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Proving mathematical inequalities

I A plane flying at 250 knots and with a bank angle of 35◦ has
a turn rate of at least 3◦ each second:

3π

180
≤ g

v
tan

(
35π

180

)
,

where g = 9.8m/s2 and v = 250 514
1000m/s.

I This inequality is trivially true:

3π

180
≈ 0.052 and

g

v
tan(

35π

180
) ≈ 0.053.

But how to prove it formally yet simply?
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Proving mathematical inequalities

I Let π and π be two rational approximations of π such that
π ≤ π ≤ π. Since tan is monotonous on [0, π

2 [, the inequality

is implied by 3π
180 ≤

g
v tan(35π

180 ).

I Let tan be a closed rational function Q → Q such that
tan(x) ≤ tan(x). The inequality is then implied by
3π
180 ≤

g
v tan(35π

180 ).

I Both members of this new inequality can be computed exactly
through rational arithmetic and then compared. It can be
done formally and automatically.
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Marc Daumas, Guillaume Melquiond, César Muñoz Guaranteed Proofs Using Interval Arithmetic



Introduction Intervals Improvements Conclusion Rational intervals Proofs Elementary functions PVS

Rational interval arithmetic

I Let x , x be in Q,

x = [x , x ] = {x | x ≤ x ≤ x}.

I Arithmetic operators:
I x + y = [x + y , x + y ],
I x− y = [x − y , x − y ],
I x× y = [min{xy , xy , xy , xy},max{xy , xy , xy , xy}],
I x÷ y = x× [ 1

y , 1
y ], if yy > 0.

I Furthermore, −x, |x|, xn, ...
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Containment property and proofs

I If x ∈ x and y ∈ y then
I x � y ∈ x � y, where � ∈ {+,−,×,÷},
I −x ∈ −x,
I |x | ∈ |x|,
I xn ∈ xn.

I Let e be a real expression on variables x1, . . . , xm, and let
x1, . . . , xm be interval values such that xi ∈ xi, for 1 ≤ i ≤ m,
then

e(x1, . . . , xm) ∈ e(x1, . . . , xm),

where e is the interval expression corresponding to e.

Thanks to the containment property, intervals can be used as
proofs of inequalities. Because the bounds are exact rational
numbers, a proof assistant easily computes them and it can
automatically generate the related proofs.
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Bounding algebraic and transcendental functions

Special functions are bounded by parametric functions
Q× N → Q.

I Sine:
I sin(x , n) =

∑2n
i=1(−1)i−1 x2i−1

(2i−1)!

I sin(x , n) =
∑2n+1

i=1 (−1)i−1 x2i−1

(2i−1)!

I Square root:
I sqrt(x , 0) = x + 1
I sqrt(x , n + 1) = 1

2 (y + x
y ), where y = sqrt(x , n)

I sqrt(x , n) = x
sqrt(x,n)

I Furthermore, cos, atan, exp, log, ...

Once again, proof generation amounts to doing exact
computations on rational numbers.
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Proofs by approximation

I The National Institute of Aerospace and NASA Langley intend
to prove the safety of algorithms for airplane collision
avoidance. They do not use numerical tools to this end.

I What is wrong with numerical tools?

Nothing. But they do not provide enough formal guarantees
when verifying safety critical systems:

> 3 * Pi / 180 <= 9.8 * tan(35 * Pi / 180) / (250 * 0.514);

1

60
π ≤ 0.07626459144 tan

(
7

36
π

)
> evalf(%); evalb(%);

0.05235987758 ≤ 0.05340104182
true

(Maple 9.5)
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Numerical proofs in PVS

Instead of numerical tools, NIA and NASA use PVS, a proof
assistant. http://pvs.csl.sri.com/

Proofs are constructed by applying strategies to transform the
hypotheses and goals of theorems until they match each other. For
proofs by approximation, the assistant will formally guarantee the
correctness of the computations.

Our strategy numerical does a proof by approximation: it applies
interval arithmetic theorems to certify an inequality. The proof
assistant will formally guarantee the correctness of the
computations.
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Examples of PVS and the numerical strategy

|-------

{1} 3 × pi / 180 ≤ g × tan(35 × pi / 180) / v

Rule? (numerical)

Evaluating formula using numerical approximations,

Q.E.D.

{-1} x ## [| 0, 2 |]

|-------

{1} sqrt(x) + sqrt(3) < 315 / 100

Rule? (numerical :vars "x")

Evaluating formula using numerical approximations,

Q.E.D.
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Intervals and decorrelation

I Let x be [0, 1],
x× (1− x) = [0, 1].

However,
∀x ∈ x : x · (1− x) ∈ [0, 1

4 ].

I The multiple occurrences of an interval are not correlated,
hence an overestimation of the final result.

I In particular, if x is not a singleton,
I x− x 6= 0,
I x÷ x 6= 1.
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Splitting and Taylor’s series

Two additional theorems are used to avoid decorrelation.

I Interval splitting: let x =
⋃

1≤i≤n xi,

∀ 1 ≤ i ≤ n : x ∈ xi ` e(x) ∈ y

x ∈ x ` e(x) ∈ y

I Taylor’s series expansion: if f is n-times differentiable over x,

∀ 1 ≤ i ≤ n : a ∈ x ` d i f
dx i (a) ∈ yi

∀t : t ∈ x ` dnf
dxn (t) ∈ yn

x ∈ x ` f (x) ∈ Σn
i=0(yk × (x− a)i )/i !
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An oracle in the form of an auxiliary library

I The speed of PVS is not suitable to search for the
approximation order of the elementary functions, the interval
splitting, nor the Taylor’s expansion order.

I A C++ library providing the same numerical facilities has
been implemented. Since it only computes intervals instead of
trying to create proofs, it is faster than PVS.

I This library is intended to be used to compute beforehand a
set of parameters that will guide PVS to the end of the proof.
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Example: bounding a truncation error

I An algorithm relying on the function r(φ) uses a polynomial
approximation r̂(φ) on [0, φm] with φm = 715

512

r(φ) =
a

1 + (1− f )2 tan2 φ

r̂(φ) =
4439091

4
+ t ×

(
9023647

4
+ t × . . .

)
with t = φ2

m − φ2

I In order for the algorithm to be certified, the relative error
e(φ)
r(φ) = r(φ)−r̂(φ)

r(φ) has to be bounded by 1.36× 10−7 for any φ.
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Example: bounding a truncation error

I Sufficient parameters for the proof are:
I tan approximated to the 4th term, sqrt to the 7th,
I Taylor’s series for e(φ) expanded to the first order,
I [0, φm] split into 9935 intervals.

I The final property of the PVS development reads:

PHI : Interval = [|0,715/512|]

RI : THEOREM

∀ (phi:real) :

phi ## PHI IMPLIES

e(phi) / r(phi) ## [|-136/1000000000,136/1000000000|]
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Conclusion

I Interval arithmetic can be used as a formal foundation for
proofs by approximation. Our implementation as a PVS
library provides a high level of confidence.

I All the PVS strategies are automated. So formally proving a
numerical property requires minimal interaction with the proof
assistant.

I Interval splitting and Taylor’s expansions are not as efficient
as Sturm’s chains or quantifier elimination, but they apply to
a lot more than just polynomials.
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Questions?

I E-mail addresses:
I marc.daumas@ens-lyon.fr
I guillaume.melquiond@ens-lyon.fr
I munoz@nianet.org

I PVS library available at
http://research.nianet.org/~munoz/Interval/
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