 -> ... ->
```

(Eint_error Ce_195 V_vx_2 R_vx_2).

- The last lemma can be read as follow.
 - Hypotheses:

. . .

- $H_{vx2}: \tilde{v}_{x2} \leftarrow \tilde{t}_8 \oslash R_{p2c}, \\ B_{16}: R_{p3} = 13233647 \times 2^{-11},$
- Conclusion: $|v_{x2} \tilde{v}_{x2}| \le 2^{-11}$.

Outline

- The example of an aeronautical application. Robustness is critical, the implementation needs to be certified. Yet the algorithm is mathematically simple, its study should not require much human expertise.
- Methods used to analyze numerical programs. Bounds on variable are computed through interval arithmetic, and round-off errors are propagated through forward error analysis.

Formal proofs.

Why a formal proof? Conclusion and perspectives.

Bounding the variables

Compute the bounds by interval arithmetic. For each floating point operator \Box , define an interval operator such that

 $\forall A, B \in \mathbb{IF}, A \Box B \supseteq \{ \tilde{c} \in \mathbb{F} | \tilde{a} \in A, \tilde{b} \in B, c = \tilde{a} \Box \tilde{b} \}$

Bounding the variables

- Compute the bounds by interval arithmetic.
 For each floating point operator □, define an interval operator such that
 ∀A, B ∈ IF, A□B ⊇ { č ∈ F | ã ∈ A, b ∈ B, c = ã □ b }
- Floating point operators are monotone:
 if $A = [\underline{a}, \overline{a}]$ and $B = [\underline{b}, \overline{b}]$, then we define
 - $A \oplus B = [\underline{a} \oplus \underline{b}, \overline{a} \oplus \overline{b}],$

 - $A \otimes B = [\min(\underline{a} \otimes \underline{b}, \underline{a} \otimes \overline{b}, \overline{a} \otimes \underline{b}, \overline{a} \otimes \overline{b}), \max(\underline{a} \otimes \underline{b}, \underline{a} \otimes \overline{b}, \overline{a} \otimes \underline{b}, \overline{a} \otimes \overline{b})],$

etc.

Generating formally certified bounds on values and round-off errors - p. 10

Bounding the variables

Floating-point interval operators:

- $A \oplus B = [\underline{a} \oplus \underline{b}, \overline{a} \oplus \overline{b}],$
- $A \otimes B = \frac{[\min(\underline{a} \otimes \underline{b}, \underline{a} \otimes \overline{b}, \overline{a} \otimes \underline{b}, \overline{a} \otimes \overline{b}),}{\max(\underline{a} \otimes \underline{b}, \underline{a} \otimes \overline{b}, \overline{a} \otimes \underline{b}, \overline{a} \otimes \overline{b})],}$
- This is an exotic interval arithmetic implementation: the computed bounds are not to be rounded up or down.
 - Hence we use the Boost^a interval arithmetic library.
 - It is combined with the SoftFloat library to provide support for all floating point formats.

^aBrönnimann, Melquiond, Pion, http://www.boost.org/libs/numeric/interval/

Bounding the errors

■ Errors are also bounded by intervals ($\tilde{v} \in \mathbb{F}$, $v \in \mathbb{R}$):

- absolute error: $v \tilde{v} \in A_{\tilde{v},v}$,
- relative error: $v/\tilde{v} 1 \in R_{\tilde{v},v}$ for v and \tilde{v} of same sign.

Bounding the errors

▶ Errors are also bounded by intervals ($\tilde{v} \in \mathbb{F}$, $v \in \mathbb{R}$):

- absolute error: $v \tilde{v} \in A_{\tilde{v},v}$,
- relative error: $v/\tilde{v} 1 \in R_{\tilde{v},v}$ for v and \tilde{v} of same sign.
- Absolute error of the multiplication:

$$\begin{aligned} x \times y - \tilde{x} \otimes \tilde{y} &= (x \times y - \tilde{x} \times \tilde{y}) + (\tilde{x} \times \tilde{y} - \tilde{x} \otimes \tilde{y}) \\ &= (x - \tilde{x})\tilde{y} + (y - \tilde{y})\tilde{x} + (x - \tilde{x})(y - \tilde{y}) + \epsilon_0 \\ A_{x \times y, \tilde{x} \otimes \tilde{y}} &\subseteq A_{x, \tilde{x}}\tilde{Y} + A_{y, \tilde{y}}\tilde{X} + A_{x, \tilde{x}}A_{y, \tilde{y}} + A^0_{\tilde{x} \otimes \tilde{y}} \end{aligned}$$

 $\epsilon_0 \in A^0_{\tilde{x} \otimes \tilde{y}}$ is the rounding error.

Generating formally certified bounds on values and round-off errors - p. 12

Bounding the errors

Absolute error of the multiplication:

$$\begin{aligned} x \times y - \tilde{x} \otimes \tilde{y} &= (x \times y - \tilde{x} \times \tilde{y}) + (\tilde{x} \times \tilde{y} - \tilde{x} \otimes \tilde{y}) \\ &= (x - \tilde{x})\tilde{y} + (y - \tilde{y})\tilde{x} + (x - \tilde{x})(y - \tilde{y}) + \epsilon_0 \\ A_{x \times y, \tilde{x} \otimes \tilde{y}} &\subseteq A_{x, \tilde{x}}\tilde{Y} + A_{y, \tilde{y}}\tilde{X} + A_{x, \tilde{x}}A_{y, \tilde{y}} + A_{\tilde{x} \otimes \tilde{y}}^0 \end{aligned}$$

- This is traditional interval arithmetic:
 - interval operators deal with real numbers,
 - interval bounds are rounded up and down through MPFR.

Generating formally certified bounds on values and round-off errors - p. 13

Outline

- The example of an aeronautical application. Robustness is critical, the implementation needs to be certified. Yet the algorithm is mathematically simple, its study should not require much human expertise.
- Methods used to analyze numerical programs. Bounds on variable are computed through interval arithmetic, and round-off errors are propagated through forward error analysis.

Formal proofs.

Why a formal proof? Conclusion and perspectives.

Formal proof

- Automatically computing bounds on variables and errors may suffer from limitations or bugs from the tools. Examples:
 - no support for subnormal numbers,
 - a problem in the underlying arithmetic libraries.

Formal proof

- Automatically computing bounds on variables and errors may suffer from limitations or bugs from the tools. Examples:
 - no support for subnormal numbers,
 - a problem in the underlying arithmetic libraries.
- Two solutions:
 - 1. certify the tools and their libraries,
 - 2. generate a formal proof along the computations.

Oracles

- The tool is external, not tied to any proof checker. It can act as an oracle and simplify the proof.
 - If the user just wants the tool to prove $|x \tilde{x}| < 1.5$, no need to generate the complex proof of the optimal bound $|x - \tilde{x}| < 1.43569726$.
 - The shorter the numbers are, the faster multi-precision floating point arithmetic is. Simpler proofs are validated faster.

Conclusion

- Certifying the numerical behavior of a program is a tedious task:
 - tools are a necessity,
 - they should not require extensive knowledge on the domain.
- Advantage of our approach to formal proof:
 - no need for a blind faith in the tools,
 - results are usable in an extensive formal certification of a program.

Perspectives

Interface our tools with Why:

- a software verification tool,
- it generates proof obligations for Coq, PVS, etc.
- Handle alternate computer arithmetics:
 - floating point, double-double,
 - fixed point arithmetic.
- Generate formal proofs for other proof checkers.

- Url: http://lipforge.ens-lyon.fr/www/gappa/
- Email: guillaume.melquiond@ens-lyon.fr