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Verifying inequalities, an example

While certifying an algorithm for preventing airplane collision,
Carreño and Muñoz had to formally prove:

A plane flying at 250 knots and with a bank angle of 35°

has a turn rate of at least 3° each second.

In other words,
3π

180
≤ g

v
· tan

(
35π

180

)
with g = 9.8 m/s2 and v = 250 · 514

1000 m/s.
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Verifying inequalities, an example

The inequality is trivially true since

3π

180
≈ 0.052 and

g

v
· tan

(
35π

180

)
≈ 0.053.

Proved in PVS by Lester and Muñoz with interval arithmetic.

What about Coq?

9 Goal
10 let v := 250 * (514 / 1000) in
11 3 * pi / 180 <= g / v * tan (35 * pi / 180).
12 Proof.
13 apply Rminus_le. (* t r a n s f o r m i n t o a − b <= 0 *)
14 interval. (* p r o v e by i n t e r v a l c o m p u t a t i o n s *)
15 Qed.
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Interval arithmetic

A few words about interval arithmetic:

x ∈ [a, b]∧ y ∈ [c , d ]⇒ x + y ∈ [a + c , b + d ] =: [a, b] + [c , d ]

x ∈ [a, b]⇒ exp x ∈ [exp a, exp b] =: exp[a, b]

Interval-based proofs are simple and sound,
but they rely on numerically-intensive computations.

E.g. Hales’ proof of Kepler’s conjecture depends on C programs.

Question: How to efficiently perform numerical computations
inside a formal system?
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Example: Peano’s arithmetic

Inductive definition of natural numbers:

type nat = O | S of nat (* 5 = SSSSSO * )

Axioms for addition:
addO:

∀a

∀b O + b = b
addS: ∀a∀b (S a) + b = a + (S b)
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Example: Peano’s arithmetic

Deductive proof of 4 + (2 + 3) = 9: (9 steps)

9 = 9
reflexivity

0 + 9 = 9
addO

.... addS× 4
4 + 5 = 9

4 + (0 + 5) = 9
addO

4 + (1 + 4) = 9
addS

4 + (2 + 3) = 9
addS
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Introducing computations into proofs

Recursive definition of addition:

let rec plus x y =
match x with
| O -> y
| S x’ -> plus x’ (S y)

Lemma plus xlate: ∀a∀b a + b = plus a b

Proof of 4 + (2 + 3) = 9: (4 steps)

9 = 9
reflexivity

plus 4 (plus 2 3) = 9
???

4 + (plus 2 3) = 9
plus xlate

4 + (2 + 3) = 9
plus xlate
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Type theory and conversion

Curry-Howard correspondence and type theory:

1 Proposition A holds if the type A is inhabited.

2 Convertible types have the same inhabitants.
p : A

p : B
A ≡β B

Proof of 4 + (2 + 3) = 9: (4 steps)

p : 9 = 9
reflexivity

p : plus 4 (plus 2 3) = 9
β-reduction

4 + (plus 2 3) = 9
plus xlate

4 + (2 + 3) = 9
plus xlate
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Encoding expressions

Inductive definition of expressions on natural numbers:

type expr = Nat of nat | Add of expr * expr
let rec interp_expr e =

match e with
| Nat n -> n
| Add (x, y) ->

(interp_expr x) "+" (interp_expr y)

Proof of 4 + (2 + 3) = 9:

???
interp expr (Add (Nat 4, Add (Nat 2, Nat 3))) = 9

4 + (2 + 3) = 9
β-reduction
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Evaluating expressions

Evaluating expressions on natural numbers:

let rec eval_expr e =
match e with
| Nat n -> n
| Add (x, y) ->

plus (eval_expr x) (eval_expr y)

Lemma expr xlate: ∀e interp expr e = eval expr e

Proof of 4 + (2 + 3) = 9:

9 = 9
reflexivity

eval expr (Add (Nat 4, . . .)) = 9
β-reduction

interp expr (Add (Nat 4, . . .)) = 9
expr xlate

4 + (2 + 3) = 9
β-reduction
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Relational operators

Equality is usually a native concept, while comparisons are not.

Comparing natural numbers:

let rec le x y =
match x, y with
| O , _ -> true
| S _ , O -> false
| S x’, S y’ -> le x’ y’

Lemma: ∀a∀b le a b = true ⇔ a ≤ b
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Encoding comparisons

Inductive definition of relations on natural expressions:

type prop = Le of expr * expr
let interp_prop p =

match p with
| Le (x, y) ->

(interp_expr x) "<=" (interp_expr y)
let eval_prop p =

match p with
| Le (x, y) -> le (eval_expr x) (eval_expr y)

Proof of 4 + (2 + 3) ≤ 5 + 6:

true = true reflexivity

eval prop (Le (Add . . . , Add . . .)) = true
β-reduction

interp prop (Le (Add . . . , Add . . .))
prop xlate

4 + (2 + 3) ≤ 5 + 6
β-reduction
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Implementation details

All the proofs are identical, except for the inductive object.

This object is the syntax tree of the proposition;
It has to be computed by an external oracle.

(= Simple parser written in the meta-language of Coq proofs.)

Proof verification:

true = true
eval prop . . . = true

〈
typechecking fails
if the user is wrong

....
interp prop (Le . . .)

4 + (2 + 3) ≤ 5 + 6

〈
typechecking fails
if the oracle is wrong
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Enclosures of real-valued expressions

Definition (Real-valued expression)

Straight-line program of

variables: x , y , . . .

unary operators: −�,
√

�, |�|, �2, �−1,

binary operators: +, −, ×, ÷,

transcendental functions: cos, sin, tan, arctan.

Straight-line programs are directed acyclic graphs;
Common sub-expressions are shared and evaluated only once.
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Enclosures of real-valued expressions

Definition (Expression enclosures)

a ≤ f (x , y , . . .) ≤ b

with a and b floating-point numbers (m · 2e ; m, e ∈ Z) or ±∞.

(Note: Undefined values, e.g. 1/0, are not bounded.)

Goal: Automatically prove the following proposition

ax ≤ x ≤ bx ay ≤ y ≤ by . . .

a ≤ f (x , y , . . .) ≤ b
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Interval arithmetic

Floating-point interval evaluations can serve as proofs of bounds,
as long as they satisfy the containment property:

x ∈ Ix ∧ y ∈ Iy =⇒ x � y ∈ Ix � Iy

for � ∈ {+,−,×,÷}. Also for unary functions:
√
·, sin, . . .
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Interval arithmetic

Floating-point interval evaluations can serve as proofs of bounds,
as long as they satisfy the containment property:

x ∈ Ix ∧ y ∈ Iy =⇒ x � y ∈ Ix � Iy

for � ∈ {+,−,×,÷}. Also for unary functions:
√
·, sin, . . .

Theorem (Containment)

Given a SLP prog defined on expressions inputs,
if ∀i , inputi ∈ rangei , then

eval(prog, inputs) ∈ eval(prog, ranges)
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Interval arithmetic

Floating-point interval evaluations can serve as proofs of bounds,
as long as they satisfy the containment property:

x ∈ Ix ∧ y ∈ Iy =⇒ x � y ∈ Ix � Iy

for � ∈ {+,−,×,÷}. Also for unary functions:
√
·, sin, . . .

Theorem (Containment 2)

Given a SLP prog defined on expressions inputs,
if ∀i , inputi ∈ rangei , then

subset (eval prog ranges) output = true⇒
eval prog inputs ∈ output
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Sharpening intervals

Naive interval arithmetic does not keep tracks of correlations
due to binary operators:

For x ∈ [0, 1], x + (−x) ∈ [0, 1] + [−1, 0] = [−1, 1].

Implemented improvements:

1 Bisection:
Recursively split the domain into smaller sub-domains,
until the proposition is proved on all the sub-domains.

2 First-order approximation:
f (x0 + h) = f (x0) + h · f ′(x0 + ξ) with ξ ∈ [0, h] (or [h, 0]),
so ∀x ∈ X , f (x) ∈ f (x0) + (X − x0) · f ′(X ) with x0 ∈ X .
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Verifying inequalities, another example

Global positioning requires knowing the local radius of Earth:

rp(φ) =
a√

1 + (1− f )2 · tan2 φ

This can be approximated by a degree-5 polynomial P
with single-precision coefficients: P(φ2

m − φ2) = r̃p(φ).

P(x) =
4439091

4
+ x ·

(
9023647

4
+ x ·

(
· · · 6661427

131072

))
Goal: Prove

∣∣∣ rp(φ)−r̃p(φ)
rp(φ)

∣∣∣ ≤ 23 · 2−24 when 0 ≤ φ ≤ φm = 715
512 .
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Verifying inequalities, another example

Inequality proved with order-1 Taylor interval approximations
on ∼ 105 sub-intervals of [0, φm].

1 Daumas, Melquiond, and Muñoz, in PVS (2005).

An oracle chooses the best sub-intervals and
it generates one PVS script per sub-interval.

Verification: several hours on a 48-core parallel computer.

2 In Coq (2008), a few minutes on a laptop computer.

Differences: No oracle, but floating-point numbers.
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Verifying inequalities, another example

1 Require Import Reals.
2 Require Import tactics.
3 Open Local Scope R_scope.
4
5 Definition a := 6378137.
6 Definition f := 1000000000/298257223563.
7 Definition umf2 := (1 - f)².
8 Definition max := 715/512.
9 Definition rp phi := a / sqrt (1 + umf2 * (tan phi)²).

10 Definition arp phi :=
11 let x := max² - phi² in
12 4439091/4 + x * (
13 9023647/4 + x * (
14 13868737/64 + x * (
15 13233647/2048 + x * (
16 -1898597/16384 + x *
17 ( -6661427/131072))))).
18
19 Goal
20 forall phi , 0 <= phi <= max ->
21 Rabs ((rp phi - arp phi) / rp phi) <= 23/16777216.
22 Proof.
23 unfold rp, arp , umf2 , a, f, max. intros.
24 Time interval with (i_bisect_diff phi , i_nocheck). (* 4 s *)
25 Time Qed. (* 96 s *)

Tactic parameters:
bisection and order-1 evaluation on φ, check delayed at Qed time,
minimal relative width of intervals: 2−15, precision: 30 bits.
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What about Gappa?

Toy implementation of cosine in C

/*@ requires |x | ≤ 2−5

*@ ensures |\result− cos x | ≤ 2−23 */
float mycos(float x)
{ return 1 - x * x * 0.5; }

When certifying the function, Why generates a proof obligation:

8 Theorem mycos17:
9 forall x, Rabs x <= 1/32 ->

10 Rabs (round (1 - round (round (x*x) * (5/10)))
11 - cos x) <= powerRZ 2 (-23).

Impossible for Gappa: what is cos?
Impossible for interval: highly correlated, yet not even continuous.
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What about Gappa?

8 Theorem mycos17:
9 forall x, Rabs x <= 1/32 ->

10 Rabs (round (1 - round (round (x*x) * (5/10)))
11 - cos x) <= powerRZ 2 (-23).
12 Proof.
13 intros.
14 assert (Rabs ((1 - x*x * (5/10)) - cos x)
15 <= 7/134217728)
16 by interval with (i_bisect_diff x).
17 gappa.
18 Qed.
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Conclusion

This prover is:

Pure library. No modifications to Coq are needed.

Implemented as a computable boolean function
with an associated correctness theorem.

This is a pure Coq λ-term!

It relies on standard numerical techniques:

multi-precision floating-point arithmetic,

interval arithmetic,

automatic differentiation,

bisection.
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Questions?

Mail: guillaume.melquiond@inria.fr
Web: http://www.msr-inria.inria.fr/soft/coq-interval/
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