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Standard Scope and design Conclusion History Process Motivations

History

1984: C++ was born (first implementation by Stroustrup).

1994: The STL (Stepanov).

1998: C++ was standardized by ISO: “C++98” language and library.

1998: The Boost project was started to develop more libraries.

2003: A minor revision was made: “C++03”.

2004: Technical Report 1 “TR1”: non-normative list of new libraries.

2007-2008: Technical Report 2 “TR2”.

2009-2011: A new standard is planned: “C++0x”.

Major features of C++: general purpose, compatible with C,
supports for abstraction and various programming paradigms,
efficient “don’t pay for what you don’t use”.
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The standardization process

ISO groups 156 national standardization bodies together:
AFNOR, ANSI, BSI, DIN, . . .

95% of participants come from industry:
compiler and library vendors, large C++ users, . . .

2 meetings a year allow to make proposals, review and vote.

Proposals are publicly available on the web:
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/

Libraries are first proposed for inclusion in TR.

Some new features in the pipeline: multithreading, concepts,
regular expressions, decimal f.p., filesystem, smart pointers,
. . .
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Motivations for standardizing Interval Arithmetic

Many applications: certified numerical computations,
round-off error propagation control, global optimization,
mathematical proofs, . . .

Many existing implementations.

Opportunity for better and more optimized implementations.

Giving more exposure to reliable computations to the general
programming community.

Strengthen C++ as a language supporting
numerical/scientific communities.

Help grouping the interval community around a common basic
implementation.

Previous works of standardization:
J. Maurer draft (2001), Boost.Interval (2002), Fortran effort.
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Functionality

Focus on basic interval arithmetic.

Leave out interval analysis, even linear algebra.

Only supports machine floating-point types (no MPFR).

Inclusion property verified by all functions.

Goals:

The functionality needs to be large enough to be useful.

But not too large to frighten standard library vendors.

A basic version can be done only with standard components
(no need for auxiliary libraries).

It is a pure template extension to the Standard Library
(no need for changes in compilers).
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A few words on the mathematical model

Intervals are (closed?) connected subset of real numbers:
[1, 1], [3, π], [−1.7, 5.1], (−∞, 42], ∅.
Interval operations are defined by enclosing the canonical set
extensions of operations on real numbers:

∀x ∈ X , ∀y ∈ Y , x � y ∈ X � Y

(for X and Y intervals and � ∈ {+,−,×,÷, · · · }).

Consequences:

X � Y is not uniquely defined: any connected superset of
{z ∈ R | ∃x ∈ X , ∃y ∈ Y , z = x � y} qualifies.

Empty and unbounded intervals are supported.

Silent (no exception) treatment of out-of-domain values:√
[−1, 4] ⊇ [0, 2] and

√
[−2,−1] ⊇ ∅.

Hervé Brönnimann, Guillaume Melquiond, Sylvain Pion Proposing Interval Arithmetic for the C++ Standard



Standard Scope and design Conclusion Goals Design Functions Optimization

A few words on the mathematical model

Intervals are (closed?) connected subset of real numbers:
[1, 1], [3, π], [−1.7, 5.1], (−∞, 42], ∅.
Interval operations are defined by enclosing the canonical set
extensions of operations on real numbers:

∀x ∈ X , ∀y ∈ Y , x � y ∈ X � Y

(for X and Y intervals and � ∈ {+,−,×,÷, · · · }).

Consequences:

X � Y is not uniquely defined: any connected superset of
{z ∈ R | ∃x ∈ X , ∃y ∈ Y , z = x � y} qualifies.

Empty and unbounded intervals are supported.

Silent (no exception) treatment of out-of-domain values:√
[−1, 4] ⊇ [0, 2] and

√
[−2,−1] ⊇ ∅.
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Design overview

A template class allowing float, double, and long double as
parameter. Similar to std::complex<T>.

1 template < class T >
2 class interval
3 {
4 interval ();
5 interval(T);
6 interval(T, T);
7 ...
8 };

Usage:

1 std::interval <double > I(1,2),
2 J("[3.1 ,4.7]"), K;
3 K = I + J;
4 std::cout << K << std::endl;
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Interval comparisons

No natural total order on intervals. Several schemes:

Set inclusion partial order:
([1, 2] ≺ [0, 3]) = T ([0, 2] ≺ [1, 3]) = F ([0, 1] ≺ [2, 3]) = F

Set extension comparisons (bool set):
([0, 1] ≺ [2, 3]) = {T} ([0, 2] ≺ [1, 3]) = {F , T} ([0, 0] ≺ ∅) = ∅
“Certain” comparisons:
([0, 1] ≺ [2, 3]) = T ([0, 2] ≺ [1, 3]) = F ([0, 0] ≺ ∅) = T

“Possible” comparisons:
([0, 1] ≺ [2, 3]) = T ([0, 2] ≺ [1, 3]) = T ([2, 3] ≺ [0, 1]) = F

No default comparison. Operators are selected by namespace:

1 interval <double > A, B;
2 ...
3 using namespace certainly_ops;
4 if (0. < A && A <= B) {
5 // ∀a ∈ A, ∀b ∈ B, 0 < a ≤ b
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Interval comparisons

Canonical set extension of boolean comparisons:

1 namespace bool_set_ops {
2 template < class T >
3 bool_set operator < (interval <T> a,

interval <T> b);
4 }

bool set implements a multi-valued logic:

Four states: false, true, both, none.

Convertible to bool, possibly with an exception.

Logical operations: |, &, ^, !, . . .
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List of free functions

Value functions: inf, sup, midpoint, width.

Arithmetic operators: +, -, *, /, square, sqrt, abs.

Set operations: is singleton, contains, overlaps,
equals, intersect, hull, split, bisect.

I/O operators << and >>.

Forward functions: cos, log10, hypot, . . .

asin(X ) ⊇ {r ∈ [−π
2 , pi

2 ] | sin r ∈ X}

Relational functions: asin rel, nth rool rel, . . .

asin rel(X ,R) ⊇ {r ∈ R | sin r ∈ X}
(R may be [17, 18])
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Hervé Brönnimann, Guillaume Melquiond, Sylvain Pion Proposing Interval Arithmetic for the C++ Standard



Standard Scope and design Conclusion Goals Design Functions Optimization

List of free functions

Value functions: inf, sup, midpoint, width.

Arithmetic operators: +, -, *, /, square, sqrt, abs.

Set operations: is singleton, contains, overlaps,
equals, intersect, hull, split, bisect.

I/O operators << and >>.

Forward functions: cos, log10, hypot, . . .

asin(X ) ⊇ {r ∈ [−π
2 , pi

2 ] | sin r ∈ X}

Relational functions: asin rel, nth rool rel, . . .

asin rel(X ,R) ⊇ {r ∈ R | sin r ∈ X}
(R may be [17, 18])
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Optimization

1 d = a + b;
2 e = d + c;

Boils down to something like:

1 save_current_rounding_mode ();
2 set_rounding_mode_to_infinity ();
3 d.inf = - (- a.inf - b.inf); // assume usual trick
4 d.sup = a.sup + b.sup;
5 restore_rounding_mode (); // useless
6

7 save_current_rounding_mode (); // useless
8 set_rounding_mode_to_infinity (); // useless
9 e.inf = - (- d.inf - c.inf);

10 e.sup = d.sup + c.sup;
11 restore_rounding_mode ();

How to optimize away redundant rounding mode changes?

Ask the user to preset the rounding mode.

Ask the compiler to do the job: user-friendly and optimistic.
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Conclusion

Current work:

Collect comments on the first revision.

Collect support.

Prepare for the next meeting in October.

Mailing-list: std-interval@compgeom.poly.edu

Proposals: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/

n2046.pdf: bool set

n2067.pdf: interval

Mail: guillaume.melquiond@ens-lyon.fr
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