
Standard Scope and design Conclusion

Proposing Interval Arithmetic for the C++
Standard

Hervé Brönnimann Guillaume Melquiond Sylvain Pion

CIS Department, Polytechnic University
Arénaire, LIP, CNRS–ENSL–INRIA–UCBL

Geometrica, INRIA Sophia Antipolis

SCAN’2006: 12th GAMM - IMACS International Symposium on

Scientific Computing, Computer Arithmetic and Validated Numerics

2006-09-26

Hervé Brönnimann, Guillaume Melquiond, Sylvain Pion Proposing Interval Arithmetic for the C++ Standard



Standard Scope and design Conclusion History Process Motivations

History

1984: C++ was born (first implementation by Stroustrup).

1994: The STL (Stepanov).

1998: C++ was standardized by ISO: “C++98” language and library.

1998: The Boost project was started to develop more libraries.

2003: A minor revision was made: “C++03”.

2004: Technical Report 1 “TR1”: non-normative list of new libraries.

2007-2008: Technical Report 2 “TR2”.

2009-2011: A new standard is planned: “C++0x”.

Major features of C++: general purpose, compatible with C,
supports for abstraction and various programming paradigms,
efficient “don’t pay for what you don’t use”.

Hervé Brönnimann, Guillaume Melquiond, Sylvain Pion Proposing Interval Arithmetic for the C++ Standard



Standard Scope and design Conclusion History Process Motivations

History

1984: C++ was born (first implementation by Stroustrup).

1994: The STL (Stepanov).

1998: C++ was standardized by ISO: “C++98” language and library.

1998: The Boost project was started to develop more libraries.

2003: A minor revision was made: “C++03”.

2004: Technical Report 1 “TR1”: non-normative list of new libraries.

2007-2008: Technical Report 2 “TR2”.

2009-2011: A new standard is planned: “C++0x”.

Major features of C++: general purpose, compatible with C,
supports for abstraction and various programming paradigms,
efficient “don’t pay for what you don’t use”.

Hervé Brönnimann, Guillaume Melquiond, Sylvain Pion Proposing Interval Arithmetic for the C++ Standard



Standard Scope and design Conclusion History Process Motivations

The standardization process

ISO groups 156 national standardization bodies together:
AFNOR, ANSI, BSI, DIN, . . .

95% of participants come from industry:
compiler and library vendors, large C++ users, . . .

2 meetings a year allow to make proposals, review and vote.

Proposals are publicly available on the web:
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/

Libraries are first proposed for inclusion in TR.

Some new features in the pipeline: multithreading, concepts,
regular expressions, decimal f.p., filesystem, smart pointers,
. . .

Hervé Brönnimann, Guillaume Melquiond, Sylvain Pion Proposing Interval Arithmetic for the C++ Standard

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/


Standard Scope and design Conclusion History Process Motivations

Motivations for standardizing Interval Arithmetic

Many applications: certified numerical computations,
round-off error propagation control, global optimization,
mathematical proofs, . . .

Many existing implementations.

Opportunity for better and more optimized implementations.

Giving more exposure to reliable computations to the general
programming community.

Strengthen C++ as a language supporting
numerical/scientific communities.

Help grouping the interval community around a common basic
implementation.

Previous works of standardization:
J. Maurer draft (2001), Boost.Interval (2002), Fortran effort.

Hervé Brönnimann, Guillaume Melquiond, Sylvain Pion Proposing Interval Arithmetic for the C++ Standard



Standard Scope and design Conclusion History Process Motivations

Motivations for standardizing Interval Arithmetic

Many applications: certified numerical computations,
round-off error propagation control, global optimization,
mathematical proofs, . . .

Many existing implementations.

Opportunity for better and more optimized implementations.

Giving more exposure to reliable computations to the general
programming community.

Strengthen C++ as a language supporting
numerical/scientific communities.

Help grouping the interval community around a common basic
implementation.

Previous works of standardization:
J. Maurer draft (2001), Boost.Interval (2002), Fortran effort.

Hervé Brönnimann, Guillaume Melquiond, Sylvain Pion Proposing Interval Arithmetic for the C++ Standard



Standard Scope and design Conclusion Goals Design Functions Optimization

Functionality

Focus on basic interval arithmetic.

Leave out interval analysis, even linear algebra.

Only supports machine floating-point types (no MPFR).

Inclusion property verified by all functions.

Goals:

The functionality needs to be large enough to be useful.

But not too large to frighten standard library vendors.

A basic version can be done only with standard components
(no need for auxiliary libraries).

It is a pure template extension to the Standard Library
(no need for changes in compilers).

Hervé Brönnimann, Guillaume Melquiond, Sylvain Pion Proposing Interval Arithmetic for the C++ Standard



Standard Scope and design Conclusion Goals Design Functions Optimization

Functionality

Focus on basic interval arithmetic.

Leave out interval analysis, even linear algebra.

Only supports machine floating-point types (no MPFR).

Inclusion property verified by all functions.

Goals:

The functionality needs to be large enough to be useful.

But not too large to frighten standard library vendors.

A basic version can be done only with standard components
(no need for auxiliary libraries).

It is a pure template extension to the Standard Library
(no need for changes in compilers).

Hervé Brönnimann, Guillaume Melquiond, Sylvain Pion Proposing Interval Arithmetic for the C++ Standard



Standard Scope and design Conclusion Goals Design Functions Optimization

A few words on the mathematical model

Intervals are (closed?) connected subset of real numbers:
[1, 1], [3, π], [−1.7, 5.1], (−∞, 42], ∅.
Interval operations are defined by enclosing the canonical set
extensions of operations on real numbers:

∀x ∈ X , ∀y ∈ Y , x � y ∈ X � Y

(for X and Y intervals and � ∈ {+,−,×,÷, · · · }).

Consequences:

X � Y is not uniquely defined: any connected superset of
{z ∈ R | ∃x ∈ X , ∃y ∈ Y , z = x � y} qualifies.

Empty and unbounded intervals are supported.

Silent (no exception) treatment of out-of-domain values:√
[−1, 4] ⊇ [0, 2] and

√
[−2,−1] ⊇ ∅.

Hervé Brönnimann, Guillaume Melquiond, Sylvain Pion Proposing Interval Arithmetic for the C++ Standard



Standard Scope and design Conclusion Goals Design Functions Optimization

A few words on the mathematical model

Intervals are (closed?) connected subset of real numbers:
[1, 1], [3, π], [−1.7, 5.1], (−∞, 42], ∅.
Interval operations are defined by enclosing the canonical set
extensions of operations on real numbers:

∀x ∈ X , ∀y ∈ Y , x � y ∈ X � Y

(for X and Y intervals and � ∈ {+,−,×,÷, · · · }).

Consequences:

X � Y is not uniquely defined: any connected superset of
{z ∈ R | ∃x ∈ X , ∃y ∈ Y , z = x � y} qualifies.

Empty and unbounded intervals are supported.

Silent (no exception) treatment of out-of-domain values:√
[−1, 4] ⊇ [0, 2] and

√
[−2,−1] ⊇ ∅.

Hervé Brönnimann, Guillaume Melquiond, Sylvain Pion Proposing Interval Arithmetic for the C++ Standard



Standard Scope and design Conclusion Goals Design Functions Optimization

A few words on the mathematical model

Intervals are (closed?) connected subset of real numbers:
[1, 1], [3, π], [−1.7, 5.1], (−∞, 42], ∅.
Interval operations are defined by enclosing the canonical set
extensions of operations on real numbers:

∀x ∈ X , ∀y ∈ Y , x � y ∈ X � Y

(for X and Y intervals and � ∈ {+,−,×,÷, · · · }).

Consequences:

X � Y is not uniquely defined: any connected superset of
{z ∈ R | ∃x ∈ X , ∃y ∈ Y , z = x � y} qualifies.

Empty and unbounded intervals are supported.

Silent (no exception) treatment of out-of-domain values:√
[−1, 4] ⊇ [0, 2] and

√
[−2,−1] ⊇ ∅.

Hervé Brönnimann, Guillaume Melquiond, Sylvain Pion Proposing Interval Arithmetic for the C++ Standard



Standard Scope and design Conclusion Goals Design Functions Optimization

A few words on the mathematical model

Intervals are (closed?) connected subset of real numbers:
[1, 1], [3, π], [−1.7, 5.1], (−∞, 42], ∅.
Interval operations are defined by enclosing the canonical set
extensions of operations on real numbers:

∀x ∈ X , ∀y ∈ Y , x � y ∈ X � Y

(for X and Y intervals and � ∈ {+,−,×,÷, · · · }).

Consequences:

X � Y is not uniquely defined: any connected superset of
{z ∈ R | ∃x ∈ X , ∃y ∈ Y , z = x � y} qualifies.

Empty and unbounded intervals are supported.

Silent (no exception) treatment of out-of-domain values:√
[−1, 4] ⊇ [0, 2] and

√
[−2,−1] ⊇ ∅.

Hervé Brönnimann, Guillaume Melquiond, Sylvain Pion Proposing Interval Arithmetic for the C++ Standard



Standard Scope and design Conclusion Goals Design Functions Optimization

A few words on the mathematical model

Intervals are (closed?) connected subset of real numbers:
[1, 1], [3, π], [−1.7, 5.1], (−∞, 42], ∅.
Interval operations are defined by enclosing the canonical set
extensions of operations on real numbers:

∀x ∈ X , ∀y ∈ Y , x � y ∈ X � Y

(for X and Y intervals and � ∈ {+,−,×,÷, · · · }).

Consequences:

X � Y is not uniquely defined: any connected superset of
{z ∈ R | ∃x ∈ X , ∃y ∈ Y , z = x � y} qualifies.

Empty and unbounded intervals are supported.

Silent (no exception) treatment of out-of-domain values:√
[−1, 4] ⊇ [0, 2] and

√
[−2,−1] ⊇ ∅.

Hervé Brönnimann, Guillaume Melquiond, Sylvain Pion Proposing Interval Arithmetic for the C++ Standard



Standard Scope and design Conclusion Goals Design Functions Optimization

Design overview

A template class allowing float, double, and long double as
parameter. Similar to std::complex<T>.

1 template < class T >
2 class interval
3 {
4 interval ();
5 interval(T);
6 interval(T, T);
7 ...
8 };

Usage:

1 std::interval <double > I(1,2),
2 J("[3.1 ,4.7]"), K;
3 K = I + J;
4 std::cout << K << std::endl;

Hervé Brönnimann, Guillaume Melquiond, Sylvain Pion Proposing Interval Arithmetic for the C++ Standard



Standard Scope and design Conclusion Goals Design Functions Optimization

Design overview

A template class allowing float, double, and long double as
parameter. Similar to std::complex<T>.

1 template < class T >
2 class interval
3 {
4 interval ();
5 interval(T);
6 interval(T, T);
7 ...
8 };

Usage:

1 std::interval <double > I(1,2),
2 J("[3.1 ,4.7]"), K;
3 K = I + J;
4 std::cout << K << std::endl;

Hervé Brönnimann, Guillaume Melquiond, Sylvain Pion Proposing Interval Arithmetic for the C++ Standard



Standard Scope and design Conclusion Goals Design Functions Optimization

Interval comparisons

No natural total order on intervals. Several schemes:

Set inclusion partial order:
([1, 2] ≺ [0, 3]) = T ([0, 2] ≺ [1, 3]) = F ([0, 1] ≺ [2, 3]) = F

Set extension comparisons (bool set):
([0, 1] ≺ [2, 3]) = {T} ([0, 2] ≺ [1, 3]) = {F , T} ([0, 0] ≺ ∅) = ∅
“Certain” comparisons:
([0, 1] ≺ [2, 3]) = T ([0, 2] ≺ [1, 3]) = F ([0, 0] ≺ ∅) = T

“Possible” comparisons:
([0, 1] ≺ [2, 3]) = T ([0, 2] ≺ [1, 3]) = T ([2, 3] ≺ [0, 1]) = F

No default comparison. Operators are selected by namespace:

1 interval <double > A, B;
2 ...
3 using namespace certainly_ops;
4 if (0. < A && A <= B) {
5 // ∀a ∈ A, ∀b ∈ B, 0 < a ≤ b

Hervé Brönnimann, Guillaume Melquiond, Sylvain Pion Proposing Interval Arithmetic for the C++ Standard



Standard Scope and design Conclusion Goals Design Functions Optimization

Interval comparisons

No natural total order on intervals. Several schemes:

Set inclusion partial order:
([1, 2] ≺ [0, 3]) = T ([0, 2] ≺ [1, 3]) = F ([0, 1] ≺ [2, 3]) = F

Set extension comparisons (bool set):
([0, 1] ≺ [2, 3]) = {T} ([0, 2] ≺ [1, 3]) = {F , T} ([0, 0] ≺ ∅) = ∅
“Certain” comparisons:
([0, 1] ≺ [2, 3]) = T ([0, 2] ≺ [1, 3]) = F ([0, 0] ≺ ∅) = T

“Possible” comparisons:
([0, 1] ≺ [2, 3]) = T ([0, 2] ≺ [1, 3]) = T ([2, 3] ≺ [0, 1]) = F

No default comparison. Operators are selected by namespace:

1 interval <double > A, B;
2 ...
3 using namespace certainly_ops;
4 if (0. < A && A <= B) {
5 // ∀a ∈ A, ∀b ∈ B, 0 < a ≤ b

Hervé Brönnimann, Guillaume Melquiond, Sylvain Pion Proposing Interval Arithmetic for the C++ Standard



Standard Scope and design Conclusion Goals Design Functions Optimization

Interval comparisons

No natural total order on intervals. Several schemes:

Set inclusion partial order:
([1, 2] ≺ [0, 3]) = T ([0, 2] ≺ [1, 3]) = F ([0, 1] ≺ [2, 3]) = F

Set extension comparisons (bool set):
([0, 1] ≺ [2, 3]) = {T} ([0, 2] ≺ [1, 3]) = {F , T} ([0, 0] ≺ ∅) = ∅
“Certain” comparisons:
([0, 1] ≺ [2, 3]) = T ([0, 2] ≺ [1, 3]) = F ([0, 0] ≺ ∅) = T

“Possible” comparisons:
([0, 1] ≺ [2, 3]) = T ([0, 2] ≺ [1, 3]) = T ([2, 3] ≺ [0, 1]) = F

No default comparison. Operators are selected by namespace:

1 interval <double > A, B;
2 ...
3 using namespace certainly_ops;
4 if (0. < A && A <= B) {
5 // ∀a ∈ A, ∀b ∈ B, 0 < a ≤ b

Hervé Brönnimann, Guillaume Melquiond, Sylvain Pion Proposing Interval Arithmetic for the C++ Standard



Standard Scope and design Conclusion Goals Design Functions Optimization

Interval comparisons

No natural total order on intervals. Several schemes:

Set inclusion partial order:
([1, 2] ≺ [0, 3]) = T ([0, 2] ≺ [1, 3]) = F ([0, 1] ≺ [2, 3]) = F

Set extension comparisons (bool set):
([0, 1] ≺ [2, 3]) = {T} ([0, 2] ≺ [1, 3]) = {F , T} ([0, 0] ≺ ∅) = ∅
“Certain” comparisons:
([0, 1] ≺ [2, 3]) = T ([0, 2] ≺ [1, 3]) = F ([0, 0] ≺ ∅) = T

“Possible” comparisons:
([0, 1] ≺ [2, 3]) = T ([0, 2] ≺ [1, 3]) = T ([2, 3] ≺ [0, 1]) = F

No default comparison. Operators are selected by namespace:

1 interval <double > A, B;
2 ...
3 using namespace certainly_ops;
4 if (0. < A && A <= B) {
5 // ∀a ∈ A, ∀b ∈ B, 0 < a ≤ b

Hervé Brönnimann, Guillaume Melquiond, Sylvain Pion Proposing Interval Arithmetic for the C++ Standard



Standard Scope and design Conclusion Goals Design Functions Optimization

Interval comparisons

No natural total order on intervals. Several schemes:

Set inclusion partial order:
([1, 2] ≺ [0, 3]) = T ([0, 2] ≺ [1, 3]) = F ([0, 1] ≺ [2, 3]) = F

Set extension comparisons (bool set):
([0, 1] ≺ [2, 3]) = {T} ([0, 2] ≺ [1, 3]) = {F , T} ([0, 0] ≺ ∅) = ∅
“Certain” comparisons:
([0, 1] ≺ [2, 3]) = T ([0, 2] ≺ [1, 3]) = F ([0, 0] ≺ ∅) = T

“Possible” comparisons:
([0, 1] ≺ [2, 3]) = T ([0, 2] ≺ [1, 3]) = T ([2, 3] ≺ [0, 1]) = F

No default comparison. Operators are selected by namespace:

1 interval <double > A, B;
2 ...
3 using namespace certainly_ops;
4 if (0. < A && A <= B) {
5 // ∀a ∈ A, ∀b ∈ B, 0 < a ≤ b

Hervé Brönnimann, Guillaume Melquiond, Sylvain Pion Proposing Interval Arithmetic for the C++ Standard



Standard Scope and design Conclusion Goals Design Functions Optimization

Interval comparisons

No natural total order on intervals. Several schemes:

Set inclusion partial order:
([1, 2] ≺ [0, 3]) = T ([0, 2] ≺ [1, 3]) = F ([0, 1] ≺ [2, 3]) = F

Set extension comparisons (bool set):
([0, 1] ≺ [2, 3]) = {T} ([0, 2] ≺ [1, 3]) = {F , T} ([0, 0] ≺ ∅) = ∅
“Certain” comparisons:
([0, 1] ≺ [2, 3]) = T ([0, 2] ≺ [1, 3]) = F ([0, 0] ≺ ∅) = T

“Possible” comparisons:
([0, 1] ≺ [2, 3]) = T ([0, 2] ≺ [1, 3]) = T ([2, 3] ≺ [0, 1]) = F

No default comparison. Operators are selected by namespace:

1 interval <double > A, B;
2 ...
3 using namespace certainly_ops;
4 if (0. < A && A <= B) {
5 // ∀a ∈ A, ∀b ∈ B, 0 < a ≤ b

Hervé Brönnimann, Guillaume Melquiond, Sylvain Pion Proposing Interval Arithmetic for the C++ Standard



Standard Scope and design Conclusion Goals Design Functions Optimization

Interval comparisons

Canonical set extension of boolean comparisons:

1 namespace bool_set_ops {
2 template < class T >
3 bool_set operator < (interval <T> a,

interval <T> b);
4 }

bool set implements a multi-valued logic:

Four states: false, true, both, none.

Convertible to bool, possibly with an exception.

Logical operations: |, &, ^, !, . . .

Hervé Brönnimann, Guillaume Melquiond, Sylvain Pion Proposing Interval Arithmetic for the C++ Standard



Standard Scope and design Conclusion Goals Design Functions Optimization

Interval comparisons

Canonical set extension of boolean comparisons:

1 namespace bool_set_ops {
2 template < class T >
3 bool_set operator < (interval <T> a,

interval <T> b);
4 }

bool set implements a multi-valued logic:

Four states: false, true, both, none.

Convertible to bool, possibly with an exception.

Logical operations: |, &, ^, !, . . .

Hervé Brönnimann, Guillaume Melquiond, Sylvain Pion Proposing Interval Arithmetic for the C++ Standard



Standard Scope and design Conclusion Goals Design Functions Optimization

List of free functions

Value functions: inf, sup, midpoint, width.

Arithmetic operators: +, -, *, /, square, sqrt, abs.

Set operations: is singleton, contains, overlaps,
equals, intersect, hull, split, bisect.

I/O operators << and >>.

Forward functions: cos, log10, hypot, . . .

asin(X ) ⊇ {r ∈ [−π
2 , pi

2 ] | sin r ∈ X}

Relational functions: asin rel, nth rool rel, . . .

asin rel(X ,R) ⊇ {r ∈ R | sin r ∈ X}
(R may be [17, 18])

Hervé Brönnimann, Guillaume Melquiond, Sylvain Pion Proposing Interval Arithmetic for the C++ Standard



Standard Scope and design Conclusion Goals Design Functions Optimization

List of free functions

Value functions: inf, sup, midpoint, width.

Arithmetic operators: +, -, *, /, square, sqrt, abs.

Set operations: is singleton, contains, overlaps,
equals, intersect, hull, split, bisect.

I/O operators << and >>.

Forward functions: cos, log10, hypot, . . .

asin(X ) ⊇ {r ∈ [−π
2 , pi

2 ] | sin r ∈ X}

Relational functions: asin rel, nth rool rel, . . .

asin rel(X ,R) ⊇ {r ∈ R | sin r ∈ X}
(R may be [17, 18])

Hervé Brönnimann, Guillaume Melquiond, Sylvain Pion Proposing Interval Arithmetic for the C++ Standard



Standard Scope and design Conclusion Goals Design Functions Optimization

List of free functions

Value functions: inf, sup, midpoint, width.

Arithmetic operators: +, -, *, /, square, sqrt, abs.

Set operations: is singleton, contains, overlaps,
equals, intersect, hull, split, bisect.

I/O operators << and >>.

Forward functions: cos, log10, hypot, . . .

asin(X ) ⊇ {r ∈ [−π
2 , pi

2 ] | sin r ∈ X}

Relational functions: asin rel, nth rool rel, . . .

asin rel(X ,R) ⊇ {r ∈ R | sin r ∈ X}
(R may be [17, 18])

Hervé Brönnimann, Guillaume Melquiond, Sylvain Pion Proposing Interval Arithmetic for the C++ Standard



Standard Scope and design Conclusion Goals Design Functions Optimization

List of free functions

Value functions: inf, sup, midpoint, width.

Arithmetic operators: +, -, *, /, square, sqrt, abs.

Set operations: is singleton, contains, overlaps,
equals, intersect, hull, split, bisect.

I/O operators << and >>.

Forward functions: cos, log10, hypot, . . .

asin(X ) ⊇ {r ∈ [−π
2 , pi

2 ] | sin r ∈ X}

Relational functions: asin rel, nth rool rel, . . .

asin rel(X ,R) ⊇ {r ∈ R | sin r ∈ X}
(R may be [17, 18])

Hervé Brönnimann, Guillaume Melquiond, Sylvain Pion Proposing Interval Arithmetic for the C++ Standard



Standard Scope and design Conclusion Goals Design Functions Optimization

List of free functions

Value functions: inf, sup, midpoint, width.

Arithmetic operators: +, -, *, /, square, sqrt, abs.

Set operations: is singleton, contains, overlaps,
equals, intersect, hull, split, bisect.

I/O operators << and >>.

Forward functions: cos, log10, hypot, . . .

asin(X ) ⊇ {r ∈ [−π
2 , pi

2 ] | sin r ∈ X}

Relational functions: asin rel, nth rool rel, . . .

asin rel(X ,R) ⊇ {r ∈ R | sin r ∈ X}
(R may be [17, 18])

Hervé Brönnimann, Guillaume Melquiond, Sylvain Pion Proposing Interval Arithmetic for the C++ Standard



Standard Scope and design Conclusion Goals Design Functions Optimization

List of free functions

Value functions: inf, sup, midpoint, width.

Arithmetic operators: +, -, *, /, square, sqrt, abs.

Set operations: is singleton, contains, overlaps,
equals, intersect, hull, split, bisect.

I/O operators << and >>.

Forward functions: cos, log10, hypot, . . .

asin(X ) ⊇ {r ∈ [−π
2 , pi

2 ] | sin r ∈ X}

Relational functions: asin rel, nth rool rel, . . .

asin rel(X ,R) ⊇ {r ∈ R | sin r ∈ X}
(R may be [17, 18])

Hervé Brönnimann, Guillaume Melquiond, Sylvain Pion Proposing Interval Arithmetic for the C++ Standard



Standard Scope and design Conclusion Goals Design Functions Optimization

Optimization

1 d = a + b;
2 e = d + c;

Boils down to something like:

1 save_current_rounding_mode ();
2 set_rounding_mode_to_infinity ();
3 d.inf = - (- a.inf - b.inf); // assume usual trick
4 d.sup = a.sup + b.sup;
5 restore_rounding_mode (); // useless
6

7 save_current_rounding_mode (); // useless
8 set_rounding_mode_to_infinity (); // useless
9 e.inf = - (- d.inf - c.inf);

10 e.sup = d.sup + c.sup;
11 restore_rounding_mode ();

How to optimize away redundant rounding mode changes?

Ask the user to preset the rounding mode.

Ask the compiler to do the job: user-friendly and optimistic.

Hervé Brönnimann, Guillaume Melquiond, Sylvain Pion Proposing Interval Arithmetic for the C++ Standard



Standard Scope and design Conclusion Goals Design Functions Optimization

Optimization

1 d = a + b;
2 e = d + c;

Boils down to something like:

1 save_current_rounding_mode ();
2 set_rounding_mode_to_infinity ();
3 d.inf = - (- a.inf - b.inf); // assume usual trick
4 d.sup = a.sup + b.sup;
5 restore_rounding_mode (); // useless
6

7 save_current_rounding_mode (); // useless
8 set_rounding_mode_to_infinity (); // useless
9 e.inf = - (- d.inf - c.inf);

10 e.sup = d.sup + c.sup;
11 restore_rounding_mode ();

How to optimize away redundant rounding mode changes?

Ask the user to preset the rounding mode.

Ask the compiler to do the job: user-friendly and optimistic.

Hervé Brönnimann, Guillaume Melquiond, Sylvain Pion Proposing Interval Arithmetic for the C++ Standard



Standard Scope and design Conclusion Goals Design Functions Optimization

Optimization

1 d = a + b;
2 e = d + c;

Boils down to something like:

1 save_current_rounding_mode ();
2 set_rounding_mode_to_infinity ();
3 d.inf = - (- a.inf - b.inf); // assume usual trick
4 d.sup = a.sup + b.sup;
5 restore_rounding_mode (); // useless
6

7 save_current_rounding_mode (); // useless
8 set_rounding_mode_to_infinity (); // useless
9 e.inf = - (- d.inf - c.inf);

10 e.sup = d.sup + c.sup;
11 restore_rounding_mode ();

How to optimize away redundant rounding mode changes?

Ask the user to preset the rounding mode.

Ask the compiler to do the job: user-friendly and optimistic.

Hervé Brönnimann, Guillaume Melquiond, Sylvain Pion Proposing Interval Arithmetic for the C++ Standard



Standard Scope and design Conclusion

Conclusion

Current work:

Collect comments on the first revision.

Collect support.

Prepare for the next meeting in October.

Mailing-list: std-interval@compgeom.poly.edu

Proposals: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/

n2046.pdf: bool set

n2067.pdf: interval

Mail: guillaume.melquiond@ens-lyon.fr

Hervé Brönnimann, Guillaume Melquiond, Sylvain Pion Proposing Interval Arithmetic for the C++ Standard

std-interval@compgeom.poly.edu
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/
guillaume.melquiond@ens-lyon.fr

	The ISO C++ standardization process
	History
	Process
	Motivations

	Scope and design
	Goals
	Design
	Functions
	Optimization

	Conclusion

