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Abstract. Interval-based methods are commonly used for computing
numerical bounds on expressions and proving inequalities on real num-
bers. Yet they are hardly used in proof assistants, as the large amount
of numerical computations they require keeps them out of reach from
deductive proof processes. However, evaluating programs inside proofs
is an efficient way for reducing the size of proof terms while perform-
ing numerous computations. This work shows how programs combining
automatic differentiation with floating-point and interval arithmetic can
be used as efficient yet certified solvers. They have been implemented
in a library for the Coq proof system. This library provides tactics for
proving inequalities on real-valued expressions.

1 Introduction

In traditional formalisms, proofs are usually composed of deductive steps. Each
of these steps is the instantiation of a logical rule or a theorem. While this
may be well-adapted for manipulating logic expressions, it can quickly lead to
inefficiencies when explicit computations are needed. Let us consider the example
of natural numbers constructed from 0 and a successor function S. For example,
the number 3 is represented by S(S(S(0))). If one needs to prove that 3 x 3
is equal to 9, one can apply Peano’s axioms, e.g. a X S(b) = a x b+ a and
a+S(b) = S(a+0b), until 3 x 3 has been completely transformed into 9. The first
steps of the proof are: 3x3 =3x2+4+3 = (3x143)+3 = ... This proof contains
about 15 instantiations of various Peano’s axioms. Due to the high number of
deductive steps, this approach hardly scales to more complicated expressions,
even if more efficient representations of integers were to be used, e.g. radix-2
numbers.

While numerical computations are made cumbersome by a deductive ap-
proach, they can nonetheless be used in formal proofs. Indeed, type-theoretic
checkers usually come with a concept of programs which can be expressed in the
same language than the proof terms. Moreover, the formalism of these checkers
assumes that replacing an expression f(z) of a functional application by the
result of the corresponding evaluation does not modify the truth of a statement.
As a consequence, one can write computable recursive functions for addition add



and multiplication mul of natural numbers. For instance, in a ML-like language,
mul can be defined as:

let rec mul x = function
0 ->0
| 8y -> add (mul x y) x
This function is extensionally equal to Peano’s multiplication. More precisely,
the following theorem can be proved by recursive reasoning on y:

mul_spec:Vz Vy x Xy=mul xy.

Therefore, in order to prove the statement 3 x 3 = 9, the first step of the
proof is an application of mul_spec in order to rewrite 3 x 3 as mul 3 3. So one
has now to prove that mul 3 3 is equal to 9. This is achieved by simply evaluating
the function. So the proof contains only one deductive step: the use of mul_spec.
With this computational approach, the number of deductive steps depends on
the number of arithmetic operators only; It does not depend on the size of the
integers. As a matter of fact, one can go even further so that the number of
deductive steps is constant, irrespectively of the complexity of the expressions.
This is the approach presented in this article.

In the Coq proof assistantﬂ the ability to use programs inside proofs is
provided by the convertibility rule: Two convertible well-formed types have the
same inhabitants. In other words, if p is a proof of a proposition A, then p is also
a proof of any proposition B such that the type B is convertible to the type A.
Terms — types are terms — are convertible if they have the same normal form with
respect to B-reduction (and a few other Coq-related reductions). In particular,
since mul 3 3 evaluates to 9 by B-reduction, the types/propositions mul 3 3 =9
and 9 = 9 are convertible, so they have exactly the same inhabitants/proofs.

More generally, an unproven proposition P(x,y,...) is transformed into a
sufficient proposition fp(z,y,...) = true — the difficulty is in designing an
efficient fp function and proving it evaluates to true only when P holds. The
proof system then checks if this boolean equality is convertible to true = true.
If it is, then it has a trivial proof from which a proof of P can be deduced.
Going from P to fp is a single deductive step, so most of the verification time
will be spent in evaluating fp. Fortunately, the convertibility rule happens to be
implemented quite efficiently in Coq [II2], so it becomes possible to automatically
prove some propositions on real numbers by simply evaluating programs. An
example of such a proposition is the following one, where x and y are universally-
quantified real numbers:

B cnnr ey B | 7 4 18| T
3 ., 33 _ 44 181 71
g == =Y=3 JTry 1000 100| = 32768

In order to prove this logical proposition with existing formal methods, one
can first turn it into an equivalent system of several polynomial inequalities. Then
a resolution procedure, e.g. based on cylindrical algebraic decomposition [3] or
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on the Nullstellensatz theorem [4], will help a proof checker to conclude auto-
matically. When the proposition involves elementary functions (e.g. cos, arctan,
exp) in addition to algebraic expressions, the problem becomes undecidable.
Some inequalities can still be proved by first replacing elementary functions by
polynomial approximations [56]. A resolution procedure for polynomial systems
can then complete the formal proof.

A different approach is based on interval arithmetic and numerical com-
putations. The process inductively encloses sub-expressions with numbers and
propagates these bounds until the range of all the expressions is known [7]. Naive
interval arithmetic, however, suffer from a loss of correlation between the mul-
tiple occurrences of a variable. In order to avoid this issue, the problems can
be split into several smaller problems or higher-order enclosures can be used
instead [89].

This paper presents an implementation of this approach for Coq. It will
focus on the aspects of automatic proof and efficiency. Section [2] describes the
few concepts needed for turning numerical computations and approximations
into a formal tool. Section [3| describes the particularities of the datatypes and
programs used for these computations. Section [4]finally brings those components
together in order to provide fully-automatized “tactics” (the tools available to
the user of Coq).

2 Mathematical foundations

While both terms “computations” and “real numbers” have been used in the
introduction, this work does not involve computational real numbers, e.g. se-
quences of converging rational numbers. As a matter of fact, it is based on the
standard Coq theory of real numbers, which is a pure axiomatization with no
computational content.

Section presents the extension of real numbers defined for this work.
This extension is needed in order to get a simpler definition of differentiation.
Section 2.2 describes the interval arithmetic formalized in order to bound ex-
pressions. Section [2.3] then shows how differentiation and intervals are combined
in order to tighten the computed bounds.

2.1 Extended real numbers

The standard theory of Coq describes real numbers as a complete Archimedean
field. Since functions of type R — R are total, this formalism makes it a bit
troublesome to deal with mathematical partial functions. For instance, z +— %
is 1 for any real x # 0. For = 0, the function is defined and its value is 0 in
Coq. Indeed, 0-0~! = 0, since 0! is the result of a total function, hence real.
Similarly, one can prove, that the derivative of this function is always zero. So
we have a function that seems both constant and discontinuous at x = 0.
Fortunately, this does not induce a contradiction, since it is impossible to

prove that the derivative (the variation limit) of 2 +— % was really 0 at point 0.



The downside is that, every time one wants to use the value of the derivative
function, one has to prove that the original function is actually derivable. This
requires to carry lots of proof terms around, which will prevent a purely compu-
tational approach.

So an element | is added to the formalism in order to represent the “result” of
a function outside its definition domain. In the Coq development, this additional
element is called NaN (Not-a-Number) as it shares the same properties as the
NaN value from the IEEE-754 standard on floating-point arithmetic [I0]. In
particular, NaN is an absorbing element for all the arithmetic operators on
the extended set R = R U {1}. That way, whenever an intermediate result is
undefined, a | value is propagated till the final result of the computation.

Functions of R — R can then be created by composing these new arithmetic
operators. In order to benefit from the common theorems of real analysis, the
functions are brought back into R — R by applying a projection operator:

proj, : f € (R = R) — (z ER— {;(1‘) i)ft}{e(zfv)visej_> €e(R—R)

Then, an extended function f is defined as continuous at a point x # L if
f(z) # L and if all the projections proj,(f) are continuous at point x. Similarly,
f is defined as derivable at « # L if f(z) # L and if all the projections of f
have the same derivative dy(z) at point z. A function f’ is then a derivative of
[ if f'(z) = dy(x) whenever f'(z) # L.

From these definitions and standard analysis, it is easy to formally prove some
rules for building derivatives. For example, if f’ and ¢’ are some derivatives of
f and g, then the extended function (f’ x g — ¢’ x f)/g? is a derivative of f/g.
This is true even if g evaluates to 0 at a point z, since the derivative would then
evaluate to 1 at this point.

As a consequence, if the derivative f’ of an expression f does not evaluate
to L on the points of a connected set of R, then f is defined, continuous, and
derivable on all the points of this set, when evaluated on real numbers. The
important point is that the extended derivative f/ can be automatically built
from an induction on the structure of the function f, without having to prove
that f is derivable on the whole domain.

2.2 Interval arithmetic

All the intervals (closed connected subsets) of R can be represented as pairs of
extended numbers?k

(L, L)~
<J_,u>H{x€]R|x<u}
(I, LYy—{zeR|I<z}
(l,u)y—{zeR|l<z<u}

)

2 The pair (L, 1) traditionally represents the empty set. This is the opposite here, as
(L, L) means R. This is a consequence of having no infinities in the formalization: L
on the left means —oo while | on the right means +o0o. The empty set is represented
by any pair (I, u) with | > u.



This set I of intervals is extended with a Nal (Not-an-Interval): I = TU{L}.
This new interval L ; represents the set R. In particular, this is the only interval
that contains L. As a consequence, if the value of an expression on R is contained
in an interval (I, u), then this value is actually a real number. This implies that
the expression is well-formed on the real numbers and that it is bounded by [
and u.

Interval extensions and operators A function F' € I — I is defined as an
interval extension of a function f € R — R, if

VX eLVz R, z€X = f(z) € F(X).

This definition can be adapted to non-unary functions too. An immediate
property is: The result of F/(X) is L if there exists some x € X such that f(z) =
L. Another property is the compatibility of interval extension with function
composition: If F' and G are extensions of f and g respectively, then F' o G is an
extension of f o g.

Again, an interval extension will be computed by an induction on the struc-
ture of an expression. This requires interval extensions of the arithmetic opera-
tors and elementary functions. For instance, addition and subtraction are defined
as propagating 1 ; and verifying the following rules:

(I, ur) + ({2, u2) = (lh + 1o, w1 + u2)

<117U1> - <127U2> = <l1 — U2,U1 — 52>

Except for the particular case of L meaning an infinite bound, this is tra-
ditional interval arithmetic [I1I12]. So extending the other arithmetic operators
does not cause much difficulty. For instance, if [ is negative and if both u; and
I are positive, the result of the division (ly,uy1)/(la, us) is (11 /12, u1/l2).

Notice that this division algorithm depends on the ability to decide the signs
of the bounds. More generally, one has to compare bounds when doing interval
arithmetic. Section solves it by restricting the bounds to a subset of R.

2.3 Bounds on real-valued functions

Properties described in previous sections can now be mixed together for the
purpose of bounding real-valued functions. Let us consider a function f of R —
R, for which we want to compute an interval enclosure Y such that f(x) € Y
for any x in the interval X # 1 ;. Assuming we have an interval extension F' of
f, then the interval F'(X) is an acceptable answer.

Unfortunately, if X appears several times in the unfolded expression of F/(X),
loss of correlation occurs: The wider the interval X is, the poorer the bounds
obtained from F(X) are. The usual example is f(z) = = — x. It always evaluates
to 0, but its trivial extension F'(X) = X — X evaluates to (0,0) only when X is
a singleton.



Monotone functions Let us suppose now that we also have an interval exten-
sion F’ of a derivative f’ of f. By definitions of interval extension and derivability,
if F/(X) is not Ly, then f is continuous and derivable at each point of X.

Moreover, if F'(X) does not contain any negative value, then f is an increas-
ing function on X. If X has real bounds [ and u, then an enclosure of f on X
is the convex hull F({l,1)) V F({u,u)). As the interval (I,l) contains one single
value when [ # L, the interval F({l,1)) should not be much bigger than the set
{f()} for any F that is a reasonable interval extension of f. As a consequence,
F((l,1)) V F({u,u)) should be a tight enclosure of f on X. The result is identical
if F'(X) does not contain any positive values.

First-order interval evaluation When F’(X) contains both positive and neg-
ative values, there are no methods giving sharp enclosure of f. Yet F'(X) can
still be used in order to find a better enclosure than F'(x). Indeed, variations of
f on X are bounded:

Va,be X 3c€ X f(b) = f(a) + (b—a)- f'(c).
Once translated to intervals, this gives the following theorem:
Va,be X f(b) € F({a,a)) + (X — (a,a)) - F'(X).

As F'(X) may contain even more occurrences of X than F(X) did, the
loss of correlation may be worse when computing an enclosure of f’ than an
enclosure of f. From a numerical point of view, however, we have more leeway.
Indeed, the multiplication by X — (a,a), which is an interval containing only
“small” values around zero, will mitigate the loss of correlation. This approach
to proving bounds on expressions can be generalized to higher-order derivatives
by using Taylor models [9].

3 Computational datatypes

Proving propositions by computations requires adapted data types. This work
relies on floating-point arithmetic (Section [3.1)) for numerical computations and
on straight-line programs (Section [3.2)) for representing and evaluating expres-
sions.

3.1 Floating-point arithmetic

Since interval arithmetic suffers from loss of correlation, the bounds are usually
not sharp, so they do not need to be represented with exact real numbers. As a
consequence, an interval extension does not need to return the “best” bounds.
Simpler ones can be used instead. An interesting subset of R is the set F = FU{ L}
of radix-2 floating-point numbers. Such a number is a rational number that can
be written as m - 2¢ with m and e integers.



Rounding Let us consider the non- L quotient - of two floating-point numbers.
This quotient is often impossible to represent as a floating-point number. If this
value is meant to be the lower bound of an interval quotient, we can chose any
floating-point number m - 2¢ less than the ideal quotient. Among these numbers,
we can restrict ourselves to numbers with a mantissa m represented with less
than p bits (in other words, |m| < 2P). There is an infinity of such numbers. But
one of them is bigger than all the others. This is what the IEEE-754 standard
calls the result of u/v rounded toward —oo at precision p.

Computing at fixed precision ensures that the computing time is linear in
the number of arithmetic operations. Let us consider the computation of (%) 2"
with n consecutive squaring. With rational arithmetic, the time complexity is
then O(n?), as the size of the numbers double at each step. With floating-point
arithmetic at fixed precision, the time complexity is just O(n). The result is no
longer exact, but interval arithmetic still works properly.

There have been at least two prior formalizations of floating-point arithmetic
in Coq. The first one [I3I14] defines rounded results with relations, so the value
w would be expressed as satisfying the proposition:

u
w < —
v

A Vme€Z, |ml<me gt s me g <w

While useful and sufficient for proving theorems on floating-point algorithms,
such a relation does not provide any computational content, so it cannot be used
for performing numerical computations. The second formalization [I5] has intro-
duced effective floating-point operators, but only for addition and multiplication.
The other basic operators are evaluated by an external oracle. The results can
then be checked by the system with multiplications only. Elementary functions,
however, cannot be reached with such an approach.

Implementation In order to have effective floating-point operators that can be
evaluated entirely inside Coq, this work needed a new formalization of floating-
point arithmetic. The resulting library implements multi—radixﬂ multi-precision
operators for the four IEEE-754 rounding directionsﬂ

This library supports the basic arithmetic operators (+,—,x, =, v/-) and some
elementary functions (arctan, cos, sin, tan, for now). Floating-point precision is
a user-settable parameter of the automatic tactics. Its setting is a trade-off: A
high precision can help in proving some propositions, but it also slows down
computations.

In order to speed up floating-point computations by a x10 factorﬂ, the tactics
do not use the standard integers of Coq, which are represented by lists of bits.
They specialize the floating-point library so that it uses integers represented as

3 Numbers are m - 8¢ for any integer 3 > 2. For interval arithmetic, the radix hardly
matters. So the automatic tactics chose an efficient radix: g = 2.

4 Only rounding toward —oo and 4oo are needed when performing interval arithmetic.

5 This speed-up is lower than one could expect. This is explained by the proofs not
needing high-precision computations, so the mantissa integers are relatively small.



binary trees with leaves being radix-23! digits [1]. The arithmetic on these leaves
is then delegated by Coq to the computer processor [16].

3.2 Straight-line programs

Until now, we have only performed interval computations. We have yet to prove
properties on expressions. A prerequisite is the ability to actually represent these
expressions. Indeed, as we want Coq functions to be able to evaluate expressions
in various ways, e.g. for bounds or for derivatives, they need a data structure
containing an abstract syntax tree of the expressions. More precisely, an expres-
sion will be represented as a straight-line program. This is a directed acyclic
graph with an explicit topological ordering on the nodes which contain arith-
metic operators.

For example, the expression \/x — y - v/ is encoded as a sequence of three
tuples representing the following straight-line program. Each tuple represents
an arithmetic operation whose operands are the results of some of previous
operations represented by a relative index — index 0 was computed at the previous
step, index 1 two steps ago, and so on. The input values  and y are assumed to
have already been computed by pseudo-operations with results in v; and vg.

vy : (sqrt, 0) S0 vy = \/U1_0 = /T
v s (mul,2,0)  sovg=va o Vg =Y T
vg: (sub,1,0)  sovy=w3_1 —V3_0=+T—Y- /T

Notice that the square root occurs only once in the program. Representing
expressions as straight-line programs makes it possible to factor common sub-
expressions. In particular, the computation of a given value (e.g. /2 here) will
not be repeated several times during an evaluation.

The evaluation function is generic. It takes a list encoding the straight-line
program, the type A of the inputs and outputs (e.g. R or ), a record of functions
implementing the operators (functions of type A — A and A — A — A), and a
stack of inputs of type A. It then pushes on this stack the result of evaluating
each operation stored in the list. It finally returns the stack containing the results
of all the statements. Whenever an operation tries to access past the bottom of
the evaluation stack, a default value of type A is used, e.g. 0 or L or L;.

When given various sets A and operators on A, the Coq function eval will
produce, either an expression on real numbers corresponding to the straight-line
program, or an interval enclosing the values of the expression, or an expression of
the derivative of the expression, or bounds on this derivatives, etc. For instance,
the derivative is bounded by evaluating the straight-line program on the set A
of interval pairs — the first interval encloses the value of an expression, while the
second one encloses the value of its derivative. The operators on A create these
intervals with formulas related to automatic differentiation:

plus = (X, X)eA~ (Y, Y)eA— (X+Y, X' +Y)
mil = (X, X)ed— Y, Y)ed— (XxY,X'xY+XxY')



tan = (X, X) €A~ (tanX, X’ x (14 tan? X))

4 Automatic proofs

Now that we have the basic blocks, we can use the convertibility rule to build
automatic tactics. First, convertibility helps transforming logical propositions
into data structures on which programs can actually compute. Second, it gives
a meaning to the subsequent numerical computations. The user does not have
to worry about it though, since the tactics will take care of all the details.

4.1 Converting terms

Let us assume that the user wants to prove v/z —y - v/z < 9 knowing some
bounds on z and y. As explained in Section [2.2] interval arithmetic will be used
to bound the expression v/z — y - v/z. The upper bound can then be compared
to 9 in order to check that the expression was indeed smaller than this value. In
order to perform this evaluation, the functions need the straight-line program
representing the expression.

Unfortunately, this straight-line program cannot be built within Coq’s term
language, as the syntax of the expressions on real numbers is not available at
this level. So the list representing the program has to be provided by an oracle.

Three approaches are available. First, the user could perform the transforma-
tion by hand. This may be fine for small terms, but it quickly becomes cumber-
some. Second, one could implement the transformation directly into the Ocaml
code of Coq, hence creating a new version of the proof assistant. Several existing
reflexive tactics actually depend on Ocaml helpers embedded inside Coq, so this
is not an unusual approach. Third, one could use the tactic language embedded
in Coq [I7], so that the transformation runs on an unmodified Coq interpreter.
This third way is the one chosen for this work.

A Coq tactic will therefore parse the expression and create the program
described in Section While the expression has type R, this program is a list.
But when evaluated with the axiomatized operations on real numbers, the result
should be the original expression, if the tactic did not make any mistake. The
tactic also transforms the real number 9 into the floating-point number +9-2°. So
the tactic tells Coq that proving the following equality is equivalent to proving
the original inequality.

(eval R [Sqrt 0, Mul 2 0, Sub 1 0] [y, x]) < +9-2°

Coq does not trust the tactic, so it will check that this transformation is valid.
Here, both inequalities are convertible, so they have the same proofs. Therefore,
the proof system just has to evaluate the members of the new inequality, in
order to verify that the transformation is valid. This transformation process is
called reflexion [18]: An oracle produces a higher-level representation of the user



proposition, and the proof system has only to check that the evaluation of this
better representation is convertible to the old one. This transformation does
not involve any deductive steps; There is no rewriting steps with this approach,
contrarily to the 3 x 3 example of the introduction.

4.2 Proving propositions

At this point, the proposition still speaks about real numbers, since convertibility
cannot modify what the proposition is about. So we need the following theorem
in order to get a proposition about extended real numbers, hence suitable for
interval arithmetic with automatic differentiation.

Vprog Yinputs Vi, u
(eval R prog inputs) € (l,u) =
(eval R prog inputs) € (I, u)

Since the interval operators are interval extensions of the arithmetic operators
on R, and since interval extension is compatible with function composition, we
also have the following theorem.

Vprog Vinputs Vranges
(Vj inputs; € ranges;) =
(eval R prog inputs) € (eval I prog ranges)

Let us assume there are hypotheses in the context that state x € Xand y € V.
By applying the two theorems above and the transitivity of interval inclusion,
the tactic is left with the following proposition to prove:

(eval T [Sqrt 0, Mul...] [Y, X])C (L,+9-2%

While the interval evaluation could be performed in this proposition, the
interval inclusion cannot be verified automatically yet. In order to force the
proof system to compare the bounds, a last theorem is applied, so that the
inclusion is transformed into a boolean equality:

subset (eval T [Sqrt 0, Mul...] [Y, X1) (L,+9-2% = true

The tactic then tells to Coq that this proposition is convertible to true = true.
As comparisons between interval bounds are decidable, the subset function
performs an effective computation, and so does eval on floating-point intervals.
As a consequence, Coq is able to check the convertibility of these propositions
by evaluating the left hand side of the equality. If the result of this evaluation is
true, then the propositions have the same proofs. This conversion is numerically
intensive and can take a long time, since it performs all the interval and floating-
point computations. At this point, the tactic just has to remind Coq that equality
is reflexive, so true = true holds.

To summarize, this proof relies almost entirely on convertibility, except for a
few deductive stepsﬂ which are instantiations of the following theorems:

5 In addition, some optional steps may be performed to simplify the problem. For
instance, |expr| < w is first transformed into —u < expr < u.



1. If the result of a formula on extended reals is contained in a non-_1 ; interval,
then the formula on real numbers is well-formed and has the same bounds.

2. The interval evaluation of a given straight-line program is an interval exten-
sion of the evaluation of the same program on extended reals.

3. If subset A B = true, then any value contained in A is also contained in B.

4. Boolean equality is reflexive.

4.3 Bisection and refined evaluation

Actually, because of a loss of correlation, the left hand side evaluates to false on
the example given in the introduction, so Coq complains that the proposition
are not convertible. This is expected [§], and two methods experimented with
the PVS proof assistamﬂ can be reused here. The first method is the bisection:
If the interval evaluation fails to return an interval small enough, split the input
interval in two parts and perform the interval evaluation again on each of these
parts. As the parts are smaller than the whole interval, the loss of correlation
should be reduced, so the interval evaluation produces a sharper result [I1].

In the PVS work, interval splitting is performed by applying a theorem for
each sub-interval. Here we keep relying on programs in order to benefit from
convertibility and reduce the number of deductive steps. The method relies on
a bisect function recursively defined as:

bisect n F (l,u) target =
if n = 0 then false
else if (subset F({l,u)) target) then true
else let m be the midpoint of (I, u) in
(bisect (n—1) F (I,m) target) &&
(bisect (n—1) F (m,u) target)

This function is meant to replace the subset call in the previous proof. Its
associated theorem is a bit more complicated though, but its hypotheses are
as easy to satisfy: If F' is an interval extension of a function f and if bisect
evaluates to true, then f(x) € target holds for any = € (I, u). Once again, the
complete proof contains only four deductive steps. Everything else is obtained
through convertibility, with the evaluation of bisect being the numerically-
intensive part of the proof.

As long as n is big enough and the floating-point computations are accurate
enough, this method can solve most of the provable propositions of the form
Vo € (l,u), f(z) € Y with f a straight-line program. The method is guarantee(ﬁ
to succeed when [ and u are finite and the sharpest enclosure of f on ([, u) is a
subset of the interior of Y. The method can also be extended to multi-variate
problems, by splitting interval boxes along each dimension iteratively.

" http://pvs.csl.sri.com/

8 If there is « € (I,u) such that f(x) evaluates to 1, Y has to be L;. Otherwise, f
is continuous on the compact set (I,u), hence it is also uniform continuous. This
uniformity ensures that some suitable precision and some bisection depth exist.
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The bigger the number of sub-intervals, the longer the proof will take. In order
to keep this number small, the tactic calls bisect with an interval function F
that performs first-order derivation, as described in Section [2.3

5 Examples

The user-visible tactic is called interval. It can be used for proving inequalities
involving real numbers. For instance, the following script is the Coq version of
a PVS example proved by interval arithmetic [7]:

Goal
let v := 250 * (514 / 1000) in
3 x pi / 180 <= g / v * tan (35 * pi / 180).
Proof.
apply Rminus_le. (* transform into a - b <= 0 *)
interval. (¥ prove by interval computations x)
Qed.

The strength of this work lies, however, in its ability to prove theorems on
function approximations. Most mathematical functions are not available to de-
velopers, so they are usually replaced with approximations, e.g. truncated series.
In order to certify that the programs are still valid after these transformations,
one has to give and prove a bound on the error between the actual implemen-
tation and the ideal function. The absolute error is the difference between two
close values (if the implementation is any good), which makes it hard to prove
a tight bound on it — this is the X — X issue of Section [2.3] The two examples
below exercise the tactic on such ill-conditioned problems.

5.1 Remez’ polynomial of the square root

Taylor models have been experimented in Coq [J] in order to formally prove
some inequalities of Hales’ prooﬂ of Kepler’s conjecture. Part of the difficulty
with Taylor models lies in handling elementary functions. Indeed, one has to
use polynomial approximations for this purpose. Usually, as the name implies,
these polynomials are Taylor expansions, since their expansion remainder can be
bounded by symbolic methods. Yet Taylor expansions are poor approximations,
so high-degree polynomials are needed, which needlessly slow down the proof.

There are much better polynomial approximations, e.g. the ones obtained
from Remez’ algorithm. Unfortunately, the approximation error is no longer
available to symbolic methods. One has to bound it numerically. The following
proposition states the error bound between the square root function and its
Remez approximation of degree 5 with rational coefficients of width 20 + 20 bits,
on the interval 0.5 < z < 2:

122 TN 2T\ o 5
7397 13547 925 ~ 65536

9 http://code.google.com/p/flyspeck/
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Since Remez’ algorithm returns the best polynomial approximation with real
coefficients, checking the error bound is a numerically difficult problem. Yet it
only takes a few seconds for the interval tactic to automatically prove it in Coq
on a desktop computer. In comparison, the CAD algorithm (with fast integers
too) needs more than ten minutes in Coq. For Hales’ proof, one also needs the
arctan function, which is in the scope of this tactic.

5.2 Relative error for an elementary function

The following example is taken from another PVS proof [§]. In order to certify a
numerical code, the objective was to prove a bound on the relative error between
the following function r, and the degree-10 polynomial 7, that approximated it.

- V1+ (1= f)2 tan?¢

The relative error is defined as the quotient e(¢) = (r,(¢) — 7(¢))/7p(¢) on
the interval 0 < ¢ < % Due to the loss of correlation, PVS interval strategies
are unable to automatically prove the bound 23-2724 on this error. The problem
could be split into smaller intervals, so that interval computations are able to
prove the bound on each sub-interval. But the loss of correlation is extreme, so
more than 10° sub-intervals are needed, which make it impossible to complete
the whole proof in a reasonable amount of time. So first-order interval evaluation
was performed (see Section in order to bring the number of sub-intervals
down to 10°.

Unfortunately, several user actions are required with the PVS approach.
First, the user has to prove beforehand that the relative error is well-formed
(no division by zero, no square root of negative number, and so on). Second,
the user has to prove the formulas involving the derivative. Third, an external
oracle analyzes the proposition in order to choose good sub-intervals. It also
searches the order at which the power series of tan have to be evaluated in order
to provide results that are accurate enough. With these data, the oracle then
generates 10° PVS scripts corresponding to all the sub-intervals, and one master
script that states the theorem on the error bound. Fourth, the user dispatches
all the generated scripts on the 48 cores of a parallel computer. A few hours
later, proof verification is complete. Finally, PVS checks the master script: The
bound |e(¢)| < 24 - 2723 is formally proved.

Thanks to the work described in this article, the situation is now a lot more
satisfying in Coq. The following script proves the same theorem (arp is the
approximation polynomial) in a few minutes on the single core of a desktop
computer.

Tp(¢)

Goal
forall phi, 0 <= phi <= max —>
Rabs ((rp phi - arp phi) / rp phi) <= 23/16777216.

Proof.
unfold rp, arp, umf2, a, f, max. intros.
interval with (i_bisect_diff phi, i_nocheck). (* Time: 4s *)

Qed. (* Time: 96s *)



The user has to tell the tactic on which variable to perform a bisection
followed by a first-order evaluation: i_bisect_diff phi. The user could also
tell at which precision the floating-point computations are performed and how
deep the bisection should explore. But the default parameters, i_prec 30 and
i_depth 15, are sufficient for this proof.

All the details of the proof are then handled by the tactic. It first parses
the proposition and creates the corresponding straight-line program. It then
performs the four deductive steps and Coq is left with a boolean equality. The
evaluation of this Coq term by the system will first cause an interval function
that encloses the derivative of the straight-line program to be built. It will then
launch the execution of an interval bisection until the expression is bounded on
all the sub-intervals.

When the proof is achieved (at Qed time), Coq checks that the lambda-term
corresponding to the whole proof is correctly typed. In particular, it means that
the numerically-intensive convertibility is checked a second time. The i_nocheck
parameter avoids this redundant computation: The convertibility check is no
longer done at interval time, but only at Qed time. So the tactic needs 4
seconds for parsing the expressions and preparing the computations, and then
Qed needs 96 seconds to actually perform them.

Because there are no oracles, the Coq proof performs at least twice as many
numerical computationﬂ and with a higher precision than needed. Yet, the
proof verification is tremendously faster in Coq than in PVS, although the ap-
proach is similar. This improvement is explained by the underlying arithmetic.
In PVS, the interval bounds are rational numbers, so the intermediate compu-
tations quickly involve integers with thousands of digits. In Coq, thanks to the
floating-point rounded arithmetic, the integers are at most 62-bit long. So the
computation time does not explode with the size of the expressions.

6 Conclusion

Interval-based methods have been used for the last thirty years whenever a
numerical problem (bounding an expression, finding all the zeros of a function,
solving a system of differential equations, and so on) needed to be solved in an
efficient and reliable way. But due to their numerically-intensive nature, they
have been seldom used within formal proofs. With the advent of fast program
evaluation in proof checkers, the situation is evolving [I5]9].

This work improves on the existing formal approaches by relying on an effi-
cient underlying arithmetic. Indeed, the computations are performed thanks to
an effective formalization of floating-point arithmetic, instead of relying on an
arithmetic on rational numbers. This brings the formal proofs closer to the non-
formal approaches that are based on numerical computations with floating-point

10 The bisection process can be seen as a binary tree. An inner node is an evaluation
failure, which leads to an evaluation on two sub-intervals, its children. Leaves are
successful interval evaluations, and they are the only nodes needed for the proof.



numbers, e.g. Hales’ original proof. Another improvement lies in a careful exten-
sion of the real analysis: All the internal notions are designed so that theorems
can be entirely handled with computations. The user does not have to deal with
fastidious details anymore, e.g. proofs of derivability.

As this work deals with automatic proofs of numeric bounds on real-valued
expressions suffering from correlations, it seems closely related to the Gappa
system [I5]. There are two important differences though. First, Gappa is an
external oracle that produces a deductive proof that has been optimized, while
this work is embedded and produces a straightforward and computational proof.
Second, Gappa is specially designed for non-continuous expressions with basic
arithmetic operators and a strong underlying structure, while this work focuses
on (infinitely-) derivable expressions with elementary functions.

While designed for different kinds of expressions, these two approaches are
complementary when performing formal certification of numerical applications.
For instance, Section was replacing an elementary function r, with a poly-
nomial 7,. This polynomial is meant to be evaluated by a processor, but this
evaluation 7, will suffer from rounding errors. The implementation will be useful,
only if the computed value 7,,(¢) is close enough to the mathematical value 7, ().
This certification is usually performed by separately bounding the distances be-
tween 7, and 7p, and between 7, and 7,. The first bound can be proved by Gappa
but not by this work, since the expression is non-continuous. The second bound,
however, can be proved by this work but not by Gappa, since the expression
contains trigonometric terms and it has to be automatically differentiated for
efficiency.

This work computes first-order derivatives of the expressions. This is usually
sufficient for handling the correlations that appear when certifying numerical
applications in most embedded systems, e.g. with a relative error of magnitude
2725 Tt will, however, fail to prove longer approximations which have a much
higher accuracy. Therefore, tools that access higher-order derivatives through
Taylor series [6l9] should perform much better in these latter cases. In case of
high-dimension input domains, the approach presented in this article will also
perform worse than multi-variate Bernstein polynomials [9].

Therefore, this work should not be seen as a panacea for proving inequalities
on real-valued expressions without any user interaction. It is more of a proof-
of-concept that shows how some numerical methods (floating-point arithmetic
and interval arithmetic) can be combined with the convertibility rule in order to
formally prove theorems. The generated proof terms contain almost no deductive
steps and the tactic is nothing more than a parser, yet this approach is able to
automatically prove arbitrarily-complicated inequalities.

The Coq development presented in this paper is available at

http://www.msr-inria.inria.fr/~gmelquio/soft/cog-interval/
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