
Introduction Formalization Implementation Conclusion

Formal Certification of Arithmetic Filters for
Geometric Predicates

Guillaume Melquiond Sylvain Pion

Arénaire, LIP ENS Lyon
Geometrica, INRIA Sophia-Antipolis

July 11th 2005

Guillaume Melquiond, Sylvain Pion Certifying Filters for Geometric Predicates

Introduction Formalization Implementation Conclusion Predicates Filters Outline

Geometric algorithms and predicates

I Numerical functions are not the main basis of computational
geometry algorithms. Predicates are: they provide the bridge
between numerical inputs and combinatorial output.

I Example: orientation of three points p, q, and r in the plane.

orient2(p, q, r) = sign

∣∣∣∣ qx − px rx − px

qy − py ry − py

∣∣∣∣
Only three answers: clockwise, counter-clockwise, aligned.

I Geometric algorithms are highly sensitive to the result of the
predicates. Their results have to be guaranteed.

Guillaume Melquiond, Sylvain Pion Certifying Filters for Geometric Predicates

Introduction Formalization Implementation Conclusion Predicates Filters Outline

Geometric algorithms and predicates

I Numerical functions are not the main basis of computational
geometry algorithms. Predicates are: they provide the bridge
between numerical inputs and combinatorial output.

I Example: orientation of three points p, q, and r in the plane.

orient2(p, q, r) = sign

∣∣∣∣ qx − px rx − px

qy − py ry − py

∣∣∣∣
Only three answers: clockwise, counter-clockwise, aligned.

I Geometric algorithms are highly sensitive to the result of the
predicates. Their results have to be guaranteed.

Guillaume Melquiond, Sylvain Pion Certifying Filters for Geometric Predicates

Introduction Formalization Implementation Conclusion Predicates Filters Outline

Implementing robust yet efficient predicates

I Floating-point numbers suffer from limited precision and
range. In this implementation, the computed value may be
different enough from the real value for their signs to differ.

double pqx = qx - px, pqy = qy - py;
double prx = rx - px, pry = ry - py;
double det = pqx * pry - pqy * prx;
if (det > 0) return POSITIVE;
if (det < 0) return NEGATIVE;
return ZERO;

I On the other hand, computing the determinant with exact
arithmetic is possible, but it is too slow to be usable.

I Best of both worlds: floating-point computations, and if the
computed sign may be wrong, fall back to exact arithmetic.

Guillaume Melquiond, Sylvain Pion Certifying Filters for Geometric Predicates

Introduction Formalization Implementation Conclusion Predicates Filters Outline

Implementing robust yet efficient predicates

I Floating-point numbers suffer from limited precision and
range. In this implementation, the computed value may be
different enough from the real value for their signs to differ.

double pqx = qx - px, pqy = qy - py;
double prx = rx - px, pry = ry - py;
double det = pqx * pry - pqy * prx;
if (det > 0) return POSITIVE;
if (det < 0) return NEGATIVE;
return ZERO;

I On the other hand, computing the determinant with exact
arithmetic is possible, but it is too slow to be usable.

I Best of both worlds: floating-point computations, and if the
computed sign may be wrong, fall back to exact arithmetic.

Guillaume Melquiond, Sylvain Pion Certifying Filters for Geometric Predicates

Introduction Formalization Implementation Conclusion Predicates Filters Outline

Implementing robust yet efficient predicates

I Floating-point numbers suffer from limited precision and
range. In this implementation, the computed value may be
different enough from the real value for their signs to differ.

double pqx = qx - px, pqy = qy - py;
double prx = rx - px, pry = ry - py;
double det = pqx * pry - pqy * prx;
if (det > 0) return POSITIVE;
if (det < 0) return NEGATIVE;
return ZERO;

I On the other hand, computing the determinant with exact
arithmetic is possible, but it is too slow to be usable.

I Best of both worlds: floating-point computations, and if the
computed sign may be wrong, fall back to exact arithmetic.

Guillaume Melquiond, Sylvain Pion Certifying Filters for Geometric Predicates

Introduction Formalization Implementation Conclusion Predicates Filters Outline

Outline

Introduction

Formalizing homogeneous floating-point arithmetic
A correct floating-point filter
Bounding expressions by homogeneous intervals
Homogeneous floating-point arithmetic

Error bound and implementation
Using Gappa to bound the error
CGAL implementation of the predicates

Conclusion

Guillaume Melquiond, Sylvain Pion Certifying Filters for Geometric Predicates

Introduction Formalization Implementation Conclusion Filter Bounds Rounding Formalization

A correct floating-point filter

I If the distance between the computed value det and the real
value det is bounded by ε < eps, this is a correct first stage
for the predicate.

double det = pqx * pry - pqy * prx;
if (det > +eps) return POSITIVE;
if (det < -eps) return NEGATIVE;
// fall back to an exact computation

I How to compute ε and guarantee it is a correct bound?

Guillaume Melquiond, Sylvain Pion Certifying Filters for Geometric Predicates

Introduction Formalization Implementation Conclusion Filter Bounds Rounding Formalization

Interval arithmetic

Interval arithmetic:

k · A = {k · a | a ∈ A}
A + B = {a + b | a ∈ A, b ∈ B}
A× B = {a · b | a ∈ A, b ∈ B}

If A and B are intervals (closed and bounded subsets of the real
numbers R), then k · A, A + B, and A× B are intervals too.
Intervals are represented by their lower and upper bounds:

X = [x , x] = {x ∈ R | x ≤ x ≤ x}.

Guillaume Melquiond, Sylvain Pion Certifying Filters for Geometric Predicates

Introduction Formalization Implementation Conclusion Filter Bounds Rounding Formalization

Bounding homogeneous expressions

I If a ∈ k · A and b ∈ m · B, then

a · b ∈ (k · A)× (m · B) = (k ·m) · (A× B).

If a ∈ k · A and b ∈ k · B, then

a + b ∈ (k · A) + (k · B) = k · (A + B).

I Example: since

a, c ∈ max(|a|, |c |) · [−1, 1] and b, d ∈ . . . ,

the range of the determinant is∣∣∣∣ a b
c d

∣∣∣∣ ∈ max(|a|, |c |) ·max(|b|, |d |) · [−2, 2].

Guillaume Melquiond, Sylvain Pion Certifying Filters for Geometric Predicates

Introduction Formalization Implementation Conclusion Filter Bounds Rounding Formalization

Bounding homogeneous expressions

I If a ∈ k · A and b ∈ m · B, then

a · b ∈ (k · A)× (m · B) = (k ·m) · (A× B).

If a ∈ k · A and b ∈ k · B, then

a + b ∈ (k · A) + (k · B) = k · (A + B).

I Example: since

a, c ∈ max(|a|, |c |) · [−1, 1] and b, d ∈ . . . ,

the range of the determinant is∣∣∣∣ a b
c d

∣∣∣∣ ∈ max(|a|, |c |) ·max(|b|, |d |) · [−2, 2].

Guillaume Melquiond, Sylvain Pion Certifying Filters for Geometric Predicates

Introduction Formalization Implementation Conclusion Filter Bounds Rounding Formalization

Floating-point rounding

I A floating-point operator behaves as if it was first computing
the infinitely precise value and then rounding it so that it fits
in the destination floating-point format.

I Example: if a and b are two floating-point numbers, the result
a⊕ b of their floating-point sum is equal to ◦(a + b).

I If x is not outside the limited range of floating-point numbers,
the rounding error is bounded:

| ◦ (x)− x | ≤ max(η0, |x | · ε0).

Guillaume Melquiond, Sylvain Pion Certifying Filters for Geometric Predicates

Introduction Formalization Implementation Conclusion Filter Bounds Rounding Formalization

Floating-point rounding

I A floating-point operator behaves as if it was first computing
the infinitely precise value and then rounding it so that it fits
in the destination floating-point format.

I Example: if a and b are two floating-point numbers, the result
a⊕ b of their floating-point sum is equal to ◦(a + b).

I If x is not outside the limited range of floating-point numbers,
the rounding error is bounded:

| ◦ (x)− x | ≤ max(η0, |x | · ε0).

Guillaume Melquiond, Sylvain Pion Certifying Filters for Geometric Predicates

Introduction Formalization Implementation Conclusion Filter Bounds Rounding Formalization

Homogeneous floating-point arithmetic

I If a ∈ k · A and b ∈ m · B, then

a · b ∈ (k ·m) · (A× B)
a + b ∈ k · (A + B) if k = l

◦(a)− a ∈ k · Ea if [−η0, η0] ⊆ k · Ea

with Ea = A× [−ε0, ε0].

I The rounding error range k · E can be computed by recursively
applying these formulas to det− det. The final coefficient is

k = max(|pqx|, |pqy|) ·max(|prx|, |pry|).

I Some sub-expressions have to be rewritten so as to get a tight
range. For example, ◦(a)− b = (◦(a)− a) + (a− b).

Guillaume Melquiond, Sylvain Pion Certifying Filters for Geometric Predicates

Introduction Formalization Implementation Conclusion Filter Bounds Rounding Formalization

Homogeneous floating-point arithmetic

I If a ∈ k · A and b ∈ m · B, then

a · b ∈ (k ·m) · (A× B)
a + b ∈ k · (A + B) if k = l

◦(a)− a ∈ k · Ea if [−η0, η0] ⊆ k · Ea

with Ea = A× [−ε0, ε0].

I The rounding error range k · E can be computed by recursively
applying these formulas to det− det. The final coefficient is

k = max(|pqx|, |pqy|) ·max(|prx|, |pry|).

I Some sub-expressions have to be rewritten so as to get a tight
range. For example, ◦(a)− b = (◦(a)− a) + (a− b).

Guillaume Melquiond, Sylvain Pion Certifying Filters for Geometric Predicates

Introduction Formalization Implementation Conclusion Gappa Implementation

Gappa, a tool to bound expressions

I Gappa verifies range properties on arithmetic expressions,
especially expressions containing rounding operations. It also
generates a formal proof of these properties.

I Gappa uses a set of theorems relying on interval arithmetic in
order to bound the expressions. It rewrites the expressions to
get tighter intervals when they involve rounding errors.

I Our model of homogeneous floating-point arithmetic is written
so that it is close to Gappa’s own model. As a consequence,
Gappa will be able to compute the error bounds in our stead.

Guillaume Melquiond, Sylvain Pion Certifying Filters for Geometric Predicates

Introduction Formalization Implementation Conclusion Gappa Implementation

Gappa, a tool to bound expressions

I Example: the absolute error between the computed
determinant and the exact value when all its rounded
elements are in the interval [−1, 1].

1 # some no t a t i o n s :
2 pqx = <float64ne >(qx - px);
3 pqy = <float64ne >(qy - py);
4 prx = <float64ne >(rx - px);
5 pry = <float64ne >(ry - py);
6 det <float64ne >= pqx * pry - pqy * prx;
7 exact = (qx -px)*(ry-py) - (qy-py)*(rx -px);
8 # the p r op e r t y Gappa has to f i n d and v e r i f y :
9 { pqx in [-1,1] /\ pqy in [-1,1] /\ prx in [-1,1] /\ pry in [-1,1]

10 -> det - exact in ? }

I Gappa answers: |det− exact| ≤ 6.66 . . . · 10−16.

I However, this result comes from Gappa’s non-homogeneous
model; it would lead to an inefficient implementation of the
filter. We have to use the homogeneous model.

Guillaume Melquiond, Sylvain Pion Certifying Filters for Geometric Predicates

Introduction Formalization Implementation Conclusion Gappa Implementation

Gappa, a tool to bound expressions

I Example: the absolute error between the computed
determinant and the exact value when all its rounded
elements are in the interval [−1, 1].

1 # some no t a t i o n s :
2 pqx = <float64ne >(qx - px);
3 pqy = <float64ne >(qy - py);
4 prx = <float64ne >(rx - px);
5 pry = <float64ne >(ry - py);
6 det <float64ne >= pqx * pry - pqy * prx;
7 exact = (qx -px)*(ry-py) - (qy-py)*(rx -px);
8 # the p r op e r t y Gappa has to f i n d and v e r i f y :
9 { pqx in [-1,1] /\ pqy in [-1,1] /\ prx in [-1,1] /\ pry in [-1,1]

10 -> det - exact in ? }

I Gappa answers: |det− exact| ≤ 6.66 . . . · 10−16.

I However, this result comes from Gappa’s non-homogeneous
model; it would lead to an inefficient implementation of the
filter. We have to use the homogeneous model.

Guillaume Melquiond, Sylvain Pion Certifying Filters for Geometric Predicates

Introduction Formalization Implementation Conclusion Gappa Implementation

Using Gappa with our model

I We have defined two new rounding operators in Gappa that
are consistent with our homogeneous model. Gappa can now
use “bounded” inputs.
Example: pqx ∈ max(|pqx|, |pqy|) · [−1, 1].

1 # some no t a t i o n s :
2 pqx = <homogen80x_init >(qx - px);
3 pqy = <homogen80x_init >(qy - py);
4 prx = <homogen80x_init >(rx - px);
5 pry = <homogen80x_init >(ry - py);
6 det <homogen80x >= pqx * pry - pqy * prx;
7 exact = (qx -px)*(ry-py) - (qy-py)*(rx -px);
8 # the p r op e r t y Gappa has to f i n d and v e r i f y :
9 { pqx in [-1,1] /\ pqy in [-1,1] /\ prx in [-1,1] /\ pry in [-1,1]

10 -> det - exact in ? }

I Verifying the homogeneity of the expressions is outside the
scope of Gappa’s model. But it will still compute the error
bound we need:

|det− exact| ≤ k · 8.88 . . . · 10−16.

Guillaume Melquiond, Sylvain Pion Certifying Filters for Geometric Predicates

Introduction Formalization Implementation Conclusion Gappa Implementation

The floating-point filter implementation

I Our CGAL implementation of the predicate.
double pqx = qx - px, pqy = qy - py;

double prx = rx - px, pry = ry - py;

double maxx = max(abs(pqx), abs(prx));

double maxy = max(abs(pqy), abs(pry));

double eps = 8.8872057372592758e-16 * maxx * maxy;

if (maxx > maxy) swap(maxx, maxy);

if (maxx < 1e-146) { // underflows?

if (maxx == 0) return ZERO;

} else if (maxy < 1e153) { // no overflow?

double det = pqx * pry - pqy * prx;

if (det > eps) return POSITIVE;

if (det < -eps) return NEGATIVE;

}

// fall back to a more precise, slower method

I This filter is robust:
I it gives up when an overflow may hinder the computations,
I otherwise it either returns the correct sign or gives up, even

when a floating-point operation underflows or suffers from a
double rounding.

Guillaume Melquiond, Sylvain Pion Certifying Filters for Geometric Predicates

Introduction Formalization Implementation Conclusion Gappa Implementation

Verifying the remaining bits

I The correct error bound is only a part of the certification of
the filter implementation. Other points need to be checked:

I no overflow occurs,
I no underflow occurs when computing eps,
I rounding errors also happen when computing eps, the

constant has to be sufficiently overestimated.

I All these verifications can be done by Gappa. They use
Gappa’s non-homogeneous floating-point model.

Guillaume Melquiond, Sylvain Pion Certifying Filters for Geometric Predicates

Introduction Formalization Implementation Conclusion Benchmarks Conclusion

Benchmarks

CGAL benchmarks of a 3D Delaunay triangulation with various
implementations of the orientation and in-sphere predicates.

Implementation Time

uncertified floating-point 3.29

our filter + interval + exact 4.33

interval + exact 12.5

exact 296

Shewchuk’s predicates 4.39

Note: Shewchuk’s implementation is robust as long as there is no
underflow nor overflow nor double rounding.

Guillaume Melquiond, Sylvain Pion Certifying Filters for Geometric Predicates

Introduction Formalization Implementation Conclusion Benchmarks Conclusion

Conclusion

I Designing a geometric predicate that relies on floating-point
arithmetic is error-prone, in particular when you try to handle
all the special situations. Relying on formal methods and the
computer is a big help.

I Our formalization of floating-point arithmetic applies to any
homogeneous formulas. Because geometric predicates handle
lengths, instead of unit-less values, most of them are
homogeneous.

I Performance-wise, our implementation of the predicates is on
par with Shewchuk’s state-of-the-art implementation. But
ours is robust, even when degenerate computations happens.

Guillaume Melquiond, Sylvain Pion Certifying Filters for Geometric Predicates

Introduction Formalization Implementation Conclusion Benchmarks Conclusion

Conclusion

I Designing a geometric predicate that relies on floating-point
arithmetic is error-prone, in particular when you try to handle
all the special situations. Relying on formal methods and the
computer is a big help.

I Our formalization of floating-point arithmetic applies to any
homogeneous formulas. Because geometric predicates handle
lengths, instead of unit-less values, most of them are
homogeneous.

I Performance-wise, our implementation of the predicates is on
par with Shewchuk’s state-of-the-art implementation. But
ours is robust, even when degenerate computations happens.

Guillaume Melquiond, Sylvain Pion Certifying Filters for Geometric Predicates

Introduction Formalization Implementation Conclusion Benchmarks Conclusion

Conclusion

I Designing a geometric predicate that relies on floating-point
arithmetic is error-prone, in particular when you try to handle
all the special situations. Relying on formal methods and the
computer is a big help.

I Our formalization of floating-point arithmetic applies to any
homogeneous formulas. Because geometric predicates handle
lengths, instead of unit-less values, most of them are
homogeneous.

I Performance-wise, our implementation of the predicates is on
par with Shewchuk’s state-of-the-art implementation. But
ours is robust, even when degenerate computations happens.

Guillaume Melquiond, Sylvain Pion Certifying Filters for Geometric Predicates

Introduction Formalization Implementation Conclusion Benchmarks Conclusion

Questions?

Web sites:

I http://www.cgal.org/

I http://lipforge.ens-lyon.fr/www/gappa/

E-mail addresses:

I guillaume.melquiond@ens-lyon.fr

I sylvain.pion@sophia.inria.fr

Guillaume Melquiond, Sylvain Pion Certifying Filters for Geometric Predicates

http://www.cgal.org/
http://lipforge.ens-lyon.fr/www/gappa/
guillaume.melquiond@ens-lyon.fr
sylvain.pion@sophia.inria.fr

	Introduction
	Predicates
	Filters
	Outline

	Formalizing homogeneous floating-point arithmetic
	Filter
	Bounds
	Rounding
	Formalization

	Error bound and implementation
	Gappa
	Implementation

	Conclusion
	Benchmarks
	Conclusion

