
Introduction Conversion Reals Conclusion

Proving bounds on real-valued functions
with computations

Guillaume Melquiond

Mathematical Components
INRIA–Microsoft Research

2008-08-12

Guillaume Melquiond Proving bounds on real-valued functions with computations

Introduction Conversion Reals Conclusion

Verifying inequalities, an example

While certifying an algorithm for preventing airplane collision,
Carreño and Muñoz had to formally prove:

A plane flying at 250 knots and with a bank angle of 35°

has a turn rate of at least 3° each second.

In other words,
3π

180
≤ g

v
· tan

(
35π

180

)
with g = 9.8 m/s2 and v = 250 · 514

1000 m/s.

Guillaume Melquiond Proving bounds on real-valued functions with computations

Introduction Conversion Reals Conclusion

Verifying inequalities, an example

The inequality is trivially true since

3π

180
≈ 0.052 and

g

v
· tan

(
35π

180

)
≈ 0.053.

Proved in PVS by Lester and Muñoz with interval arithmetic.

What about Coq?

9 Goal
10 let v := 250 * (514 / 1000) in
11 3 * pi / 180 <= g / v * tan (35 * pi / 180).
12 Proof.
13 apply Rminus_le. (* t r a n s f o r m i n t o a − b <= 0 *)
14 interval. (* p r o v e by i n t e r v a l c o m p u t a t i o n s *)
15 Qed.

Guillaume Melquiond Proving bounds on real-valued functions with computations

Introduction Conversion Reals Conclusion

Verifying inequalities, an example

The inequality is trivially true since

3π

180
≈ 0.052 and

g

v
· tan

(
35π

180

)
≈ 0.053.

Proved in PVS by Lester and Muñoz with interval arithmetic.

What about Coq?

9 Goal
10 let v := 250 * (514 / 1000) in
11 3 * pi / 180 <= g / v * tan (35 * pi / 180).
12 Proof.
13 apply Rminus_le. (* t r a n s f o r m i n t o a − b <= 0 *)
14 interval. (* p r o v e by i n t e r v a l c o m p u t a t i o n s *)
15 Qed.

Guillaume Melquiond Proving bounds on real-valued functions with computations

Introduction Conversion Reals Conclusion

Verifying inequalities, an example

The inequality is trivially true since

3π

180
≈ 0.052 and

g

v
· tan

(
35π

180

)
≈ 0.053.

Proved in PVS by Lester and Muñoz with interval arithmetic.

What about Coq?

9 Goal
10 let v := 250 * (514 / 1000) in
11 3 * pi / 180 <= g / v * tan (35 * pi / 180).
12 Proof.
13 apply Rminus_le. (* t r a n s f o r m i n t o a − b <= 0 *)
14 interval. (* p r o v e by i n t e r v a l c o m p u t a t i o n s *)
15 Qed.

Guillaume Melquiond Proving bounds on real-valued functions with computations

Introduction Conversion Reals Conclusion

Interval arithmetic

A few words about interval arithmetic:

x ∈ [a, b]∧ y ∈ [c , d]⇒ x + y ∈ [a + c , b + d] =: [a, b] + [c , d]

x ∈ [a, b]⇒ exp x ∈ [exp a, exp b] =: exp[a, b]

Interval-based proofs are simple and sound,
but they rely on numerically-intensive computations.

E.g. Hales’ proof of Kepler’s conjecture depends on C programs.

Question: How to efficiently perform numerical computations
inside a formal system?

Guillaume Melquiond Proving bounds on real-valued functions with computations

Introduction Conversion Reals Conclusion

Interval arithmetic

A few words about interval arithmetic:

x ∈ [a, b]∧ y ∈ [c , d]⇒ x + y ∈ [a + c , b + d] =: [a, b] + [c , d]

x ∈ [a, b]⇒ exp x ∈ [exp a, exp b] =: exp[a, b]

Interval-based proofs are simple and sound,
but they rely on numerically-intensive computations.

E.g. Hales’ proof of Kepler’s conjecture depends on C programs.

Question: How to efficiently perform numerical computations
inside a formal system?

Guillaume Melquiond Proving bounds on real-valued functions with computations

Introduction Conversion Reals Conclusion

Interval arithmetic

A few words about interval arithmetic:

x ∈ [a, b]∧ y ∈ [c , d]⇒ x + y ∈ [a + c , b + d] =: [a, b] + [c , d]

x ∈ [a, b]⇒ exp x ∈ [exp a, exp b] =: exp[a, b]

Interval-based proofs are simple and sound,
but they rely on numerically-intensive computations.

E.g. Hales’ proof of Kepler’s conjecture depends on C programs.

Question: How to efficiently perform numerical computations
inside a formal system?

Guillaume Melquiond Proving bounds on real-valued functions with computations

Introduction Conversion Reals Conclusion

Outline

1 Introduction

2 Conversion and computations

3 Proofs on real-valued expressions

4 Conclusion

Guillaume Melquiond Proving bounds on real-valued functions with computations

Introduction Conversion Reals Conclusion Peano Types Expressions Propositions Details

Outline

1 Introduction

2 Conversion and computations
Example: Peano’s arithmetic
Type theory and conversion
Evaluating expressions
Evaluating propositions
Implementation details

3 Proofs on real-valued expressions

4 Conclusion

Guillaume Melquiond Proving bounds on real-valued functions with computations

Introduction Conversion Reals Conclusion Peano Types Expressions Propositions Details

Example: Peano’s arithmetic

Inductive definition of natural numbers:

type nat = O | S of nat (* 5 = SSSSSO *)

Axioms for addition:
addO:

∀a

∀b O + b = b
addS: ∀a∀b (S a) + b = a + (S b)

Guillaume Melquiond Proving bounds on real-valued functions with computations

Introduction Conversion Reals Conclusion Peano Types Expressions Propositions Details

Example: Peano’s arithmetic

Deductive proof of 4 + (2 + 3) = 9: (9 steps)

9 = 9
reflexivity

0 + 9 = 9
addO

.... addS× 4
4 + 5 = 9

4 + (0 + 5) = 9
addO

4 + (1 + 4) = 9
addS

4 + (2 + 3) = 9
addS

Guillaume Melquiond Proving bounds on real-valued functions with computations

Introduction Conversion Reals Conclusion Peano Types Expressions Propositions Details

Introducing computations into proofs

Recursive definition of addition:

let rec plus x y =
match x with
| O -> y
| S x’ -> plus x’ (S y)

Lemma plus xlate: ∀a∀b a + b = plus a b

Proof of 4 + (2 + 3) = 9: (4 steps)

9 = 9
reflexivity

plus 4 (plus 2 3) = 9
???

4 + (plus 2 3) = 9
plus xlate

4 + (2 + 3) = 9
plus xlate

Guillaume Melquiond Proving bounds on real-valued functions with computations

Introduction Conversion Reals Conclusion Peano Types Expressions Propositions Details

Introducing computations into proofs

Recursive definition of addition:

let rec plus x y =
match x with
| O -> y
| S x’ -> plus x’ (S y)

Lemma plus xlate: ∀a∀b a + b = plus a b

Proof of 4 + (2 + 3) = 9: (4 steps)

9 = 9
reflexivity

plus 4 (plus 2 3) = 9
???

4 + (plus 2 3) = 9
plus xlate

4 + (2 + 3) = 9
plus xlate

Guillaume Melquiond Proving bounds on real-valued functions with computations

Introduction Conversion Reals Conclusion Peano Types Expressions Propositions Details

Type theory and conversion

Curry-Howard correspondence and type theory:

1 Proposition A holds if the type A is inhabited.

2 Convertible types have the same inhabitants.
p : A

p : B
A ≡β B

Proof of 4 + (2 + 3) = 9: (4 steps)

p : 9 = 9
reflexivity

p : plus 4 (plus 2 3) = 9
β-reduction

4 + (plus 2 3) = 9
plus xlate

4 + (2 + 3) = 9
plus xlate

Guillaume Melquiond Proving bounds on real-valued functions with computations

Introduction Conversion Reals Conclusion Peano Types Expressions Propositions Details

Type theory and conversion

Curry-Howard correspondence and type theory:

1 Proposition A holds if the type A is inhabited.

2 Convertible types have the same inhabitants.
p : A

p : B
A ≡β B

Proof of 4 + (2 + 3) = 9: (4 steps)

p : 9 = 9
reflexivity

p : plus 4 (plus 2 3) = 9
β-reduction

4 + (plus 2 3) = 9
plus xlate

4 + (2 + 3) = 9
plus xlate

Guillaume Melquiond Proving bounds on real-valued functions with computations

Introduction Conversion Reals Conclusion Peano Types Expressions Propositions Details

Encoding expressions

Inductive definition of expressions on natural numbers:

type expr = Nat of nat | Add of expr * expr
let rec interp_expr e =

match e with
| Nat n -> n
| Add (x, y) ->

(interp_expr x) "+" (interp_expr y)

Proof of 4 + (2 + 3) = 9:

???
interp expr (Add (Nat 4, Add (Nat 2, Nat 3))) = 9

4 + (2 + 3) = 9
β-reduction

Guillaume Melquiond Proving bounds on real-valued functions with computations

Introduction Conversion Reals Conclusion Peano Types Expressions Propositions Details

Evaluating expressions

Evaluating expressions on natural numbers:

let rec eval_expr e =
match e with
| Nat n -> n
| Add (x, y) ->

plus (eval_expr x) (eval_expr y)

Lemma expr xlate: ∀e interp expr e = eval expr e

Proof of 4 + (2 + 3) = 9:

9 = 9
reflexivity

eval expr (Add (Nat 4, . . .)) = 9
β-reduction

interp expr (Add (Nat 4, . . .)) = 9
expr xlate

4 + (2 + 3) = 9
β-reduction

Guillaume Melquiond Proving bounds on real-valued functions with computations

Introduction Conversion Reals Conclusion Peano Types Expressions Propositions Details

Evaluating expressions

Evaluating expressions on natural numbers:

let rec eval_expr e =
match e with
| Nat n -> n
| Add (x, y) ->

plus (eval_expr x) (eval_expr y)

Lemma expr xlate: ∀e interp expr e = eval expr e

Proof of 4 + (2 + 3) = 9:

9 = 9
reflexivity

eval expr (Add (Nat 4, . . .)) = 9
β-reduction

interp expr (Add (Nat 4, . . .)) = 9
expr xlate

4 + (2 + 3) = 9
β-reduction

Guillaume Melquiond Proving bounds on real-valued functions with computations

Introduction Conversion Reals Conclusion Peano Types Expressions Propositions Details

Relational operators

Equality is usually a native concept, while comparisons are not.

Comparing natural numbers:

let rec le x y =
match x, y with
| O , _ -> true
| S _ , O -> false
| S x’, S y’ -> le x’ y’

Lemma: ∀a∀b le a b = true ⇔ a ≤ b

Guillaume Melquiond Proving bounds on real-valued functions with computations

Introduction Conversion Reals Conclusion Peano Types Expressions Propositions Details

Encoding comparisons

Inductive definition of relations on natural expressions:

type prop = Le of expr * expr
let interp_prop p =

match p with
| Le (x, y) ->

(interp_expr x) "<=" (interp_expr y)
let eval_prop p =

match p with
| Le (x, y) -> le (eval_expr x) (eval_expr y)

Proof of 4 + (2 + 3) ≤ 5 + 6:

true = true reflexivity

eval prop (Le (Add . . . , Add . . .)) = true
β-reduction

interp prop (Le (Add . . . , Add . . .))
prop xlate

4 + (2 + 3) ≤ 5 + 6
β-reduction

Guillaume Melquiond Proving bounds on real-valued functions with computations

Introduction Conversion Reals Conclusion Peano Types Expressions Propositions Details

Encoding comparisons

Inductive definition of relations on natural expressions:

type prop = Le of expr * expr
let interp_prop p =

match p with
| Le (x, y) ->

(interp_expr x) "<=" (interp_expr y)
let eval_prop p =

match p with
| Le (x, y) -> le (eval_expr x) (eval_expr y)

Proof of 4 + (2 + 3) ≤ 5 + 6:

true = true reflexivity

eval prop (Le (Add . . . , Add . . .)) = true
β-reduction

interp prop (Le (Add . . . , Add . . .))
prop xlate

4 + (2 + 3) ≤ 5 + 6
β-reduction

Guillaume Melquiond Proving bounds on real-valued functions with computations

Introduction Conversion Reals Conclusion Peano Types Expressions Propositions Details

Implementation details

All the proofs are identical, except for the inductive object.

This object is the syntax tree of the proposition;
It has to be computed by an external oracle.

(= Simple parser written in the meta-language of Coq proofs.)

Proof verification:

true = true
eval prop . . . = true

〈
typechecking fails
if the user is wrong

....
interp prop (Le . . .)

4 + (2 + 3) ≤ 5 + 6

〈
typechecking fails
if the oracle is wrong

Guillaume Melquiond Proving bounds on real-valued functions with computations

Introduction Conversion Reals Conclusion Peano Types Expressions Propositions Details

Implementation details

All the proofs are identical, except for the inductive object.

This object is the syntax tree of the proposition;
It has to be computed by an external oracle.

(= Simple parser written in the meta-language of Coq proofs.)

Proof verification:

true = true
eval prop . . . = true

〈
typechecking fails
if the user is wrong

....
interp prop (Le . . .)

4 + (2 + 3) ≤ 5 + 6

〈
typechecking fails
if the oracle is wrong

Guillaume Melquiond Proving bounds on real-valued functions with computations

Introduction Conversion Reals Conclusion Domain Intervals Improvements

Outline

1 Introduction

2 Conversion and computations

3 Proofs on real-valued expressions
Enclosures of real-valued expressions
Interval arithmetic
Improving bounds

4 Conclusion

Guillaume Melquiond Proving bounds on real-valued functions with computations

Introduction Conversion Reals Conclusion Domain Intervals Improvements

Enclosures of real-valued expressions

Definition (Real-valued expression)

Straight-line program of

variables: x , y , . . .

unary operators: −�,
√

�, |�|, �2, �−1,

binary operators: +, −, ×, ÷,

transcendental functions: cos, sin, tan, arctan.

Straight-line programs are directed acyclic graphs;
Common sub-expressions are shared and evaluated only once.

Guillaume Melquiond Proving bounds on real-valued functions with computations

Introduction Conversion Reals Conclusion Domain Intervals Improvements

Enclosures of real-valued expressions

Definition (Expression enclosures)

a ≤ f (x , y , . . .) ≤ b

with a and b floating-point numbers (m · 2e ; m, e ∈ Z) or ±∞.

(Note: Undefined values, e.g. 1/0, are not bounded.)

Goal: Automatically prove the following proposition

ax ≤ x ≤ bx ay ≤ y ≤ by . . .

a ≤ f (x , y , . . .) ≤ b

Guillaume Melquiond Proving bounds on real-valued functions with computations

Introduction Conversion Reals Conclusion Domain Intervals Improvements

Interval arithmetic

Floating-point interval evaluations can serve as proofs of bounds,
as long as they satisfy the containment property:

x ∈ Ix ∧ y ∈ Iy =⇒ x � y ∈ Ix � Iy

for � ∈ {+,−,×,÷}. Also for unary functions:
√
·, sin, . . .

Guillaume Melquiond Proving bounds on real-valued functions with computations

Introduction Conversion Reals Conclusion Domain Intervals Improvements

Interval arithmetic

Floating-point interval evaluations can serve as proofs of bounds,
as long as they satisfy the containment property:

x ∈ Ix ∧ y ∈ Iy =⇒ x � y ∈ Ix � Iy

for � ∈ {+,−,×,÷}. Also for unary functions:
√
·, sin, . . .

Theorem (Containment)

Given a SLP prog defined on expressions inputs,
if ∀i , inputi ∈ rangei , then

eval(prog, inputs) ∈ eval(prog, ranges)

Guillaume Melquiond Proving bounds on real-valued functions with computations

Introduction Conversion Reals Conclusion Domain Intervals Improvements

Interval arithmetic

Floating-point interval evaluations can serve as proofs of bounds,
as long as they satisfy the containment property:

x ∈ Ix ∧ y ∈ Iy =⇒ x � y ∈ Ix � Iy

for � ∈ {+,−,×,÷}. Also for unary functions:
√
·, sin, . . .

Theorem (Containment 2)

Given a SLP prog defined on expressions inputs,
if ∀i , inputi ∈ rangei , then

subset (eval prog ranges) output = true⇒
eval prog inputs ∈ output

Guillaume Melquiond Proving bounds on real-valued functions with computations

Introduction Conversion Reals Conclusion Domain Intervals Improvements

Sharpening intervals

Naive interval arithmetic does not keep tracks of correlations
due to binary operators:

For x ∈ [0, 1], x + (−x) ∈ [0, 1] + [−1, 0] = [−1, 1].

Implemented improvements:

1 Bisection:
Recursively split the domain into smaller sub-domains,
until the proposition is proved on all the sub-domains.

2 First-order approximation:
f (x0 + h) = f (x0) + h · f ′(x0 + ξ) with ξ ∈ [0, h] (or [h, 0]),
so ∀x ∈ X , f (x) ∈ f (x0) + (X − x0) · f ′(X) with x0 ∈ X .

Guillaume Melquiond Proving bounds on real-valued functions with computations

Introduction Conversion Reals Conclusion Domain Intervals Improvements

Sharpening intervals

Naive interval arithmetic does not keep tracks of correlations
due to binary operators:

For x ∈ [0, 1], x + (−x) ∈ [0, 1] + [−1, 0] = [−1, 1].

Implemented improvements:

1 Bisection:
Recursively split the domain into smaller sub-domains,
until the proposition is proved on all the sub-domains.

2 First-order approximation:
f (x0 + h) = f (x0) + h · f ′(x0 + ξ) with ξ ∈ [0, h] (or [h, 0]),
so ∀x ∈ X , f (x) ∈ f (x0) + (X − x0) · f ′(X) with x0 ∈ X .

Guillaume Melquiond Proving bounds on real-valued functions with computations

Introduction Conversion Reals Conclusion Domain Intervals Improvements

Sharpening intervals

Naive interval arithmetic does not keep tracks of correlations
due to binary operators:

For x ∈ [0, 1], x + (−x) ∈ [0, 1] + [−1, 0] = [−1, 1].

Implemented improvements:

1 Bisection:
Recursively split the domain into smaller sub-domains,
until the proposition is proved on all the sub-domains.

2 First-order approximation:
f (x0 + h) = f (x0) + h · f ′(x0 + ξ) with ξ ∈ [0, h] (or [h, 0]),
so ∀x ∈ X , f (x) ∈ f (x0) + (X − x0) · f ′(X) with x0 ∈ X .

Guillaume Melquiond Proving bounds on real-valued functions with computations

Introduction Conversion Reals Conclusion Example Gappa Conclusion

Outline

1 Introduction

2 Conversion and computations

3 Proofs on real-valued expressions

4 Conclusion

Guillaume Melquiond Proving bounds on real-valued functions with computations

Introduction Conversion Reals Conclusion Example Gappa Conclusion

Verifying inequalities, another example

Global positioning requires knowing the local radius of Earth:

rp(φ) =
a√

1 + (1− f)2 · tan2 φ

This can be approximated by a degree-5 polynomial P
with single-precision coefficients: P(φ2

m − φ2) = r̃p(φ).

P(x) =
4439091

4
+ x ·

(
9023647

4
+ x ·

(
· · · 6661427

131072

))
Goal: Prove

∣∣∣ rp(φ)−r̃p(φ)
rp(φ)

∣∣∣ ≤ 23 · 2−24 when 0 ≤ φ ≤ φm = 715
512 .

Guillaume Melquiond Proving bounds on real-valued functions with computations

Introduction Conversion Reals Conclusion Example Gappa Conclusion

Verifying inequalities, another example

Inequality proved with order-1 Taylor interval approximations
on ∼ 105 sub-intervals of [0, φm].

1 Daumas, Melquiond, and Muñoz, in PVS (2005).

An oracle chooses the best sub-intervals and
it generates one PVS script per sub-interval.

Verification: several hours on a 48-core parallel computer.

2 In Coq (2008), a few minutes on a laptop computer.

Differences: No oracle, but floating-point numbers.

Guillaume Melquiond Proving bounds on real-valued functions with computations

Introduction Conversion Reals Conclusion Example Gappa Conclusion

Verifying inequalities, another example

Inequality proved with order-1 Taylor interval approximations
on ∼ 105 sub-intervals of [0, φm].

1 Daumas, Melquiond, and Muñoz, in PVS (2005).

An oracle chooses the best sub-intervals and
it generates one PVS script per sub-interval.

Verification: several hours on a 48-core parallel computer.

2 In Coq (2008), a few minutes on a laptop computer.

Differences: No oracle, but floating-point numbers.

Guillaume Melquiond Proving bounds on real-valued functions with computations

Introduction Conversion Reals Conclusion Example Gappa Conclusion

Verifying inequalities, another example

Inequality proved with order-1 Taylor interval approximations
on ∼ 105 sub-intervals of [0, φm].

1 Daumas, Melquiond, and Muñoz, in PVS (2005).

An oracle chooses the best sub-intervals and
it generates one PVS script per sub-interval.

Verification: several hours on a 48-core parallel computer.

2 In Coq (2008), a few minutes on a laptop computer.

Differences: No oracle, but floating-point numbers.

Guillaume Melquiond Proving bounds on real-valued functions with computations

Introduction Conversion Reals Conclusion Example Gappa Conclusion

Verifying inequalities, another example

Inequality proved with order-1 Taylor interval approximations
on ∼ 105 sub-intervals of [0, φm].

1 Daumas, Melquiond, and Muñoz, in PVS (2005).

An oracle chooses the best sub-intervals and
it generates one PVS script per sub-interval.

Verification: several hours on a 48-core parallel computer.

2 In Coq (2008), a few minutes on a laptop computer.

Differences: No oracle, but floating-point numbers.

Guillaume Melquiond Proving bounds on real-valued functions with computations

Introduction Conversion Reals Conclusion Example Gappa Conclusion

Verifying inequalities, another example

1 Require Import Reals.
2 Require Import tactics.
3 Open Local Scope R_scope.
4
5 Definition a := 6378137.
6 Definition f := 1000000000/298257223563.
7 Definition umf2 := (1 - f)².
8 Definition max := 715/512.
9 Definition rp phi := a / sqrt (1 + umf2 * (tan phi)²).

10 Definition arp phi :=
11 let x := max² - phi² in
12 4439091/4 + x * (
13 9023647/4 + x * (
14 13868737/64 + x * (
15 13233647/2048 + x * (
16 -1898597/16384 + x *
17 (-6661427/131072))))).
18
19 Goal
20 forall phi , 0 <= phi <= max ->
21 Rabs ((rp phi - arp phi) / rp phi) <= 23/16777216.
22 Proof.
23 unfold rp, arp , umf2 , a, f, max. intros.
24 Time interval with (i_bisect_diff phi , i_nocheck). (* 4 s *)
25 Time Qed. (* 96 s *)

Tactic parameters:
bisection and order-1 evaluation on φ, check delayed at Qed time,
minimal relative width of intervals: 2−15, precision: 30 bits.

Guillaume Melquiond Proving bounds on real-valued functions with computations

Introduction Conversion Reals Conclusion Example Gappa Conclusion

What about Gappa?

Toy implementation of cosine in C

/*@ requires |x | ≤ 2−5

*@ ensures |\result− cos x | ≤ 2−23 */
float mycos(float x)
{ return 1 - x * x * 0.5; }

When certifying the function, Why generates a proof obligation:

8 Theorem mycos17:
9 forall x, Rabs x <= 1/32 ->

10 Rabs (round (1 - round (round (x*x) * (5/10)))
11 - cos x) <= powerRZ 2 (-23).

Impossible for Gappa: what is cos?
Impossible for interval: highly correlated, yet not even continuous.

Guillaume Melquiond Proving bounds on real-valued functions with computations

Introduction Conversion Reals Conclusion Example Gappa Conclusion

What about Gappa?

Toy implementation of cosine in C

/*@ requires |x | ≤ 2−5

*@ ensures |\result− cos x | ≤ 2−23 */
float mycos(float x)
{ return 1 - x * x * 0.5; }

When certifying the function, Why generates a proof obligation:

8 Theorem mycos17:
9 forall x, Rabs x <= 1/32 ->

10 Rabs (round (1 - round (round (x*x) * (5/10)))
11 - cos x) <= powerRZ 2 (-23).

Impossible for Gappa: what is cos?
Impossible for interval: highly correlated, yet not even continuous.

Guillaume Melquiond Proving bounds on real-valued functions with computations

Introduction Conversion Reals Conclusion Example Gappa Conclusion

What about Gappa?

8 Theorem mycos17:
9 forall x, Rabs x <= 1/32 ->

10 Rabs (round (1 - round (round (x*x) * (5/10)))
11 - cos x) <= powerRZ 2 (-23).
12 Proof.
13 intros.
14 assert (Rabs ((1 - x*x * (5/10)) - cos x)
15 <= 7/134217728)
16 by interval with (i_bisect_diff x).
17 gappa.
18 Qed.

Guillaume Melquiond Proving bounds on real-valued functions with computations

Introduction Conversion Reals Conclusion Example Gappa Conclusion

Conclusion

This prover is:

Pure library. No modifications to Coq are needed.

Implemented as a computable boolean function
with an associated correctness theorem.

This is a pure Coq λ-term!

It relies on standard numerical techniques:

multi-precision floating-point arithmetic,

interval arithmetic,

automatic differentiation,

bisection.

Guillaume Melquiond Proving bounds on real-valued functions with computations

Introduction Conversion Reals Conclusion Example Gappa Conclusion

Questions?

Mail: guillaume.melquiond@inria.fr
Web: http://www.msr-inria.inria.fr/soft/coq-interval/

Guillaume Melquiond Proving bounds on real-valued functions with computations

guillaume.melquiond@inria.fr
http://www.msr-inria.inria.fr/soft/coq-interval/

	Introduction
	Conversion and computations
	Example: Peano's arithmetic
	Type theory and conversion
	Evaluating expressions
	Evaluating propositions
	Implementation details

	Proofs on real-valued expressions
	Enclosures of real-valued expressions
	Interval arithmetic
	Improving bounds

	Conclusion
	Example
	Gappa
	Conclusion

