Proving bounds on real-valued functions with computations

Guillaume Melquiond
Mathematical Components
INRIA-Microsoft Research

2008-08-12

Verifying inequalities, an example

While certifying an algorithm for preventing airplane collision, Carreño and Muñoz had to formally prove:

A plane flying at 250 knots and with a bank angle of 35° has a turn rate of at least 3° each second.

In other words,

$$
\frac{3 \pi}{180} \leq \frac{g}{v} \cdot \tan \left(\frac{35 \pi}{180}\right)
$$

with $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ and $v=250 \cdot \frac{514}{1000} \mathrm{~m} / \mathrm{s}$.

Verifying inequalities, an example

The inequality is trivially true since

$$
\frac{3 \pi}{180} \approx 0.052 \text { and } \frac{g}{v} \cdot \tan \left(\frac{35 \pi}{180}\right) \approx 0.053 .
$$

Verifying inequalities, an example

The inequality is trivially true since

$$
\frac{3 \pi}{180} \approx 0.052 \text { and } \frac{g}{v} \cdot \tan \left(\frac{35 \pi}{180}\right) \approx 0.053 .
$$

Proved in PVS by Lester and Muñoz with interval arithmetic.
What about Coq?

Verifying inequalities, an example

The inequality is trivially true since

$$
\frac{3 \pi}{180} \approx 0.052 \text { and } \frac{g}{v} \cdot \tan \left(\frac{35 \pi}{180}\right) \approx 0.053
$$

Proved in PVS by Lester and Muñoz with interval arithmetic.
What about Coq?

```
Goal
    let v := 250 * (514 / 1000) in
    3 * pi / 180<= g / v * tan (35 * pi / 180).
Proof.
    apply Rminus_le. (* transform into a - b <= 0 *)
    interval. (* prove by interval computations *)
Qed.
```


Interval arithmetic

A few words about interval arithmetic:

- $x \in[a, b] \wedge y \in[c, d] \Rightarrow x+y \in[a+c, b+d]=:[a, b]+[c, d]$
- $x \in[a, b] \Rightarrow \exp x \in[\exp a, \exp b]=: \exp [a, b]$

Interval arithmetic

A few words about interval arithmetic:

- $x \in[a, b] \wedge y \in[c, d] \Rightarrow x+y \in[a+c, b+d]=:[a, b]+[c, d]$
- $x \in[a, b] \Rightarrow \exp x \in[\exp a, \exp b]=: \exp [a, b]$

Interval-based proofs are simple and sound, but they rely on numerically-intensive computations.
E.g. Hales' proof of Kepler's conjecture depends on C programs.

Interval arithmetic

A few words about interval arithmetic:

- $x \in[a, b] \wedge y \in[c, d] \Rightarrow x+y \in[a+c, b+d]=:[a, b]+[c, d]$
- $x \in[a, b] \Rightarrow \exp x \in[\exp a, \exp b]=: \exp [a, b]$

Interval-based proofs are simple and sound, but they rely on numerically-intensive computations.
E.g. Hales' proof of Kepler's conjecture depends on C programs.

Question: How to efficiently perform numerical computations inside a formal system?

Outline

(1) Introduction
(2) Conversion and computations
(3) Proofs on real-valued expressions
4) Conclusion

Outline

(2) Conversion and computations

- Example: Peano's arithmetic
- Type theory and conversion
- Evaluating expressions
- Evaluating propositions
- Implementation details

3 Proofs on real-valued expressions

4 Conclusion

Example: Peano's arithmetic

Inductive definition of natural numbers:

$$
\text { type nat }=0 \text { | S of nat } \quad(* 5=\text { SSSSSO } *)
$$

Axioms for addition:
addO: $\quad \forall b \quad \mathrm{O}+b=b$
addS: $\forall a \forall b \quad(\mathrm{~S} a)+b=a+(\mathrm{S} b)$

Example: Peano's arithmetic

Deductive proof of $4+(2+3)=9$:

$$
\begin{gathered}
\frac{\overline{9=9} \text { reflexivity }}{0+9=9} \text { addo } \\
\vdots \text { addS } \times 4 \\
\frac{4+5=9}{4+(0+5)=9} \text { addo } \\
\frac{4+(1+4)=9}{4+(2+3)=9} \text { addS }
\end{gathered}
$$

Introducing computations into proofs

Recursive definition of addition:

```
let rec plus x y =
    match x with
    | 0 -> y
    | S x' -> plus x' (S y)
```

Lemma plus_xlate: $\forall a \forall b \quad a+b=$ plus $a b$

Introducing computations into proofs

Recursive definition of addition:

```
let rec plus x y =
    match x with
    | 0 -> y
    | S x' -> plus x' (S y)
```

Lemma plus_xlate: $\forall a \forall b \quad a+b=$ plus $a b$
Proof of $4+(2+3)=9$:

$$
\frac{\frac{9=9}{} \text { reflexivity }}{\frac{\text { plus } 4(\text { plus } 23)=9}{\frac{4+(\text { plus } 23)=9}{4+(2+3)=9}} \text { ??? }} \text { plus_xlate }
$$

Type theory and conversion

Curry-Howard correspondence and type theory:
(1) Proposition A holds if the type A is inhabited.
(2) Convertible types have the same inhabitants.

$$
\frac{p: A}{p: B} A \equiv_{\beta} B
$$

Type theory and conversion

Curry-Howard correspondence and type theory:
(1) Proposition A holds if the type A is inhabited.
(2) Convertible types have the same inhabitants.

$$
\frac{p: A}{p: B} A \equiv_{\beta} B
$$

$$
\text { Proof of } 4+(2+3)=9:
$$

$$
\frac{\frac{p: 9=9}{} \text { reflexivity }}{\frac{p: \text { plus } 4(\text { plus } 23)=9}{} \beta \text {-reduction }} \text { plus_xlate }
$$

Encoding expressions

Inductive definition of expressions on natural numbers:

```
type expr = Nat of nat | Add of expr * expr
let rec interp_expr e =
    match e with
    | Nat n -> n
    | Add (x, y) ->
        (interp_expr x) "+" (interp_expr y)
```

Proof of $4+(2+3)=9$:
???
$\frac{\text { interp_expr }(\text { Add }(\text { Nat } 4, \text { Add }(\text { Nat } 2, \text { Nat } 3)))=9}{4+(2+3)=9} \beta$-reduction

Evaluating expressions

Evaluating expressions on natural numbers:

```
let rec eval_expr e =
    match e with
    | Nat \(n\)-> \(n\)
    | Add (x, y) ->
        plus (eval_expr x) (eval_expr y)
```

Lemma expr_xlate: $\forall e \quad$ interp_expr $e=$ eval_expr e

Evaluating expressions

Evaluating expressions on natural numbers:

```
let rec eval_expr e =
    match e with
    | Nat \(n\)-> \(n\)
    | Add (x, y) ->
        plus (eval_expr x) (eval_expr y)
```

Lemma expr_xlate: $\forall e \quad$ interp_expr $e=e v a l _e x p r e$
Proof of $4+(2+3)=9$:

$$
\begin{gathered}
\frac{\overline{9=9} \text { reflexivity }}{\frac{\text { eval_expr }(\text { Add }(\text { Nat } 4, \ldots))=9}{} \beta \text {-reduction }} \\
\frac{\text { interp_expr }(\text { Add }(\text { Nat } 4, \ldots))=9}{4+(2+3)=9} \beta \text {-reduction }
\end{gathered}
$$

Relational operators

Equality is usually a native concept, while comparisons are not.
Comparing natural numbers:

$$
\begin{aligned}
& \text { let rec le } x \text { y = } \\
& \text { match } x, y \text { with }
\end{aligned}
$$

Lemma: $\forall a \forall b$ le $a b=$ true $\Leftrightarrow a \leq b$

Encoding comparisons

Inductive definition of relations on natural expressions:

```
type prop = Le of expr * expr
let interp_prop p =
    match p with
    | Le (x, y) ->
        (interp_expr x) "<=" (interp_expr y)
let eval_prop p =
    match p with
    | Le (x, y) -> le (eval_expr x) (eval_expr y)
```


Encoding comparisons

Inductive definition of relations on natural expressions:

```
type prop = Le of expr * expr
let interp_prop p =
    match p with
    | Le (x, y) ->
        (interp_expr x) "<=" (interp_expr y)
let eval_prop p =
    match p with
    | Le (x, y) -> le (eval_expr x) (eval_expr y)
```

Proof of $4+(2+3) \leq 5+6$:

$$
\frac{\overline{\text { true }=\text { true }} \text { reflexivity }}{\frac{\text { eval_prop (Le }(\text { Add } \ldots, \text { Add } \ldots))=\text { true }}{} \beta \text {-reduction }} \text { prop_xlate }
$$

Implementation details

All the proofs are identical, except for the inductive object.
This object is the syntax tree of the proposition; It has to be computed by an external oracle.
(= Simple parser written in the meta-language of Coq proofs.)

Implementation details

All the proofs are identical, except for the inductive object.
This object is the syntax tree of the proposition;
It has to be computed by an external oracle.
(= Simple parser written in the meta-language of Coq proofs.)
Proof verification:

$$
\begin{gathered}
\frac{\text { true }=\text { true }}{\text { eval_prop } \ldots=\text { true }}\left\langle\begin{array}{l}
\text { typechecking fails } \\
\text { if the user is wrong }
\end{array}\right. \\
\vdots \\
\frac{\text { interp_prop (Le } \ldots)}{4+(2+3) \leq 5+6}\left\langle\begin{array}{l}
\text { typechecking fails } \\
\text { if the oracle is wrong }
\end{array}\right.
\end{gathered}
$$

Outline

(1) Introduction

(2) Conversion and computations
(3) Proofs on real-valued expressions

- Enclosures of real-valued expressions
- Interval arithmetic
- Improving bounds

4 Conclusion

Enclosures of real-valued expressions

Definition (Real-valued expression)

Straight-line program of

- variables: x, y, \ldots
- unary operators: $-\square, \sqrt{\square},|\square|, \square^{2}, \square^{-1}$,
- binary operators:,,$+- \times, \div$,
- transcendental functions: cos, \sin , \tan , \arctan.

Straight-line programs are directed acyclic graphs; Common sub-expressions are shared and evaluated only once.

Enclosures of real-valued expressions

Definition (Expression enclosures)

$$
a \leq f(x, y, \ldots) \leq b
$$

with a and b floating-point numbers $\left(m \cdot 2^{e} ; m, e \in \mathbb{Z}\right)$ or $\pm \infty$.
(Note: Undefined values, e.g. $1 / 0$, are not bounded.)

Goal: Automatically prove the following proposition

$$
\frac{a_{x} \leq x \leq b_{x} \quad a_{y} \leq y \leq b_{y} \quad \cdots}{a \leq f(x, y, \ldots) \leq b}
$$

Interval arithmetic

Floating-point interval evaluations can serve as proofs of bounds, as long as they satisfy the containment property:

$$
x \in I_{x} \wedge y \in I_{y} \quad \Longrightarrow \quad x \diamond y \in I_{x} \diamond I_{y}
$$

for $\diamond \in\{+,-, \times, \div\}$. Also for unary functions: $\sqrt{\cdot}, \sin , \ldots$

Interval arithmetic

Floating-point interval evaluations can serve as proofs of bounds, as long as they satisfy the containment property:

$$
x \in I_{x} \wedge y \in I_{y} \quad \Longrightarrow \quad x \diamond y \in I_{x} \diamond I_{y}
$$

for $\diamond \in\{+,-, \times, \div\}$. Also for unary functions: $\sqrt{\cdot}, \sin , \ldots$

Theorem (Containment)

Given a SLP prog defined on expressions inputs, if $\forall i$, input ${ }_{i} \in$ range $_{i}$, then

$$
\text { eval(prog, inputs) } \in \text { eval(prog, ranges) }
$$

Interval arithmetic

Floating-point interval evaluations can serve as proofs of bounds, as long as they satisfy the containment property:

$$
x \in I_{x} \wedge y \in I_{y} \quad \Longrightarrow \quad x \diamond y \in I_{x} \diamond I_{y}
$$

for $\diamond \in\{+,-, \times, \div\}$. Also for unary functions: $\sqrt{\cdot}, \sin , \ldots$

Theorem (Containment 2)

Given a SLP prog defined on expressions inputs, if $\forall i$, input $_{i} \in$ range $_{i}$, then

$$
\text { subset (eval prog ranges) output }=\text { true } \Rightarrow
$$

eval prog inputs \in output

Sharpening intervals

Naive interval arithmetic does not keep tracks of correlations due to binary operators:

$$
\text { For } x \in[0,1], \quad x+(-x) \in[0,1]+[-1,0]=[-1,1] .
$$

Sharpening intervals

Naive interval arithmetic does not keep tracks of correlations due to binary operators:

$$
\text { For } x \in[0,1], \quad x+(-x) \in[0,1]+[-1,0]=[-1,1] .
$$

Implemented improvements:
(1) Bisection:

Recursively split the domain into smaller sub-domains, until the proposition is proved on all the sub-domains.

Sharpening intervals

Naive interval arithmetic does not keep tracks of correlations due to binary operators:

$$
\text { For } x \in[0,1], \quad x+(-x) \in[0,1]+[-1,0]=[-1,1] .
$$

Implemented improvements:
(1) Bisection:

Recursively split the domain into smaller sub-domains, until the proposition is proved on all the sub-domains.
(2) First-order approximation:
$f\left(x_{0}+h\right)=f\left(x_{0}\right)+h \cdot f^{\prime}\left(x_{0}+\xi\right)$ with $\xi \in[0, h]($ or $[h, 0])$, so $\forall x \in X, \quad f(x) \in f\left(x_{0}\right)+\left(X-x_{0}\right) \cdot f^{\prime}(X)$ with $x_{0} \in X$.

Outline

(2) Conversion and computations

(3) Proofs on real-valued expressions

4 Conclusion

Verifying inequalities, another example

Global positioning requires knowing the local radius of Earth:

$$
r_{p}(\phi)=\frac{a}{\sqrt{1+(1-f)^{2} \cdot \tan ^{2} \phi}}
$$

This can be approximated by a degree-5 polynomial P with single-precision coefficients: $P\left(\phi_{m}^{2}-\phi^{2}\right)=\tilde{r_{p}}(\phi)$.

$$
P(x)=\frac{4439091}{4}+x \cdot\left(\frac{9023647}{4}+x \cdot\left(\cdots \frac{6661427}{131072}\right)\right)
$$

Goal: Prove $\left|\frac{r_{p}(\phi)-r_{p}(\phi)}{r_{p}(\phi)}\right| \leq 23 \cdot 2^{-24}$ when $0 \leq \phi \leq \phi_{m}=\frac{715}{512}$.

Verifying inequalities, another example

Inequality proved with order-1 Taylor interval approximations on $\sim 10^{5}$ sub-intervals of $\left[0, \phi_{m}\right]$.

Verifying inequalities, another example

Inequality proved with order-1 Taylor interval approximations on $\sim 10^{5}$ sub-intervals of $\left[0, \phi_{m}\right]$.
(1) Daumas, Melquiond, and Muñoz, in PVS (2005).

An oracle chooses the best sub-intervals and it generates one PVS script per sub-interval.
Verification: several hours on a 48-core parallel computer.

Verifying inequalities, another example

Inequality proved with order-1 Taylor interval approximations on $\sim 10^{5}$ sub-intervals of $\left[0, \phi_{m}\right]$.
(1) Daumas, Melquiond, and Muñoz, in PVS (2005).

An oracle chooses the best sub-intervals and it generates one PVS script per sub-interval.
Verification: several hours on a 48-core parallel computer.
(2) In Coq (2008), a few minutes on a laptop computer.

Verifying inequalities, another example

Inequality proved with order-1 Taylor interval approximations on $\sim 10^{5}$ sub-intervals of $\left[0, \phi_{m}\right]$.
(1) Daumas, Melquiond, and Muñoz, in PVS (2005).

An oracle chooses the best sub-intervals and it generates one PVS script per sub-interval.
Verification: several hours on a 48-core parallel computer.
(2) In Coq (2008), a few minutes on a laptop computer. Differences: No oracle, but floating-point numbers.

Verifying inequalities, another example

```
Require Import Reals.
Require Import tactics.
Open Local Scope R_scope.
Definition a := 6378137.
Definition f := 1000000000/298257223563.
Definition umf2 := (1 - f)}\mp@subsup{}{}{2}\mathrm{ .
Definition max := 715/512.
Definition rp phi := a / sqrt (1 + umf2 * (tan phi)}\mp@subsup{}{2}{2})
Definition arp phi :=
    let x := max}\mp@subsup{}{}{2}-\mp@subsup{phi}{}{2}\mathrm{ in
    4439091/4 + x * (
        9023647/4 + x * (
            13868737/64 + x * 
                13233647/2048 + x * (
                    -1898597/16384 + x *
                    (-6661427/131072))))).
Goal
    forall phi, 0 <= phi <= max ->
    Rabs ((rp phi - arp phi) / rp phi) <= 23/16777216.
Proof.
    unfold rp, arp, umf2, a, f, max. intros.
    Time interval with (i_bisect_diff phi, i_nocheck). (* 4s *)
Time Qed.
(* 96s *)
```


Tactic parameters:

bisection and order-1 evaluation on ϕ, minimal relative width of intervals: 2^{-15},
check delayed at Qed time, precision: 30 bits.

What about Gappa?

Toy implementation of cosine in C

```
/*@ requires }|x|\leq\mp@subsup{2}{}{-5
*@ ensures }|\mathrm{ result - cosx|}\leq\mp@subsup{2}{}{-23}*
float mycos(float x)
{ return 1 - x * x * 0.5; }
```


What about Gappa?

Toy implementation of cosine in C

```
/*@ requires }|x|\leq\mp@subsup{2}{}{-5
    *@ ensures }|\mathrm{ result - cosx|}\leq\mp@subsup{2}{}{-23}*
float mycos(float x)
{ return 1 - x * x * 0.5; }
```

When certifying the function, Why generates a proof obligation:

```
8 Theorem mycos17:
9 forall x, Rabs x <= 1/32 ->
10 Rabs (round (1 - round (round (x*x) * (5/10)))
    - cos x) <= powerRZ 2 (-23).
```

Impossible for Gappa: what is cos?
Impossible for interval: highly correlated, yet not even continuous.

What about Gappa?

```
Theorem mycos17:
    forall x, Rabs x <= 1/32 ->
    Rabs (round (1 - round (round (x*x) * (5/10)))
        - cos x) <= powerRZ 2 (-23).
Proof.
    intros.
    assert (Rabs ((1 - x*x * (5/10)) - cos x)
        <= 7/134217728)
        by interval with (i_bisect_diff x).
    gappa.
Qed.
```


Conclusion

This prover is:

- Pure library. No modifications to Coq are needed.
- Implemented as a computable boolean function with an associated correctness theorem.

This is a pure Coq λ-term!

It relies on standard numerical techniques:

- multi-precision floating-point arithmetic,
- interval arithmetic,
- automatic differentiation,
- bisection.

Questions?

Mail: guillaume.melquiond@inria.fr
Web: http://www.msr-inria.inria.fr/soft/coq-interval/

