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Geometric algorithms and predicates

I Numerical functions are not the main basis of computational
geometry algorithms. Predicates are: they provide the bridge
between numerical inputs and combinatorial output.

I Example: orientation of three points p, q, and r in the plane.

orient2(p, q, r) = sign

∣∣∣∣ qx − px rx − px

qy − py ry − py

∣∣∣∣
Only three answers: clockwise, counter-clockwise, aligned.

I Geometric algorithms are highly sensitive to the result of the
predicates. Their results have to be guaranteed.
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Implementing robust yet efficient predicates

I Floating-point numbers suffer from limited precision and
range. In this implementation, the computed value may be
different enough from the real value for their signs to differ.

double pqx = qx - px, pqy = qy - py;
double prx = rx - px, pry = ry - py;
double det = pqx * pry - pqy * prx;
if (det > 0) return POSITIVE;
if (det < 0) return NEGATIVE;
return ZERO;

I On the other hand, computing the determinant with exact
arithmetic is possible, but it is too slow to be usable.

I Best of both worlds: floating-point computations, and if the
computed sign may be wrong, fall back to exact arithmetic.
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A correct floating-point filter

I If the distance between the computed value det and the real
value det is bounded by ε < eps, this is a correct first stage
for the predicate.

double det = pqx * pry - pqy * prx;
if (det > +eps) return POSITIVE;
if (det < -eps) return NEGATIVE;
// fall back to an exact computation

I How to compute ε and guarantee it is a correct bound?
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Interval arithmetic

Interval arithmetic:

k · A = {k · a | a ∈ A}
A + B = {a + b | a ∈ A, b ∈ B}
A× B = {a · b | a ∈ A, b ∈ B}

If A and B are intervals (closed and bounded subsets of the real
numbers R), then k · A, A + B, and A× B are intervals too.
Intervals are represented by their lower and upper bounds:

X = [x , x ] = {x ∈ R | x ≤ x ≤ x}.
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Bounding homogeneous expressions

I If a ∈ k · A and b ∈ m · B, then

a · b ∈ (k · A)× (m · B) = (k ·m) · (A× B).

If a ∈ k · A and b ∈ k · B, then

a + b ∈ (k · A) + (k · B) = k · (A + B).

I Example: since

a, c ∈ max(|a|, |c |) · [−1, 1] and b, d ∈ . . . ,

the range of the determinant is∣∣∣∣ a b
c d

∣∣∣∣ ∈ max(|a|, |c |) ·max(|b|, |d |) · [−2, 2].
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Floating-point rounding

I A floating-point operator behaves as if it was first computing
the infinitely precise value and then rounding it so that it fits
in the destination floating-point format.

I Example: if a and b are two floating-point numbers, the result
a⊕ b of their floating-point sum is equal to ◦(a + b).

I If x is not outside the limited range of floating-point numbers,
the rounding error is bounded:

| ◦ (x)− x | ≤ max(η0, |x | · ε0).
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Homogeneous floating-point arithmetic

I If a ∈ k · A and b ∈ m · B, then

a · b ∈ (k ·m) · (A× B)
a + b ∈ k · (A + B) if k = l

◦(a)− a ∈ k · Ea if [−η0, η0] ⊆ k · Ea

with Ea = A× [−ε0, ε0].

I The rounding error range k · E can be computed by recursively
applying these formulas to det− det. The final coefficient is

k = max(|pqx|, |pqy|) ·max(|prx|, |pry|).

I Some sub-expressions have to be rewritten so as to get a tight
range. For example, ◦(a)− b = (◦(a)− a) + (a− b).
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Gappa, a tool to bound expressions

I Gappa verifies range properties on arithmetic expressions,
especially expressions containing rounding operations. It also
generates a formal proof of these properties.

I Gappa uses a set of theorems relying on interval arithmetic in
order to bound the expressions. It rewrites the expressions to
get tighter intervals when they involve rounding errors.

I Our model of homogeneous floating-point arithmetic is written
so that it is close to Gappa’s own model. As a consequence,
Gappa will be able to compute the error bounds in our stead.
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Gappa, a tool to bound expressions

I Example: the absolute error between the computed
determinant and the exact value when all its rounded
elements are in the interval [−1, 1].

1 # some no t a t i o n s :
2 pqx = <float64ne >(qx - px);
3 pqy = <float64ne >(qy - py);
4 prx = <float64ne >(rx - px);
5 pry = <float64ne >(ry - py);
6 det <float64ne >= pqx * pry - pqy * prx;
7 exact = (qx -px)*(ry-py) - (qy-py)*(rx -px);
8 # the p r op e r t y Gappa has to f i n d and v e r i f y :
9 { pqx in [-1,1] /\ pqy in [-1,1] /\ prx in [-1,1] /\ pry in [-1,1]

10 -> det - exact in ? }

I Gappa answers: |det− exact| ≤ 6.66 . . . · 10−16.

I However, this result comes from Gappa’s non-homogeneous
model; it would lead to an inefficient implementation of the
filter. We have to use the homogeneous model.
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Using Gappa with our model

I We have defined two new rounding operators in Gappa that
are consistent with our homogeneous model. Gappa can now
use “bounded” inputs.
Example: pqx ∈ max(|pqx|, |pqy|) · [−1, 1].

1 # some no t a t i o n s :
2 pqx = <homogen80x_init >(qx - px);
3 pqy = <homogen80x_init >(qy - py);
4 prx = <homogen80x_init >(rx - px);
5 pry = <homogen80x_init >(ry - py);
6 det <homogen80x >= pqx * pry - pqy * prx;
7 exact = (qx -px)*(ry-py) - (qy-py)*(rx -px);
8 # the p r op e r t y Gappa has to f i n d and v e r i f y :
9 { pqx in [-1,1] /\ pqy in [-1,1] /\ prx in [-1,1] /\ pry in [-1,1]

10 -> det - exact in ? }

I Verifying the homogeneity of the expressions is outside the
scope of Gappa’s model. But it will still compute the error
bound we need:

|det− exact| ≤ k · 8.88 . . . · 10−16.
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The floating-point filter implementation

I Our CGAL implementation of the predicate.
double pqx = qx - px, pqy = qy - py;

double prx = rx - px, pry = ry - py;

double maxx = max(abs(pqx), abs(prx));

double maxy = max(abs(pqy), abs(pry));

double eps = 8.8872057372592758e-16 * maxx * maxy;

if (maxx > maxy) swap(maxx, maxy);

if (maxx < 1e-146) { // underflows?

if (maxx == 0) return ZERO;

} else if (maxy < 1e153) { // no overflow?

double det = pqx * pry - pqy * prx;

if (det > eps) return POSITIVE;

if (det < -eps) return NEGATIVE;

}

// fall back to a more precise, slower method

I This filter is robust:
I it gives up when an overflow may hinder the computations,
I otherwise it either returns the correct sign or gives up, even

when a floating-point operation underflows or suffers from a
double rounding.
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Verifying the remaining bits

I The correct error bound is only a part of the certification of
the filter implementation. Other points need to be checked:

I no overflow occurs,
I no underflow occurs when computing eps,
I rounding errors also happen when computing eps, the

constant has to be sufficiently overestimated.

I All these verifications can be done by Gappa. They use
Gappa’s non-homogeneous floating-point model.
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Benchmarks

CGAL benchmarks of a 3D Delaunay triangulation with various
implementations of the orientation and in-sphere predicates.

Implementation Time

uncertified floating-point 3.29

our filter + interval + exact 4.33

interval + exact 12.5

exact 296

Shewchuk’s predicates 4.39

Note: Shewchuk’s implementation is robust as long as there is no
underflow nor overflow nor double rounding.
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Conclusion

I Designing a geometric predicate that relies on floating-point
arithmetic is error-prone, in particular when you try to handle
all the special situations. Relying on formal methods and the
computer is a big help.

I Our formalization of floating-point arithmetic applies to any
homogeneous formulas. Because geometric predicates handle
lengths, instead of unit-less values, most of them are
homogeneous.

I Performance-wise, our implementation of the predicates is on
par with Shewchuk’s state-of-the-art implementation. But
ours is robust, even when degenerate computations happens.
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Questions?

Web sites:

I http://www.cgal.org/

I http://lipforge.ens-lyon.fr/www/gappa/

E-mail addresses:

I guillaume.melquiond@ens-lyon.fr

I sylvain.pion@sophia.inria.fr
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