De l'arithmétique d'intervalles à la certification de programmes

Guillaume Melquiond

Sous la direction de Marc Daumas
Laboratoire de I'Informatique du Parallélisme Arénaire, LIP, CNRS-ENSL-INRIA-UCBL

2006-11-21

From interval arithmetic to program certification

Guillaume Melquiond

Advisor: Marc Daumas
Laboratoire de l'Informatique du Parallélisme
Arénaire, LIP, CNRS-ENSL-INRIA-UCBL
2006-11-21

Motivation

Floating-point and fixed-point datatypes suffer from:

- limited range \Rightarrow underflow, overflow,
- limited precision \Rightarrow inaccurate results.

Motivation

Floating-point and fixed-point datatypes suffer from:

- limited range \Rightarrow underflow, overflow, Ariane 5 maiden flight: $\$ 500 \mathrm{M}$
- limited precision \Rightarrow inaccurate results.

Patriot missile failure: 28 casualties

Motivation

Floating-point and fixed-point datatypes suffer from:

- limited range \Rightarrow underflow, overflow, Ariane 5 maiden flight: $\$ 500 \mathrm{M}$
- limited precision \Rightarrow inaccurate results.

Patriot missile failure: 28 casualties
\Longrightarrow Safety-critical applications require certification.

Motivation

Floating-point and fixed-point datatypes suffer from:

- limited range \Rightarrow underflow, overflow, Ariane 5 maiden flight: $\$ 500 \mathrm{M}$
- limited precision \Rightarrow inaccurate results.

Patriot missile failure: 28 casualties
\Longrightarrow Safety-critical applications require certification.

Unfortunately, certifying a numerical application is

- long and tedious,

Motivation

Floating-point and fixed-point datatypes suffer from:

- limited range \Rightarrow underflow, overflow, Ariane 5 maiden flight: $\$ 500 \mathrm{M}$
- limited precision \Rightarrow inaccurate results.

Patriot missile failure: 28 casualties
\Longrightarrow Safety-critical applications require certification.

Unfortunately, certifying a numerical application is

- long and tedious,
- error-prone.

Motivation

Floating-point and fixed-point datatypes suffer from:

- limited range \Rightarrow underflow, overflow, Ariane 5 maiden flight: $\$ 500 \mathrm{M}$
- limited precision \Rightarrow inaccurate results.

Patriot missile failure: 28 casualties
\Longrightarrow Safety-critical applications require certification.

Unfortunately, certifying a numerical application is

- long and tedious,

Automated tool

- error-prone.

Motivation

Floating-point and fixed-point datatypes suffer from:

- limited range \Rightarrow underflow, overflow,

Ariane 5 maiden flight: $\$ 500 \mathrm{M}$

- limited precision \Rightarrow inaccurate results.

Patriot missile failure: 28 casualties
\Longrightarrow Safety-critical applications require certification.

Unfortunately, certifying a numerical application is

- long and tedious,

Automated tool

- error-prone.

Formal methods

Motivation

Floating-point and fixed-point datatypes suffer from:

- limited range \Rightarrow underflow, overflow,

Ariane 5 maiden flight: $\$ 500 \mathrm{M}$

- limited precision \Rightarrow inaccurate results.

Patriot missile failure: 28 casualties
\Longrightarrow Safety-critical applications require certification.

Unfortunately, certifying a numerical application is

- long and tedious,
- error-prone.

Automated tool
Formal methods $\}$

Motto of this PhD

(1) What most users identify as simple ideas should be easily usable as formal methods.
(2) A computer should not require help from the user for problems that can be solved with some limited work.

Outline

(1) Introduction
(2) Bounding expressions
(3) Rounded computations

4 Propagating errors
(5) Conclusion

Outline

(1) Introduction

- Motivation
- Example: orientation of three points
- The Gappa tool
(2) Bounding expressions

3 Rounded computations

4 Propagating errors
(5) Conclusion

Example: orientation of three points

Given three points p, q, and r of the 2D plane, they can be either aligned or clockwise-oriented or counter-clockwise-oriented.

$$
\operatorname{orient}_{2}(p, q, r)=\operatorname{sign}\left|\begin{array}{ll}
q_{x}-p_{x} & r_{x}-p_{x} \\
q_{y}-p_{y} & r_{y}-p_{y}
\end{array}\right|
$$

Example: orientation of three points

Given three points p, q, and r of the 2D plane, they can be either aligned or clockwise-oriented or counter-clockwise-oriented.

$$
\text { orient }_{2}(p, q, r)=\operatorname{sign}\left|\begin{array}{ll}
q_{x}-p_{x} & r_{x}-p_{x} \\
q_{y}-p_{y} & r_{y}-p_{y}
\end{array}\right|
$$

A naive floating-point implementation:

```
1 float det = (qx - px) * (ry - py)
2 - (qy - py) * (rx - px);
3 if (det > 0) return POSITIVE;
4 if (det < O) return NEGATIVE;
5 return ZERO;
```


Infinitely precise computations

For $q=(8.1,8.1)$ and $r=(12.1,12.1)$ and p around (1.5, 1.5), the sign of the determinant should look like:

Actual single-precision computations

Due to the limited precision of floating-point numbers, the computed sign may be wrong. It actually looks like:

Robust computations

The computed value det and the exact value Det have the same sign when $|\operatorname{det}|>\xi$, with ξ an upper bound on |det - Det|. Improvement: flag results that are not guaranteed to be correct.

Introducing Gappa

Computing a bound on \mid det - Det| with Gappa:

```
```

\# Single precision and round to nearest

```
```

\# Single precision and round to nearest
2 @rnd = float< ieee_32, ne >;
2 @rnd = float< ieee_32, ne >;
3
3
4 \# Input variables (floating-point numbers)
4 \# Input variables (floating-point numbers)
$5 \mathrm{px}=\mathrm{rnd}\left(\mathrm{px} \mathrm{x}_{-}\right) ; \quad \mathrm{py}=\mathrm{rnd}\left(\mathrm{p} \mathrm{y}_{-}\right)$;
$5 \mathrm{px}=\mathrm{rnd}\left(\mathrm{px} \mathrm{x}_{-}\right) ; \quad \mathrm{py}=\mathrm{rnd}\left(\mathrm{p} \mathrm{y}_{-}\right)$;
$6 \mathrm{qx}=\mathrm{rnd}(8.1) ; \mathrm{qy}=\mathrm{rnd}(8.1)$;
$6 \mathrm{qx}=\mathrm{rnd}(8.1) ; \mathrm{qy}=\mathrm{rnd}(8.1)$;
$7 \mathrm{rx}=\mathrm{rnd}(12.1) ; \mathrm{ry}=\mathrm{rnd}(12.1)$;
$7 \mathrm{rx}=\mathrm{rnd}(12.1) ; \mathrm{ry}=\mathrm{rnd}(12.1)$;
8
8
9 \# Computed and exact values of the determinant
9 \# Computed and exact values of the determinant
10 det $r n d=(q x-p x) *(r y-p y)-(q y-p y) *(r x-p x)$;
10 det $r n d=(q x-p x) *(r y-p y)-(q y-p y) *(r x-p x)$;
11 Det $=(q x-p x) *(r y-p y)-(q y-p y) *(r x-p x)$;
11 Det $=(q x-p x) *(r y-p y)-(q y-p y) *(r x-p x)$;
12
13 \# Logical formula
13 \# Logical formula
$14\{|\mathrm{px}-1.5|<=32 \mathrm{~b}-23 / \backslash$
$14\{|\mathrm{px}-1.5|<=32 \mathrm{~b}-23 / \backslash$
$15|p y-1.5|<=32 b-23->$

```
\(15|p y-1.5|<=32 b-23->\)
```

16

```
    |det - Det| in ? \}
```

```
    |det - Det| in ? \}
```


Improved algorithm

Gappa's answer: the property

$$
\|p-(1.5,1.5)\|_{\infty} \leq 32 \cdot 2^{-23} \quad \Longrightarrow \quad|\operatorname{det}-\operatorname{Det}| \leq \xi
$$

is provable for $\xi=1.9 \cdot 10^{-5}$.

Improved algorithm

Gappa's answer: the property

$$
\|p-(1.5,1.5)\|_{\infty} \leq 32 \cdot 2^{-23} \quad \Longrightarrow \quad|\operatorname{det}-\operatorname{Det}| \leq \xi
$$

is provable for $\xi=1.9 \cdot 10^{-5}$.
Gappa also generates a Coq formal proof: 1823 lines, 391 lemmas.

Improved algorithm

Gappa's answer: the property

$$
\|p-(1.5,1.5)\|_{\infty} \leq 32 \cdot 2^{-23} \quad \Longrightarrow \quad|\operatorname{det}-\operatorname{Det}| \leq \xi
$$

is provable for $\xi=1.9 \cdot 10^{-5}$.
Gappa also generates a Coq formal proof: 1823 lines, 391 lemmas.

Robust floating-point implementation:

```
1 float det = (qx - px) * (ry - py)
2 - (qy - py) * (rx - px);
3 if (det > +1.9e-5) return POSITIVE;
4 if (det < -1.9e-5) return NEGATIVE;
5 return UNKNOWN;
```


The Gappa tool

Objective: help users certify/analyze their numerical applications.
Design decisions:

- the tool verifies enclosures of mathematical expressions;
- these expressions can contain rounding operators to express limitations and properties of datatypes;
- formal proofs are generated to provide confidence in the development.

The Gappa tool

Objective: help users certify/analyze their numerical applications.
Design decisions:

- the tool verifies enclosures of mathematical expressions;
- these expressions can contain rounding operators to express limitations and properties of datatypes;
- formal proofs are generated to provide confidence in the development.

How does it work?

- Interval arithmetic for propagating enclosures.
- Theorems on bounds on rounded values and rounding errors.
- Rewriting rules for tightening computed enclosures.

Outline

(1) Introduction

(2) Bounding expressions

- Numeric intervals
- Example: square root for proof checkers
- Standardizing interval arithmetic
- Computing bounds

3 Rounded computations

4 Propagating errorsConclusion

Model: bounding expressions by numeric intervals

Basic element: an enclosure $e \in I$.

- e is an expression on real numbers:

$$
e::=\text { number }|-e| \circ(e)|e+e| e \times e|\sqrt{e}| \ldots
$$

- $I=[a, b]$ is an interval with dyadic rational bounds.

Model: bounding expressions by numeric intervals

Basic element: an enclosure $e \in I$.

- e is an expression on real numbers:

$$
e::=\text { number }|-e| \circ(e)|e+e| e \times e|\sqrt{e}| \ldots
$$

- $I=[a, b]$ is an interval with dyadic rational bounds.

These enclosures are appropriate to express questions that usually arise when certifying numerical applications:

- no overflow, no invalid operations, etc
- variable domain: $\tilde{x} \in I$,
- accuracy of computed values
- absolute error: $\tilde{x}-x \in I$,
- relative error: $(\tilde{x}-x) / x \in I$.

Interval arithmetic as proof foundation

Interval evaluations can serve as proofs of bounds, when they satisfy the containment property:

$$
x \in I_{x} \wedge y \in I_{y} \quad \Longrightarrow \quad x \diamond y \in I_{z} \quad \text { if } I_{x} \diamond I_{y} \subseteq I_{z}
$$

for $\diamond \in\{+,-, \times, \div\}$. Also for unary functions: $\sqrt{\cdot}, \sin , \ldots$

Interval arithmetic as proof foundation

Interval evaluations can serve as proofs of bounds, when they satisfy the containment property:

$$
x \in I_{x} \wedge y \in I_{y} \quad \Longrightarrow \quad x \diamond y \in I_{z} \quad \text { if } I_{x} \diamond I_{y} \subseteq I_{z}
$$

for $\diamond \in\{+,-, \times, \div\}$. Also for unary functions: $\sqrt{\cdot}, \sin , \ldots$
Arithmetic operations on intervals:

- $[a, b]+[c, d]=[a+c, b+d]$,
- $[a, b]-[c, d]=[a-d, b-c]$,
- $[a, b] \times[c, d]=[\min (a c, a d, b c, b d), \max (a c, a d, b c, b d)]$,
- $[a, b] \div[c, d]=[a, b] \times[c, d]^{-1}$ with $[c, d]^{-1}=[1 / d, 1 / c]$ if $0 \notin[c, d]$.

Example: square root

Property to prove: $x \in[3,5] \Rightarrow \sqrt{x} \in[1.3,2.3]$.

Example: square root

Property to prove: $x \in[3,5] \Rightarrow \sqrt{x} \in[1.3,2.3]$. Interval theorem: if $e \in[a, b]$, then $\sqrt{e} \in[\sqrt{a}, \sqrt{b}]$.

Example: square root

Property to prove: $x \in[3,5] \Rightarrow \sqrt{x} \in[1.3,2.3]$. Interval theorem: if $e \in[a, b]$, then $\sqrt{e} \in[\nabla \sqrt{a}, \triangle \sqrt{b}]$.

Example: square root

Property to prove: $x \in[3,5] \Rightarrow \sqrt{x} \in[1.3,2.3]$. Interval theorem: if $e \in[a, b]$, then $\sqrt{e} \in[\nabla \sqrt{a}, \triangle \sqrt{b}]$.

Verifying the property:

- $[\nabla \sqrt{3}, \triangle \sqrt{5}]=\left[1773 \cdot 2^{-10}, 1145 \cdot 2^{-9}\right] \subseteq[1.3,2.3]$.

Example: square root

Property to prove: $x \in[3,5] \Rightarrow \sqrt{x} \in[1.3,2.3]$.
Interval theorem: if $e \in[a, b]$, then $\sqrt{e} \in[\nabla \sqrt{a}, \triangle \sqrt{b}]$.
Verifying the property:

- $[\nabla \sqrt{3}, \triangle \sqrt{5}]=\left[1773 \cdot 2^{-10}, 1145 \cdot 2^{-9}\right] \subseteq[1.3,2.3]$.

Checking the certificate:
(1) $\sqrt{x} \in\left[1773 \cdot 2^{-10}, \ldots\right]$ holds
because $\left(1773 \cdot 2^{-10}\right)^{2}=3143529 \cdot 2^{-20} \leq 3 \leq x$.
(2) $1.3 \leq 1773 \cdot 2^{-10}$ holds.

Example: square root

Property to prove: $x \in[3,5] \Rightarrow \sqrt{x} \in[1.3,2.3]$.
Interval theorem: if $e \in[a, b]$, then $\sqrt{e} \in[\nabla \sqrt{a}, \triangle \sqrt{b}]$.
Verifying the property:

- $[\nabla \sqrt{3}, \triangle \sqrt{5}]=\left[1773 \cdot 2^{-10}, 1145 \cdot 2^{-9}\right] \subseteq[1.3,2.3]$.

Checking the certificate:
(1) $\sqrt{x} \in\left[1773 \cdot 2^{-10}, \ldots\right]$ holds
because $\left(1773 \cdot 2^{-10}\right)^{2}=3143529 \cdot 2^{-20} \leq 3 \leq x$.
(2) $1.3 \leq 1773 \cdot 2^{-10}$ holds.

Simplifying the certificate:

- $1.3 \leq \frac{3}{2} \leq 1773 \cdot 2^{-10}$ and $1145 \cdot 2^{-9} \leq \frac{9}{4} \leq 2.3$.

Example: square root

Property to prove: $x \in[3,5] \Rightarrow \sqrt{x} \in[1.3,2.3]$.
Interval theorem: if $e \in[a, b]$, then $\sqrt{e} \in[\nabla \sqrt{a}, \triangle \sqrt{b}]$.
Verifying the property:

- $[\nabla \sqrt{3}, \triangle \sqrt{5}]=\left[1773 \cdot 2^{-10}, 1145 \cdot 2^{-9}\right] \subseteq[1.3,2.3]$.

Checking the certificate:
(1) $\sqrt{x} \in\left[\frac{3}{2}, \ldots\right]$ holds because $\left(\frac{3}{2}\right)^{2}=9 \cdot 2^{-2} \leq 3 \leq x$.
(2) $1.3 \leq \frac{3}{2}$ holds.

Simplifying the certificate:
(in Gappa)

- $1.3 \leq \frac{3}{2} \leq 1773 \cdot 2^{-10}$ and $1145 \cdot 2^{-9} \leq \frac{9}{4} \leq 2.3$.
- A certificate using $\sqrt{x} \in\left[\frac{3}{2}, \frac{9}{4}\right]$ is checked faster by Coq.

Digression: the Boost $\mathrm{C}++$ library

Gappa relies on the Boost C++ interval arithmetic library.

Digression: the Boost $\mathrm{C}++$ library

Gappa relies on the Boost C++ interval arithmetic library.

Generic library in the spirit of the STL:

- instantiated with double and GMP rationals for PVS proofs on approximation errors,
- instantiated with MPFR for Gappa's dyadic bounds.

Digression: the Boost $\mathrm{C}++$ library

Gappa relies on the Boost C++ interval arithmetic library.

Generic library in the spirit of the STL:

- instantiated with double and GMP rationals for PVS proofs on approximation errors,
- instantiated with MPFR for Gappa's dyadic bounds.

Boost: sandbox for developing new features of the $\mathrm{C}++$ language.

Digression: standardizing interval arithmetic

Proposing interval arithmetic for the ISO $\mathrm{C}++$ Standard.

- Motivation: giving more exposure to reliable computing to the general $\mathrm{C}++$ programming community.
- Form: a pure library, no core language change.
- Target: Technical Report 2 (~2010).

Digression: standardizing interval arithmetic

Proposing interval arithmetic for the ISO $\mathrm{C}++$ Standard.

- Motivation: giving more exposure to reliable computing to the general $\mathrm{C}++$ programming community.
- Form: a pure library, no core language change.
- Target: Technical Report 2 (~2010).

Usage:

```
std::interval<double>
I(1,2), J("[3.1,4.7]"), K;
K = exp(I) - J;
4 std::cout << K << std::endl;
```


Gappa's process

(1) Extract a logical formula

$$
e_{1} \in I_{1} \wedge \cdots \wedge e_{n} \in I_{n} \quad \Longrightarrow \quad e_{n+1} \in I_{n+1}
$$

Gappa's process

(1) Extract a logical formula

$$
e_{1} \in I_{1} \wedge \cdots \wedge e_{n} \in I_{n} \quad \Longrightarrow \quad e_{n+1} \in I_{n+1}
$$

(2) Select expressions and theorems potentially useful as intermediate steps for bounding e_{1}, \cdots, e_{n+1}.

Gappa's process

(1) Extract a logical formula

$$
e_{1} \in I_{1} \wedge \cdots \wedge e_{n} \in I_{n} \quad \Longrightarrow \quad e_{n+1} \in I_{n+1}
$$

(2) Select expressions and theorems potentially useful as intermediate steps for bounding e_{1}, \cdots, e_{n+1}.
(3) Assuming $e_{1} \in I_{1}, \cdots, e_{n} \in I_{n}$, compute and recompute the ranges of all the intermediate expressions until the enclosure $e_{n+1} \in I_{n+1}$ is proved. Keep track of the theorems as they are applied.

Gappa's process

(1) Extract a logical formula

$$
e_{1} \in I_{1} \wedge \cdots \wedge e_{n} \in I_{n} \quad \Longrightarrow \quad e_{n+1} \in I_{n+1}
$$

(2) Select expressions and theorems potentially useful as intermediate steps for bounding e_{1}, \cdots, e_{n+1}.
(3) Assuming $e_{1} \in I_{1}, \cdots, e_{n} \in I_{n}$, compute and recompute the ranges of all the intermediate expressions until the enclosure $e_{n+1} \in I_{n+1}$ is proved.
Keep track of the theorems as they are applied.
(9) Simplify the resulting proof graph.

Gappa's process

(1) Extract a logical formula

$$
e_{1} \in I_{1} \wedge \cdots \wedge e_{n} \in I_{n} \quad \Longrightarrow \quad e_{n+1} \in I_{n+1}
$$

(2) Select expressions and theorems potentially useful as intermediate steps for bounding e_{1}, \cdots, e_{n+1}.
(3) Assuming $e_{1} \in I_{1}, \cdots, e_{n} \in I_{n}$, compute and recompute the ranges of all the intermediate expressions until the enclosure $e_{n+1} \in I_{n+1}$ is proved.
Keep track of the theorems as they are applied.
(9) Simplify the resulting proof graph.
(5) Generate a formal certificate.

Intersection and union

Intervals are sets. We can

- Improve ranges by intersection: $e \in I_{1} \wedge e \in I_{2} \Rightarrow e \in I_{1} \cap I_{2}$.

Intersection and union

Intervals are sets. We can

- Improve ranges by intersection: $e \in I_{1} \wedge e \in I_{2} \Rightarrow e \in I_{1} \cap I_{2}$.

Empty intersection implies contradiction: proof by absurd.

Intersection and union

Intervals are sets. We can

- Improve ranges by intersection: $e \in I_{1} \wedge e \in I_{2} \Rightarrow e \in I_{1} \cap I_{2}$.

Empty intersection implies contradiction: proof by absurd.

- Perform case studies:

$$
\left(x \in I_{1} \Rightarrow e \in I\right) \wedge\left(x \in I_{2} \Rightarrow e \in I\right) \Longrightarrow\left(x \in I_{1} \cup I_{2} \Rightarrow e \in I\right)
$$

Intersection and union

Intervals are sets. We can

- Improve ranges by intersection: $e \in I_{1} \wedge e \in I_{2} \Rightarrow e \in I_{1} \cap I_{2}$.

Empty intersection implies contradiction: proof by absurd.

- Perform case studies:

$$
\left(x \in I_{1} \Rightarrow e \in I\right) \wedge\left(x \in I_{2} \Rightarrow e \in I\right) \Longrightarrow\left(x \in I_{1} \cup I_{2} \Rightarrow e \in I\right) .
$$

Example: let x and y be two integers.

$$
\begin{aligned}
& 4\{|x|<=100<|y|<=100 / \backslash x * y<=0 \\
& 5 \\
& ->|x+y|<=100\}
\end{aligned}
$$

Doable by studying cases on the signs of x and y, and detecting contradictions with $x \cdot y \leq 0$.
(Coq proof: 395 lines, 71 lemmas)

Outline

(1) Introduction

(2) Bounding expressions

(3) Rounded computations

- Rounding operators
- Floating-point arithmetic
- Fixed-point arithmetic
- Predicates and exact computations

4 Propagating errorsConclusion

Rounding operators

How to express approximate computations?

```
1 double f(double a, double b, double c)
2 { return a / b + c; }
```


Rounding operators

How to express approximate computations?

```
1 double f(double a, double b, double c)
2 { return a / b + c; }
```

IEEE-754 says: a floating-point operator shall behave as if it was first computing the infinitely precise value and then rounding it so that it fits in the destination floating-point format.

Rounding operators

How to express approximate computations?

```
1 double f(double a, double b, double c)
2 { return a / b + c; }
```

IEEE-754 says: a floating-point operator shall behave as if it was first computing the infinitely precise value and then rounding it so that it fits in the destination floating-point format.

Approach: for a given numeric environment, define one single operator $\circ(\cdot)$ on real numbers.

$$
\mathrm{a} / \mathrm{b}+\mathrm{c} \longrightarrow \circ(\circ(\underbrace{a \div b}_{\text {real division }})+c)
$$

Rounded values and rounding errors

For a given rounding operator, the following theorems are provided.

- An interval extension: $e \in I \Rightarrow \circ(e) \in \circ(I)$.

Rounding monotony: $\circ([a, b])=[\circ(a), \circ(b)]$.

Rounded values and rounding errors

For a given rounding operator, the following theorems are provided.

- An interval extension: $e \in I \Rightarrow \circ(e) \in \circ(I)$.

Rounding monotony: $\circ([a, b])=[\circ(a), \circ(b)]$.

- An interval restriction: $\circ(e) \in I \Rightarrow \circ(e) \in J$. Example: $\lfloor e\rfloor \in[1.5,2.5]$ implies $\lfloor e\rfloor=2$.

Rounded values and rounding errors

For a given rounding operator, the following theorems are provided.

- An interval extension: $e \in I \Rightarrow \circ(e) \in \circ(I)$.

Rounding monotony: $\circ([a, b])=[\circ(a), \circ(b)]$.

- An interval restriction: $\circ(e) \in I \Rightarrow \circ(e) \in J$. Example: $\lfloor e\rfloor \in[1.5,2.5]$ implies $\lfloor e\rfloor=2$.
- Bounds on rounding errors.

Given either $e \in I,|e| \in I, \circ(e) \in I$, or $|\circ(e)| \in I$, they compute the ranges of

Rounded values and rounding errors

For a given rounding operator, the following theorems are provided.

- An interval extension: $e \in I \Rightarrow \circ(e) \in \circ(I)$.

Rounding monotony: $\circ([a, b])=[\circ(a), \circ(b)]$.

- An interval restriction: $\circ(e) \in I \Rightarrow \circ(e) \in J$.

Example: $\lfloor e\rfloor \in[1.5,2.5]$ implies $\lfloor e\rfloor=2$.

- Bounds on rounding errors.

Given either $e \in I,|e| \in I, \circ(e) \in I$, or $|\circ(e)| \in I$, they compute the ranges of

- the absolute error $\circ(e)-e$,

Rounded values and rounding errors

For a given rounding operator, the following theorems are provided.

- An interval extension: $e \in I \Rightarrow \circ(e) \in \circ(I)$.

Rounding monotony: $\circ([a, b])=[\circ(a), \circ(b)]$.

- An interval restriction: $\circ(e) \in I \Rightarrow \circ(e) \in J$.

Example: $\lfloor e\rfloor \in[1.5,2.5]$ implies $\lfloor e\rfloor=2$.

- Bounds on rounding errors.

Given either $e \in I,|e| \in I, \circ(e) \in I$, or $|\circ(e)| \in I$, they compute the ranges of

- the absolute error $\circ(e)-e$,
- the relative error $\frac{\circ(e)-e}{e}$.

Floating-point arithmetic

A binary floating-point value can be written $m \cdot 2^{e}$ with $m, e \in \mathbb{Z}$.

Floating-point arithmetic

A binary floating-point value can be written $m \cdot 2^{e}$ with $m, e \in \mathbb{Z}$.
An IEEE-754 format imposes

- a precision $p:|m|<2^{p}$,
- a minimal exponent $E_{\min }: e \geq E_{\min }$,
- a maximal exponent $E_{\max }: e \leq E_{\max }$.

Floating-point arithmetic

A binary floating-point value can be written $m \cdot 2^{e}$ with $m, e \in \mathbb{Z}$.
An IEEE-754 format imposes

- a precision $p:|m|<2^{p}$,
- a minimal exponent $E_{\min }: e \geq E_{\min }$,
- a maximal exponent $E_{\max }: e \leq E_{\max }$

Floating-point arithmetic

A binary floating-point value can be written $m \cdot 2^{e}$ with $m, e \in \mathbb{Z}$.
An IEEE-754 format imposes

- a precision $p:|m|<2^{p}$,
- a minimal exponent $E_{\text {min }}: e \geq E_{\text {min }}$,
- a maximal exponent $E_{\max }: e \leq E_{\max }$.

When a real number is not representable as a floating-point number, it is rounded in a specific direction.
Example: results are rounded to the nearest floating-point number (tie-breaking to even mantissas).

Floating-point arithmetic

A binary floating-point value can be written $m \cdot 2^{e}$ with $m, e \in \mathbb{Z}$.
An IEEE-754 format imposes

- a precision $p:|m|<2^{p}$,
- a minimal exponent $E_{\text {min }}: e \geq E_{\text {min }}$,
- a maximal exponent $E_{\max }: e \leq E_{\max }$.

When a real number is not representable as a floating-point number, it is rounded in a specific direction.
Example: results are rounded to the nearest floating-point number (tie-breaking to even mantissas).

Rounding operator: float<p, $E_{\text {min }}$, dir>.

Exceptional behaviors

In Gappa's formalism, every data is a real number:

- no signed zeros,
- no Not-a-Numbers,
- no infinities.

Exceptional behaviors

In Gappa's formalism, every data is a real number:

- no signed zeros,
- no Not-a-Numbers,
- no infinities.

Yet, correct behavior of a program can be proved:

- subnormal numbers are handled;

Exceptional behaviors

In Gappa's formalism, every data is a real number:

- no signed zeros,
- no Not-a-Numbers,
- no infinities.

Yet, correct behavior of a program can be proved:

- subnormal numbers are handled;
- the absence of overflow can be expressed and checked:

$$
\begin{aligned}
& 1 \quad z=\text { float<ieee_32, ne }>(x+y) ; \\
& 2\{\cdots->|z|<=0 x 1 . \text { FFFFFEp127 }\}
\end{aligned}
$$

Fixed-point arithmetic

The value of a fixed-point number is $m \cdot 2^{E}$ with $m \in \mathbb{Z}$. Rounding operator: fixed<E, dir>.

Fixed-point arithmetic

The value of a fixed-point number is $m \cdot 2^{E}$ with $m \in \mathbb{Z}$. Rounding operator: fixed<E, dir>.

Theorem on rounding error: \quad (dir $=\mathrm{dn}$: rounding toward $-\infty$)

$$
\forall x \in \mathbb{R}, \quad \text { fixed }<E, \operatorname{dn}>(x)-x \in\left[-2^{E}, 0\right] .
$$

Fixed-point arithmetic

Theorem on rounding error:
(dir $=\mathrm{dn}$: rounding toward $-\infty$) $\forall x \in \mathbb{R}, \quad$ fixed $<E, \operatorname{dn}>(x)-x \in\left[-2^{E}, 0\right]$.
Example 1:

```
1 x = fixed<-4,dn>(x_);
2 y = fixed<-5,dn>(y_);
3 { fixed<-6, dn>(x * y) - x * y in ? }
```


Fixed-point arithmetic

Theorem on rounding error:
(dir $=\mathrm{dn}$: rounding toward $-\infty$) $\forall x \in \mathbb{R}, \quad$ fixed $<E, \operatorname{dn}>(x)-x \in\left[-2^{E}, 0\right]$.
Example 1:

```
1 x = fixed<-4,dn>(x_);
2 y = fixed<-5,dn>(y_);
3 { fixed<-6, dn>(x * y) - x * y in ? }
```

Gappa answers $\left[-2^{-6}, 0\right]$. Optimal is $\left[-0.875 \cdot 2^{-6}, 0\right]$.

Fixed-point arithmetic

Theorem on rounding error: \quad (dir $=\mathrm{dn}$: rounding toward $-\infty$) $\forall x \in \mathbb{R}, \quad$ fixed $<E, \operatorname{dn}>(x)-x \in\left[-2^{E}, 0\right]$.
Example 1:

$$
\begin{aligned}
& 1 \mathrm{x}=\mathrm{fixed}<-4, \operatorname{dn}>\left(\mathrm{x}_{-}\right) ; \\
& 2 \mathrm{y}=\mathrm{fixed}<-5, \operatorname{dn}>\left(\mathrm{y}_{-}\right) ; \\
& 3 \text { f fixed<-6, dn>(x * y) - x * y in ? \}}
\end{aligned}
$$

Gappa answers $\left[-2^{-6}, 0\right]$. Optimal is $\left[-0.875 \cdot 2^{-6}, 0\right]$.
Example 2:

$$
3\{\text { fixed }<-6, d n>(x+y)-(x+y) \text { in } ?\}
$$

Naive answer is $\left[-2^{-6}, 0\right]$. Optimal is $[0,0]$.

Predicate for fixed-point predicate

```
3 x = fixed<-4, dn>( x_);
4 y = fixed<-5,dn>(y_);
5 { fixed<-6,dn>(x + y) - (x + y) in ? }
```

Optimal interval is [0, 0] because
$x+y=m_{x} \cdot 2^{-4}+m_{y} \cdot 2^{-5}$ is representable as a multiple of 2^{-6}.

Predicate for fixed-point predicate

```
3 x = fixed<-4,dn>( x_);
4 y = fixed<-5,dn>(y_);
5 { fixed<-6,dn>(x + y) - (x + y) in ? }
```

Optimal interval is $[0,0]$ because $x+y=m_{x} \cdot 2^{-4}+m_{y} \cdot 2^{-5}$ is representable as a multiple of 2^{-6}.

Solution: Gappa internally relies on the predicate

$$
\operatorname{FIX}(x, e) \equiv \exists m \in \mathbb{Z}, \quad x=m \cdot 2^{e}
$$

and computes with it:

- $\operatorname{FIX}\left(x, e_{x}\right) \wedge \operatorname{FIX}\left(y, e_{y}\right) \Longrightarrow \operatorname{FIX}\left(x+y, \min \left(e_{x}, e_{y}\right)\right)$,
- $\operatorname{FIX}\left(x, e_{x}\right) \wedge \operatorname{FIX}\left(y, e_{y}\right) \Longrightarrow \operatorname{FIX}\left(x \cdot y, e_{x}+e_{y}\right)$.

Predicate for fixed-point predicate

```
3 x = fixed<-4,dn>( x_);
4 y = fixed<-5,dn>(y_);
5 { fixed<-6,dn>(x + y) - (x + y) in ? }
```

Optimal interval is $[0,0]$ because $x+y=m_{x} \cdot 2^{-4}+m_{y} \cdot 2^{-5}$ is representable as a multiple of 2^{-6}.

Solution: Gappa internally relies on the predicate

$$
\operatorname{FIX}(x, e) \equiv \exists m \in \mathbb{Z}, \quad x=m \cdot 2^{e}
$$

and computes with it:

- $\operatorname{FIX}\left(x, e_{x}\right) \wedge \operatorname{FIX}\left(y, e_{y}\right) \Longrightarrow \operatorname{FIX}\left(x+y, \min \left(e_{x}, e_{y}\right)\right)$,
- $\operatorname{FIX}\left(x, e_{x}\right) \wedge \operatorname{FIX}\left(y, e_{y}\right) \Longrightarrow \operatorname{FIX}\left(x \cdot y, e_{x}+e_{y}\right)$.

Alternate theorem on the rounding error:

$$
\forall x \in \mathbb{R}, \quad \operatorname{FIX}(x, E) \quad \Longrightarrow \quad \text { fixed }<E, \operatorname{dn}>(x)-x=0
$$

Predicate for floating-point arithmetic

Quantifying the precision required to represent a value:

$$
\operatorname{FLT}(x, p) \equiv \exists m, e \in \mathbb{Z}, \quad x=m \cdot 2^{e} \wedge|m|<2^{p}
$$

Predicate for floating-point arithmetic

Quantifying the precision required to represent a value:

$$
\operatorname{FLT}(x, p) \equiv \exists m, e \in \mathbb{Z}, \quad x=m \cdot 2^{e} \wedge|m|<2^{p}
$$

Example: exact floating-point subtraction.

```
1 @rnd = float< ieee_32, zr >;
2 a = rnd(a_); b = rnd(b_);
3 { a in [3.2,3.3] 八 b in [1.4,1.8] ->
4 rnd(a - b) - (a - b) in [0,0] }
```

Note: Sterbenz's lemma does not apply because $\frac{3.3}{1.4} \simeq 2.4$.

Predicate for floating-point arithmetic

Quantifying the precision required to represent a value:

$$
\operatorname{FLT}(x, p) \equiv \exists m, e \in \mathbb{Z}, \quad x=m \cdot 2^{e} \wedge|m|<2^{p}
$$

Example: exact floating-point subtraction.

```
1 @rnd = float< ieee_32, zr >;
2 a = rnd(a_); b = rnd(b_);
3 { a in [3.2,3.3] 八 b in [1.4,1.8] ->
4 rnd(a - b) - (a - b) in [0,0] }
```

Note: Sterbenz's lemma does not apply because $\frac{3.3}{1.4} \simeq 2.4$.
Gappa automatically proves:
(1) $\operatorname{FIX}(a,-22)$ and $\operatorname{FIX}(b,-23)$, hence $\operatorname{FIX}(a-b,-23)$;
(2) $|a-b| \leq 1.9$, hence $\operatorname{FLT}(a-b, 24)$.

Hence $a-b=\circ(a-b)$.
(Coq proof: 281 lines, 53 proofs)

Outline

(2) Bounding expressions

(3) Rounded computations

4 Propagating errors

- Correlated expressions and interval evaluation
- Rewriting expressions
- User-defined rewriting rules
(5) Conclusion

Correlated expressions and interval evaluation

Example: compute the range of $\frac{\tilde{u} \cdot \tilde{-} \cdot u \cdot v}{u \cdot v}$ knowing that:

- domains of u, v, \tilde{u}, and \tilde{v} are $[1,100]$;
- values are correlated: $\left|\frac{\tilde{u}-u}{u}\right| \leq 0.1$ and $\left|\frac{\tilde{v}-v}{v}\right| \leq 0.2$.

Correlated expressions and interval evaluation

Example: compute the range of $\frac{\tilde{u} \cdot \tilde{v}-u \cdot v}{u \cdot v}$ knowing that:

- domains of u, v, \tilde{u}, and \tilde{v} are [1, 100];
- values are correlated: $\left|\frac{\tilde{u}-u}{u}\right| \leq 0.1$ and $\left|\frac{\tilde{v}-v}{v}\right| \leq 0.2$.

Interval evaluation:

$$
\begin{aligned}
\frac{\tilde{u} \cdot \tilde{v}-u \cdot v}{u \cdot v} & \in \frac{[1,100] \cdot[1,100]-[1,100] \cdot[1,100]}{[1,100] \cdot[1,100]} \\
& \in \frac{[1,10000]-[1,10000]}{[1,10000]} \\
& \in[-9999,9999]
\end{aligned}
$$

Correlated expressions and interval evaluation

Example: compute the range of $\frac{\tilde{u} \cdot \tilde{v}-u \cdot v}{u \cdot v}$ knowing that:

- domains of u, v, \tilde{u}, and \tilde{v} are $[1,100]$;
- values are correlated: $\left|\frac{\tilde{u}-u}{u}\right| \leq 0.1$ and $\left|\frac{\tilde{v}-v}{v}\right| \leq 0.2$.

Interval evaluation:

$$
\begin{aligned}
\frac{\tilde{u} \cdot \tilde{v}-u \cdot v}{u \cdot v} & \in \frac{[1,100] \cdot[1,100]-[1,100] \cdot[1,100]}{[1,100] \cdot[1,100]} \\
& \in \frac{[1,10000]-[1,10000]}{[1,10000]} \\
& \in[-9999,9999] \quad \text { Bad! }
\end{aligned}
$$

Naive interval arithmetic does not track correlation between values.

Rewriting expressions to reduce decorrelation

Example: compute the range of $\frac{\tilde{u} \cdot \tilde{v}-u \cdot v}{u \cdot v}$ knowing that

- values are correlated: $\left|\frac{\tilde{u}-u}{u}\right| \leq 0.1$ and $\left|\frac{\tilde{v}-v}{v}\right| \leq 0.2$.

Solution: make correlations explicit.

$$
\frac{\tilde{u} \cdot \tilde{v}-u \cdot v}{u \cdot v}=\frac{\tilde{u}-u}{u}+\frac{\tilde{v}-v}{v}+\frac{\tilde{u}-u}{u} \cdot \frac{\tilde{v}-v}{v}
$$

Rewriting expressions to reduce decorrelation

Example: compute the range of $\frac{\tilde{u} \cdot \tilde{v}-u \cdot v}{u \cdot v}$ knowing that

- values are correlated: $\left|\frac{\tilde{u}-u}{u}\right| \leq 0.1$ and $\left|\frac{\tilde{v}-v}{v}\right| \leq 0.2$.

Solution: make correlations explicit.

$$
\frac{\tilde{u} \cdot \tilde{v}-u \cdot v}{u \cdot v}=\frac{\tilde{u}-u}{u}+\frac{\tilde{v}-v}{v}+\frac{\tilde{u}-u}{u} \cdot \frac{\tilde{v}-v}{v}
$$

Interval evaluation:

$$
\begin{aligned}
\frac{\tilde{u} \cdot \tilde{v}-u \cdot v}{u \cdot v} & \in[-0.1,0.1]+[-0.2,0.2]+[-0.1,0.1] \cdot[-0.2,0.2] \\
& \in[-0.32,0.32]
\end{aligned}
$$

Rewriting expressions using similarities

The expression $\frac{\tilde{u} \cdot \tilde{v}-u \cdot v}{u \cdot v}$ can be seen as the relative error between two similar sub-expressions: $\tilde{u} \cdot \tilde{v}$ and $u \cdot v$.

Rewriting as $\frac{\tilde{u}-u}{u}+\frac{\tilde{v}-v}{v}+\frac{\tilde{u}-u}{u} \cdot \frac{\tilde{v}-v}{v}$ is useful, if tight ranges of $\frac{\tilde{u}-u}{u}$ and $\frac{\tilde{v}-v}{v}$ can be computed.

If \tilde{u} and u are similar expressions, then $\frac{\tilde{u}-u}{u}$ can also be rewritten.
And so on, until Gappa gets to an atomic error, e.g. $\frac{\circ(e)-e}{e}$ that is bounded thanks to a theorem on operator \circ.

Rewriting expressions using intermediate terms

Rounding operators prevent these rewritings. E.g. $\frac{o(\tilde{u} \cdot \tilde{v})-u \cdot v}{u \cdot v}$.
More generally, how to bound $\frac{\tilde{p}-q}{q}$ when

- \tilde{p} is known to be close to p,
- p is potentially similar to q ?

Rewriting expressions using intermediate terms

Rounding operators prevent these rewritings. E.g. $\frac{o(\tilde{u} \cdot \tilde{v})-u \cdot v}{u \cdot v}$.
More generally, how to bound $\frac{\tilde{p}-q}{q}$ when

- \tilde{p} is known to be close to p,
- p is potentially similar to q ?

Gappa automatically rewrites the expression so that $\frac{\tilde{p}-p}{p}$ appears:

$$
\frac{\tilde{p}-q}{q}=\frac{\tilde{p}-p}{p}+\frac{p-q}{q}+\frac{\tilde{p}-p}{p} \cdot \frac{p-q}{q}
$$

Rewriting expressions using intermediate terms

Rounding operators prevent these rewritings. E.g. $\frac{\circ(\tilde{u} \cdot \tilde{v})-u \cdot v}{u \cdot v}$.
More generally, how to bound $\frac{\tilde{p}-q}{q}$ when

- \tilde{p} is known to be close to p,
- p is potentially similar to q ?

Gappa automatically rewrites the expression so that $\frac{\tilde{p}-p}{p}$ appears:

$$
\frac{\tilde{p}-q}{q}=\frac{\tilde{p}-p}{p}+\frac{p-q}{q}+\frac{\tilde{p}-p}{p} \cdot \frac{p-q}{q}
$$

Note:

- $\frac{\tilde{p}-p}{p}=\frac{o(\tilde{u} \cdot \tilde{v})-\tilde{u} \cdot \tilde{v}}{\tilde{u} \cdot \tilde{v}}$ is an atomic error;
- $\frac{p-q}{q}=\frac{\tilde{u} \cdot \tilde{v}-u \cdot v}{u \cdot v}$ has similar sub-expressions.

User-defined rewriting rules

When the user is certifying clever code, automatic rewriting is no longer enough to deal with correlation.

User-defined rewriting rules

When the user is certifying clever code, automatic rewriting is no longer enough to deal with correlation.

Example: given a fixed-point number $d \in[0.5,1]$, compute an approximate reciprocal r_{2} using two Newton iterations.

```
4 r1 fixed<-14, dn>=
5 r0 * (2 - fixed<-16,dn>(d) * r0);
6 r2 fixed<-30,dn>= r1 * (2 - d * r1);
7
8 { |r0 - 1/d| <= 1b-8 /\ d in [0.5,1]
9 -> r2 - 1/d in ? }
```


User-defined rewriting rules

When the user is certifying clever code, automatic rewriting is no longer enough to deal with correlation.

Example: given a fixed-point number $d \in[0.5,1]$, compute an approximate reciprocal r_{2} using two Newton iterations.

$$
\begin{aligned}
& 4 \text { r1 fixed<-14, dn>= } \\
& 5 \quad r 0 *(2-\mathrm{fixed}<-16, \mathrm{dn}>(\mathrm{d}) * \mathrm{r} 0) \text {; } \\
& 6 \text { r2 fixed<-30, dn }>=r 1 *(2-d * r 1) \text {; } \\
& 7 \\
& 8\{|r 0-1 / d|<=1 b-8 / \backslash d \text { in }[0.5,1] \\
& 9->r 2-1 / d \text { in ? \} }
\end{aligned}
$$

Gappa's answer: $r_{2}-\frac{1}{d} \in[-5.04,5.05]$.
The tool does not see the correlation between r_{2} and $\frac{1}{d}$.

User-defined rewriting rules

Example:

```
4 r1 fixed<-14,dn>=
5 r0 * (2 - fixed<-16,dn>(d) * r0);
6 r2 fixed<-30,dn>= r1 * (2 - d * r1);
7
8 { |r0 - 1/d| <= 1b-8 /\ d in [0.5,1]
9 -> r2 - 1/d in ? }
```

Newton iteration is used for its quadratic convergence.

User-defined rewriting rules

Example:

```
4 r1 fixed<-14,dn>=
5 r0 * (2 - fixed<-16,dn>(d) * r0);
6 r2 fixed<-30,dn>= r1 * (2 - d * r1);
7
8 { |r0 - 1/d| <= 1b-8 /\ d in [0.5,1]
9 -> r2 - 1/d in ? }
```

Newton iteration is used for its quadratic convergence.
So the user just has to tell Gappa about it:

```
11 r1 ~ r0 * (2 - d * r0);
12 r0 * (2 - d * r0) - 1/d ->
13
                                (r0 - 1/d) * (r0 - 1/d) * -d;
```


User-defined rewriting rules

Example:

```
4 r1 fixed<-14,dn>=
5 r0 * (2 - fixed<-16,dn>(d) * r0);
6 r2 fixed<-30,dn>= r1 * (2 - d * r1);
7
8 { |r0 - 1/d| <= 1b-8 /\ d in [0.5,1]
9 -> r2 - 1/d in ? }
```

Newton iteration is used for its quadratic convergence.
So the user just has to tell Gappa about it:

```
11 r1 ~ r0 * (2 - d * r0);
12 r0 * (2 - d * r0) - 1/d ->
13
                                (r0 - 1/d) * (r0 - 1/d) * -d;
```

Answer: $r_{2}-\frac{1}{d} \in\left[-2^{-24.7}, 2^{-28.4}\right]$. (Coq proof: 774 lines, 138 lemmas)

Outline

(1) Introduction

(2) Bounding expressions

3 Rounded computations
4) Propagating errors
(5) Conclusion

- Realizations
- Perspectives

Realizations

First public version of Gappa: early 2005.
Since then, around 30 new versions.
Latest version is Gappa 0.7.3.

Realizations

First public version of Gappa: early 2005.
Since then, around 30 new versions.
Latest version is Gappa 0.7.3.
Two separate parts:
(1) Gappa tool: 6500 lines of $\mathrm{C}++$;
(2) Support library: 8000 lines of Coq proofs.

Realizations

First public version of Gappa: early 2005.
Since then, around 30 new versions.
Latest version is Gappa 0.7.3.
Two separate parts:
(1) Gappa tool: 6500 lines of $\mathrm{C}++$;
(2) Support library: 8000 lines of Coq proofs.

Perspective: adapt Gappa and write support libraries for other proof checkers: HOL light, PVS, ...

Realizations

It has been successfully used for implementing

- robust floating-point filters in CGAL,
- correctly-rounded elementary functions in CRlibm,
- efficient hardware arithmetic operators,
- etc.

Realizations

It has been successfully used for implementing

- robust floating-point filters in CGAL,
- correctly-rounded elementary functions in CRlibm,
- efficient hardware arithmetic operators,
- etc.

What users say about Gappa:
Higher confidence. Faster development.

Limitations and perspectives of Gappa

Gappa focuses on arithmetic properties of real expressions:

- no arrays of numbers,
- no loops nor conditional execution.

Perspective: interface Gappa with generic certification tools.

Limitations and perspectives of Gappa

Gappa focuses on arithmetic properties of real expressions:

- no arrays of numbers,
- no loops nor conditional execution.

Perspective: interface Gappa with generic certification tools.

Gappa manipulates predicates with numerical parameters:

- no generic error computation for fixed<n, dir> roundings,
- no symbolic domains of expressions.

Perspective: introduce some symbolic computations in Gappa.

Appendix

(6) Gappa scripts
(7) Rounding to odd
(8) Adding operators to improve evaluation
(9) Bibliography

Intersection and union

```
1 x = int<dn> (x_);
2 y = int<dn>(y_);
3
4 { |x|<= 100 /\ |y|<= 100 /\x * y <= 0
5 -> |x + y| <= 100 }
6
7 $ x in (-0.5,0.5), y in (-0.5,0.5);
```


User-defined rewriting rules

```
1 d = fixed<-24, dn> (d_);
2 r0 = fixed<-8,dn>(r0_);
3
4 r1 fixed<-14, dn>=
5 r0 * (2 - fixed<-16,dn>(d) * r0);
6 r2 fixed<-30,dn>= r1 * (2 - d * r1);
7 < |
8{ |r0 - 1/d| <= 1b-8 /\ d in [0.5,1]
9 -> r2 - 1/d in ? }
1 0
11 r1 ~ r0 * (2 - d * r0);
12 r0 * (2 - d * r0) - 1/d ->
13 (r0 - 1/d) * (r0 - 1/d) * -d;
14
15 r2 ~ r1 * (2 - d * r1);
16 r1 * (2 - d * r1) - 1/d ->
17 (r1 - 1/d) * (r1 - 1/d) * -d;
```


Adding atomic operators to improve interval evaluation

$$								

CGAL floating-point filter (partly certified with Gappa)

```
double pqx = qx - px, pqy = qy - py;
double prx = rx - px, pry = ry - py;
double det = pqx * pry - pqy * prx;
double maxx = max(abs(pqx), abs(prx));
double maxy = max(abs(pqy), abs(pry));
double eps = 8.8872057372592758e-16 * maxx * maxy;
if (maxx > maxy) swap(maxx, maxy);
if (maxx < 1e-146) {
    if (maxx == 0) return ZERO;
} else if (maxy < 1e153) {
    if (det > eps) return POSITIVE;
    if (det < -eps) return NEGATIVE;
}
return UNKNOWN;
```


Rounding to odd and accurate algorithms

Rounding to odd:
$\square(x)= \begin{cases}x & \text { if } x \text { is representable by a FP num } \\ \triangle(x) & \text { if the mantissa of } \triangle(x) \text { is odd, } \\ \nabla(x) & \text { otherwise. }\end{cases}$
Less accurate than rounding to nearest, but satisfy the double-rounding property: $\circ_{p}\left(\square_{p+k}(x)\right)=\circ_{p}(x)$.

Rounding to odd and accurate algorithms

Rounding to odd:
$\square(x)= \begin{cases}x & \text { if } x \text { is representable by a FP nu } \\ \triangle(x) & \text { if the mantissa of } \triangle(x) \text { is odd, } \\ \nabla(x) & \text { otherwise. }\end{cases}$
Less accurate than rounding to nearest, but satisfy the double-rounding property: $\circ_{p}\left(\square_{p+k}(x)\right)=\circ_{p}(x)$.

Application: correctly-rounded sum s of 3 FP numbers.

Rewriting expressions to reduce decorrelation

Example: compute the range of $\frac{\tilde{u} \cdot \tilde{v}-u \cdot v}{u \cdot v}$ knowing that

- values are correlated: $\left|\frac{\tilde{u}-u}{u}\right| \leq 0.1$ and $\left|\frac{\tilde{v}-v}{v}\right| \leq 0.2$.

Solution: make correlations explicit.

$$
\frac{\tilde{u} \cdot \tilde{v}-u \cdot v}{u \cdot v}=\frac{\tilde{u}-u}{u}+\frac{\tilde{v}-v}{v}+\frac{\tilde{u}-u}{u} \cdot \frac{\tilde{v}-v}{v}
$$

Interval evaluation:

$$
\begin{aligned}
\frac{\tilde{u} \cdot \tilde{v}-u \cdot v}{u \cdot v} & \in[-0.1,0.1]+[-0.2,0.2]+[-0.1,0.1] \cdot[-0.2,0.2] \\
& \in[-0.32,0.32]
\end{aligned}
$$

But there is still a correlation:

$$
\frac{\tilde{u}-u}{u}+\frac{\tilde{v}-v}{v}+\frac{\tilde{u}-u}{u} \cdot \frac{\tilde{v}-v}{v}
$$

Adding atomic operators to improve interval evaluation

Goal: a tight range of $p+q+p \cdot q$ with $p \in[\underline{p}, \bar{p}]$ and $q \in[\underline{q}, \bar{q}]$.

Adding atomic operators to improve interval evaluation

Goal: a tight range of $p+q+p \cdot q$ with $p \in[\underline{p}, \bar{p}]$ and $q \in[\underline{q}, \bar{q}]$.
Rewriting: $p+q+p \cdot q=(1+p) \cdot(1+q)-1$.
No correlated expressions anymore, but high precision required.

Adding atomic operators to improve interval evaluation

Goal: a tight range of $p+q+p \cdot q$ with $p \in[\underline{p}, \bar{p}]$ and $q \in[\underline{q}, \bar{q}]$.
Rewriting: $p+q+p \cdot q=(1+p) \cdot(1+q)-1$.
No correlated expressions anymore, but high precision required.
Symbolic interval evaluation assuming $\underline{p} \geq-1$ and $\underline{q} \geq-1$:

$$
\begin{aligned}
p+q+p \cdot q & \in[1+\underline{p}, 1+\bar{p}] \cdot[1+\underline{q}, 1+\bar{q}]-[1,1] \\
& \in[(1+\underline{p}) \cdot(1+\underline{q})-1,(1+\bar{p}) \cdot(1+\bar{q})-1] \\
& \in[\underline{p}+\underline{q}+\underline{p} \cdot \underline{q}, \bar{p}+\bar{q}+\bar{p} \cdot \bar{q}]
\end{aligned}
$$

Adding atomic operators to improve interval evaluation

Goal: a tight range of $p+q+p \cdot q$ with $p \in[\underline{p}, \bar{p}]$ and $q \in[\underline{q}, \bar{q}]$.
Rewriting: $p+q+p \cdot q=(1+p) \cdot(1+q)-1$.
No correlated expressions anymore, but high precision required.
Symbolic interval evaluation assuming $\underline{p} \geq-1$ and $q \geq-1$:

$$
\begin{aligned}
p+q+p \cdot q & \in[1+\underline{p}, 1+\bar{p}] \cdot[1+\underline{q}, 1+\bar{q}]-[1,1] \\
& \in[(1+\underline{p}) \cdot(1+\underline{q})-1,(1+\bar{p}) \cdot(1+\bar{q})-1] \\
& \in[\underline{p}+\underline{q}+\underline{p} \cdot \underline{q}, \bar{p}+\bar{q}+\bar{p} \cdot \bar{q}]
\end{aligned}
$$

Back to the previous example:

$$
\frac{\tilde{u} \cdot \tilde{v}-u \cdot v}{u \cdot v} \in[-0.28,0.32]
$$

Bibliography I

- Hervé Brönnimann, Guillaume Melquiond, and Sylvain Pion.

The Boost interval arithmetic library.
In Proceedings of the 5th Conference on Real Numbers and Computers, pages 65-80, Lyon, France, 2003.

- Hervé Brönnimann, Guillaume Melquiond, and Sylvain Pion.

The design of the Boost interval arithmetic library.
Theoretical Computer Science, 351:111-118, 2006.

- Marc Daumas and Guillaume Melquiond.

Generating formally certified bounds on values and round-off errors.
In Vasco Brattka, Christiane Frougny, and Norbert Müller, editors, Proceedings of the 6th Conference on Real Numbers and Computers, pages 55-70, Schloß Dagstuhl, Germany, 2004.

- Marc Daumas, Guillaume Melquiond, and César Muñoz.

Guaranteed proofs using interval arithmetic.
In Paolo Montuschi and Eric Schwarz, editors, Proceedings of the 17th IEEE Symposium on Computer Arithmetic, pages 188-195, Cape Cod, MA, USA, 2005.

- Guillaume Melquiond and Sylvain Pion.

Formally certified floating-point filters for homogeneous geometric predicates.
Theoretical Informatics and Applications, to be published.

Bibliography II

- Sylvie Boldo, Marc Daumas, William Kahan, and Guillaume Melquiond.

Proof and certification for an accurate discriminant.
In Proceedings of the 12th GAMM - IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics, Düsseldorf, Germany, 2006.

- Sylvie Boldo and Guillaume Melquiond.

When double rounding is odd.
In Proceedings of the 17th IMACS World Congress on Computational and Applied Mathematics, Paris, France, 2005.

- Hervé Brönnimann, Guillaume Melquiond, and Sylvain Pion.

Proposing Interval Arithmetic for the C++ Standard.
In Proceedings of the 12th GAMM - IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics, Düsseldorf, Germany, 2006.

- Florent de Dinechin, Christoph Lauter, and Guillaume Melquiond.

Assisted verification of elementary functions using Gappa.
In Proceedings of the 2006 ACM Symposium on Applied Computing, pages 1318-1322, 2006.

- Guillaume Melquiond and Sylvain Pion.

Formal certification of arithmetic filters for geometric predicates.
In Proceedings of the 17th IMACS World Congress on Computational and Applied Mathematics, Paris, France, 2005.

Bibliography III

- Sylvie Boldo and Guillaume Melquiond.

Emulation of a FMA and correctly-rounded sums: proved algorithms using rounding to odd.
Research Report HAL inria-00080427, 2006.
Submitted to IEEE Transactions on Computers

- Hervé Brönnimann, Guillaume Melquiond, and Sylvain Pion. A proposal to add interval arithmetic to the $\mathrm{C}++$ standard library. Technical Report 2137, C++ standardization committee, 2006.
- Hervé Brönnimann, Guillaume Melquiond, and Sylvain Pion.

Bool_set: multi-valued logic.
Technical Report 2136, C++ standardization committee, 2006.

