
Intro Numbers Basic ops Elementary ops Conclusion

Floating-point arithmetic in the Coq system

Guillaume Melquiond

Mathematical Components
INRIA–Microsoft Research

2008-07-08

Guillaume Melquiond Floating-point arithmetic in the Coq system

Intro Numbers Basic ops Elementary ops Conclusion

Verifying an equality, an example

While certifying an algorithm for preventing airplane collision,
Carreño and Muñoz had to formally prove:

A plane flying at 250 knots and with a bank angle of 35°

has a turn rate of at least 3° each second.

In other words,
3π

180
≤ g

v
· tan

(
35π

180

)
with g = 9.8 m/s2 and v = 250 · 514

1000 m/s.

Guillaume Melquiond Floating-point arithmetic in the Coq system

Intro Numbers Basic ops Elementary ops Conclusion

Verifying an equality, an example

The inequality is trivially true since

3π

180
≈ 0.052 and

g

v
· tan

(
35π

180

)
≈ 0.053.

Proved in PVS by Lester and Muñoz
thanks to interval computations on rational bounds.

Guillaume Melquiond Floating-point arithmetic in the Coq system

Intro Numbers Basic ops Elementary ops Conclusion

Verifying an equality, an example

The inequality is trivially true since

3π

180
≈ 0.052 and

g

v
· tan

(
35π

180

)
≈ 0.053.

Proved in PVS by Lester and Muñoz
thanks to interval computations on rational bounds.

Guillaume Melquiond Floating-point arithmetic in the Coq system

Intro Numbers Basic ops Elementary ops Conclusion

Formal proofs and floating-point computations

Kepler’s conjecture on 3D sphere packing.

Hales splits the problem into thousands of configurations.
Each configuration is described by a system with 6 variables,
then solved by interval computations on floating-point bounds.

Confidence of the reviewers: only 95%
due to the computationally-intensive proof.

Hales now aims to perform a formal proof
in order to achieve 100% confidence.

But what about computations?

Guillaume Melquiond Floating-point arithmetic in the Coq system

Intro Numbers Basic ops Elementary ops Conclusion

Formal proofs and floating-point computations

Kepler’s conjecture on 3D sphere packing.

Hales splits the problem into thousands of configurations.
Each configuration is described by a system with 6 variables,
then solved by interval computations on floating-point bounds.

Confidence of the reviewers: only 95%
due to the computationally-intensive proof.

Hales now aims to perform a formal proof
in order to achieve 100% confidence.

But what about computations?

Guillaume Melquiond Floating-point arithmetic in the Coq system

Intro Numbers Basic ops Elementary ops Conclusion

Formal proofs and floating-point computations

Kepler’s conjecture on 3D sphere packing.

Hales splits the problem into thousands of configurations.
Each configuration is described by a system with 6 variables,
then solved by interval computations on floating-point bounds.

Confidence of the reviewers: only 95%
due to the computationally-intensive proof.

Hales now aims to perform a formal proof
in order to achieve 100% confidence.

But what about computations?

Guillaume Melquiond Floating-point arithmetic in the Coq system

Intro Numbers Basic ops Elementary ops Conclusion

Computations and proofs

Natural numbers:

1 type nat = O | S of nat (* 5 = SSSSSO *)
2 let rec plus x y =
3 match x with
4 | O -> y
5 | S x’ -> plus x’ (S y)

Proof by computation:

1 Goal (plus 3 5) = (plus 5 3). trivial.

Standard positive integers:

1 type pos = H | B0 of pos | B1 of pos
2 (* 26 = B0B1B0B1H *)

Guillaume Melquiond Floating-point arithmetic in the Coq system

Intro Numbers Basic ops Elementary ops Conclusion

Computations and proofs

Natural numbers:

1 type nat = O | S of nat (* 5 = SSSSSO *)
2 let rec plus x y =
3 match x with
4 | O -> y
5 | S x’ -> plus x’ (S y)

Proof by computation:

1 Goal (plus 3 5) = (plus 5 3). trivial.

Standard positive integers:

1 type pos = H | B0 of pos | B1 of pos
2 (* 26 = B0B1B0B1H *)

Guillaume Melquiond Floating-point arithmetic in the Coq system

Intro Numbers Basic ops Elementary ops Conclusion

Computations and proofs

Natural numbers:

1 type nat = O | S of nat (* 5 = SSSSSO *)
2 let rec plus x y =
3 match x with
4 | O -> y
5 | S x’ -> plus x’ (S y)

Proof by computation:

1 Goal (plus 3 5) = (plus 5 3). trivial.

Standard positive integers:

1 type pos = H | B0 of pos | B1 of pos
2 (* 26 = B0B1B0B1H *)

Guillaume Melquiond Floating-point arithmetic in the Coq system

Intro Numbers Basic ops Elementary ops Conclusion

Floating-point arithmetic in the Coq system

Goal: Implement an efficient arithmetic inside a formal system.

1 Number representations

2 Basic arithmetic operators

3 Elementary functions

4 Conclusion

Guillaume Melquiond Floating-point arithmetic in the Coq system

Intro Numbers Basic ops Elementary ops Conclusion FP numbers Libraries Modules Fast integers

Outline

1 Number representations
FP numbers
Libraries
Modules
Fast integers

2 Basic arithmetic operators

3 Elementary functions

4 Conclusion

Guillaume Melquiond Floating-point arithmetic in the Coq system

Intro Numbers Basic ops Elementary ops Conclusion FP numbers Libraries Modules Fast integers

Formats

Definition (Floating-point number)

Floating-point numbers in radix β:

Pairs of integers (m, e) ∈ Z2 interpreted as m · βe ∈ R.

Not-a-Number ⊥ for exceptional behavior: 1
0 ,
√
−1, etc.

Unbounded exponent range =⇒ no overflow nor underflow.
No infinities nor signed zeros.

Guillaume Melquiond Floating-point arithmetic in the Coq system

Intro Numbers Basic ops Elementary ops Conclusion FP numbers Libraries Modules Fast integers

Formats

Definition (Floating-point number)

Floating-point numbers in radix β:

Pairs of integers (m, e) ∈ Z2 interpreted as m · βe ∈ R.

Not-a-Number ⊥ for exceptional behavior: 1
0 ,
√
−1, etc.

Unbounded exponent range =⇒ no overflow nor underflow.
No infinities nor signed zeros.

Guillaume Melquiond Floating-point arithmetic in the Coq system

Intro Numbers Basic ops Elementary ops Conclusion FP numbers Libraries Modules Fast integers

Rounding

Some real numbers are not representable as floating-point values.
E.g. 1

3 for β = 2,
√

2 for any β.

Solution: Use a FP value close to the real number instead.
Uniquely defined according to a precision and a rounding direction.

Example: In radix 10 and precision 4, π is rounded to:

3141 · 10−3 when rounding toward −∞ or zero,

3142 · 10−3 when rounding toward +∞ or to nearest.

Rounding direction and precision are specified for each operation:

Fadd rnd UP 500 : Fβ → Fβ → Fβ.

Guillaume Melquiond Floating-point arithmetic in the Coq system

Intro Numbers Basic ops Elementary ops Conclusion FP numbers Libraries Modules Fast integers

Rounding

Some real numbers are not representable as floating-point values.
E.g. 1

3 for β = 2,
√

2 for any β.

Solution: Use a FP value close to the real number instead.
Uniquely defined according to a precision and a rounding direction.

Example: In radix 10 and precision 4, π is rounded to:

3141 · 10−3 when rounding toward −∞ or zero,

3142 · 10−3 when rounding toward +∞ or to nearest.

Rounding direction and precision are specified for each operation:

Fadd rnd UP 500 : Fβ → Fβ → Fβ.

Guillaume Melquiond Floating-point arithmetic in the Coq system

Intro Numbers Basic ops Elementary ops Conclusion FP numbers Libraries Modules Fast integers

Rounding

Some real numbers are not representable as floating-point values.
E.g. 1

3 for β = 2,
√

2 for any β.

Solution: Use a FP value close to the real number instead.
Uniquely defined according to a precision and a rounding direction.

Example: In radix 10 and precision 4, π is rounded to:

3141 · 10−3 when rounding toward −∞ or zero,

3142 · 10−3 when rounding toward +∞ or to nearest.

Rounding direction and precision are specified for each operation:

Fadd rnd UP 500 : Fβ → Fβ → Fβ.

Guillaume Melquiond Floating-point arithmetic in the Coq system

Intro Numbers Basic ops Elementary ops Conclusion FP numbers Libraries Modules Fast integers

Existing floating-point libraries

A few libraries on floating-point numbers:

Moore, Lynch, and Kaufmann’s library in ACL2.

Daumas, Rideau, and Théry’s library in Coq.

Harrison’s library in HOL light.

Definition of rounding to −∞:

downward(format, f , x) =
f ∈ format ∧ f ≤ x ∧ ∀g ∈ format, g ≤ x ⇒ g ≤ f .

Rounding predicates:

useful for certifying floating-point programs,

useless for computing with floating-point numbers.

Guillaume Melquiond Floating-point arithmetic in the Coq system

Intro Numbers Basic ops Elementary ops Conclusion FP numbers Libraries Modules Fast integers

Existing floating-point libraries

A few libraries on floating-point numbers:

Moore, Lynch, and Kaufmann’s library in ACL2.

Daumas, Rideau, and Théry’s library in Coq.

Harrison’s library in HOL light.

Definition of rounding to −∞:

downward(format, f , x) =
f ∈ format ∧ f ≤ x ∧ ∀g ∈ format, g ≤ x ⇒ g ≤ f .

Rounding predicates:

useful for certifying floating-point programs,

useless for computing with floating-point numbers.

Guillaume Melquiond Floating-point arithmetic in the Coq system

Intro Numbers Basic ops Elementary ops Conclusion FP numbers Libraries Modules Fast integers

Existing floating-point libraries

A few libraries on floating-point numbers:

Moore, Lynch, and Kaufmann’s library in ACL2.

Daumas, Rideau, and Théry’s library in Coq.

Harrison’s library in HOL light.

Definition of rounding to −∞:

downward(format, f , x) =
f ∈ format ∧ f ≤ x ∧ ∀g ∈ format, g ≤ x ⇒ g ≤ f .

Rounding predicates:

useful for certifying floating-point programs,

useless for computing with floating-point numbers.

Guillaume Melquiond Floating-point arithmetic in the Coq system

Intro Numbers Basic ops Elementary ops Conclusion FP numbers Libraries Modules Fast integers

Modular design

The library provides a generic multi-radix implementation
based on Coq’s standard integers. But

an optimized radix-2 arithmetic is better for computations, and/or

the user may trust the integer arithmetic units of the CPU.

Using Coq’s module system:

an interface (module type) describes floating-point operations,

several implementations (modules) provides them:

GenericFloat α: any radix α, standard integers,
SpecificFloat StdZRadix2: radix 2, standard integers,
SpecificFloat BigIntRadix2: radix 2, fast integers.

Guillaume Melquiond Floating-point arithmetic in the Coq system

Intro Numbers Basic ops Elementary ops Conclusion FP numbers Libraries Modules Fast integers

Modular design

The library provides a generic multi-radix implementation
based on Coq’s standard integers. But

an optimized radix-2 arithmetic is better for computations, and/or

the user may trust the integer arithmetic units of the CPU.

Using Coq’s module system:

an interface (module type) describes floating-point operations,

several implementations (modules) provides them:

GenericFloat α: any radix α, standard integers,
SpecificFloat StdZRadix2: radix 2, standard integers,
SpecificFloat BigIntRadix2: radix 2, fast integers.

Guillaume Melquiond Floating-point arithmetic in the Coq system

Intro Numbers Basic ops Elementary ops Conclusion FP numbers Libraries Modules Fast integers

Fast integers: Native 31-bit integers

Arithmetic on 31-bit integers has been formally defined in Coq.

Addition returns an integer and a carry.

Multiplication returns high and low parts of the result.

Spiwack has modified the virtual machine to improve performance:

Closed-term integers are compressed into machine words
(Ocaml-like encoding).

Addition, division, rotation, leading-zero count, etc
are delegated to the CPU.

Guillaume Melquiond Floating-point arithmetic in the Coq system

Intro Numbers Basic ops Elementary ops Conclusion FP numbers Libraries Modules Fast integers

Fast integers: Native 31-bit integers

Arithmetic on 31-bit integers has been formally defined in Coq.

Addition returns an integer and a carry.

Multiplication returns high and low parts of the result.

Spiwack has modified the virtual machine to improve performance:

Closed-term integers are compressed into machine words
(Ocaml-like encoding).

Addition, division, rotation, leading-zero count, etc
are delegated to the CPU.

Guillaume Melquiond Floating-point arithmetic in the Coq system

Intro Numbers Basic ops Elementary ops Conclusion FP numbers Libraries Modules Fast integers

Fast integers: Trees of 31-bit integers

Grégoire and Théry have defined an integer type
as a binary tree with int31 leaves.

a7 a6 a2 a1 a0

0
a3

a =
∑
k

ak · 231·k

Logarithmic complexity for accessing digits.

Divide-and-conquer algorithms,
e.g. Karatsuba’s multiplication.

Guillaume Melquiond Floating-point arithmetic in the Coq system

Intro Numbers Basic ops Elementary ops Conclusion +/× ÷/
√ Intervals

Addition and multiplication

The set of floating-point numbers Fβ − {⊥} is a ring
for the addition and multiplication on real numbers.

FP addition and multiplication first compute the exact value:

(m1, e1) + (m2, e2)→ (m1 · βe1−e2 + m2, e2) for e2 ≤ e1.

(m1, e1)× (m2, e2)→ (m1 ·m2, e1 + e2).

This value is then rounded to the target precision.

Guillaume Melquiond Floating-point arithmetic in the Coq system

Intro Numbers Basic ops Elementary ops Conclusion +/× ÷/
√ Intervals

Division and square root

For the division of (m1, e1) by (m2, e2):

1 Increase the width of the input: (m′1, e
′
1) = (m1 · βk , e1 − k),

so that bm′1/m2c has at least p digits.

2 Perform an integer operation on mantissa: (bm′1/m2c, e ′1 − e2).

3 Round the number to p digits,
according to the difference (m′1 −m2 · bm′1/m2c)−m2/2.

Similarly for the square root of (m, e):

2 Perform an integer operation on mantissa: (b
√

m′c, e ′/2).

3 Round according to (m′ − b
√

m′c2)− (2 · b
√

m′c − 1)/2.

Guillaume Melquiond Floating-point arithmetic in the Coq system

Intro Numbers Basic ops Elementary ops Conclusion +/× ÷/
√ Intervals

Division and square root

For the division of (m1, e1) by (m2, e2):

1 Increase the width of the input: (m′1, e
′
1) = (m1 · βk , e1 − k),

so that bm′1/m2c has at least p digits.

2 Perform an integer operation on mantissa: (bm′1/m2c, e ′1 − e2).

3 Round the number to p digits,
according to the difference (m′1 −m2 · bm′1/m2c)−m2/2.

Similarly for the square root of (m, e):

2 Perform an integer operation on mantissa: (b
√

m′c, e ′/2).

3 Round according to (m′ − b
√

m′c2)− (2 · b
√

m′c − 1)/2.

Guillaume Melquiond Floating-point arithmetic in the Coq system

Intro Numbers Basic ops Elementary ops Conclusion +/× ÷/
√ Intervals

Intervals

Definition (Interval)

An interval is a closed connected subset of the real numbers, or ⊥I .

Some subsets can be represented as pairs of FP numbers I = F2:

x ∈ [⊥,⊥]⇒ x ∈ R,

x ∈ [⊥, b]⇒ x ∈ R ∧ x ≤ b,

x ∈ [a ,⊥]⇒ x ∈ R ∧ a ≤ x ,

x ∈ [a , b]⇒ x ∈ R ∧ a ≤ x ≤ b,

x ∈ ⊥I holds for any x ∈ R ∪ {⊥}.

Guillaume Melquiond Floating-point arithmetic in the Coq system

Intro Numbers Basic ops Elementary ops Conclusion +/× ÷/
√ Intervals

Interval arithmetic

Interval evaluations can serve as proofs of bounds,
when they satisfy the containment property:

x ∈ Ix ∧ y ∈ Iy =⇒ x � y ∈ Ix � Iy

for � ∈ {+,−,×,÷}. Also for unary functions:
√
, . . .

Arithmetic operations on intervals with FP bounds:

[a, b] + [c , d] = [5(a + c),4(b + d)],

[a, b]− [c , d] = [5(a− d),4(b − c)],

. . .

Guillaume Melquiond Floating-point arithmetic in the Coq system

Intro Numbers Basic ops Elementary ops Conclusion +/× ÷/
√ Intervals

Interval arithmetic

Interval evaluations can serve as proofs of bounds,
when they satisfy the containment property:

x ∈ Ix ∧ y ∈ Iy =⇒ x � y ∈ Ix � Iy

for � ∈ {+,−,×,÷}. Also for unary functions:
√
, . . .

Arithmetic operations on intervals with FP bounds:

[a, b] + [c , d] = [5(a + c),4(b + d)],

[a, b]− [c , d] = [5(a− d),4(b − c)],

. . .

Guillaume Melquiond Floating-point arithmetic in the Coq system

Intro Numbers Basic ops Elementary ops Conclusion Rounding Computation Performances

Outline

1 Number representations

2 Basic arithmetic operators

3 Elementary functions
Rounding
Computation
Performances

4 Conclusion

Guillaume Melquiond Floating-point arithmetic in the Coq system

Intro Numbers Basic ops Elementary ops Conclusion Rounding Computation Performances

Elementary functions

Elementary functions: cos, arctan, exp, etc.
Difficulty: Their mathematical result y cannot generally be split
into representable floating-point numbers.

No correct rounding for elementary functions:

They return an interval enclosing the mathematical value.

Precision is only an hint for the intermediate computations.

Guillaume Melquiond Floating-point arithmetic in the Coq system

Intro Numbers Basic ops Elementary ops Conclusion Rounding Computation Performances

Elementary functions

Elementary functions: cos, arctan, exp, etc.
Difficulty: Their mathematical result y cannot generally be split
into representable floating-point numbers.

No correct rounding for elementary functions:

They return an interval enclosing the mathematical value.

Precision is only an hint for the intermediate computations.

Guillaume Melquiond Floating-point arithmetic in the Coq system

Intro Numbers Basic ops Elementary ops Conclusion Rounding Computation Performances

Computing elementary functions

Argument reduction until the input is smaller than 1
2 :{

cos x = 2 · (cos x
2)2 − 1

sign(sin x) = sign(sin x
2) · sign(cos x

2)

sin x = sign(sin x) ·
√

1− (cos x)2 (Only for |x | ≤ 220.)

Evaluation of series until the truncated part is negligible:

sin x = x · (1− x2

6 + · · ·+ ε) with |ε| ≤ x2·n

(2·n+1)! ≤ β
−p

by interval arithmetic:

sin x ∈ X · (1− X 2

6 + · · ·+ [± |X |2·n
(2·n+1)!]) for x ∈ X .

Guillaume Melquiond Floating-point arithmetic in the Coq system

Intro Numbers Basic ops Elementary ops Conclusion Rounding Computation Performances

Computing elementary functions

Argument reduction until the input is smaller than 1
2 :{

cos x = 2 · (cos x
2)2 − 1

sign(sin x) = sign(sin x
2) · sign(cos x

2)

sin x = sign(sin x) ·
√

1− (cos x)2 (Only for |x | ≤ 220.)

Evaluation of series until the truncated part is negligible:

sin x = x · (1− x2

6 + · · ·+ ε) with |ε| ≤ x2·n

(2·n+1)! ≤ β
−p

by interval arithmetic:

sin x ∈ X · (1− X 2

6 + · · ·+ [± |X |2·n
(2·n+1)!]) for x ∈ X .

Guillaume Melquiond Floating-point arithmetic in the Coq system

Intro Numbers Basic ops Elementary ops Conclusion Rounding Computation Performances

Rough performances

Tests against MPFR data sets (53-bit radix-2 mantissas).

Strategy for correct rounding:
First compute with an intermediate precision p = 63.
If the bounds are not rounded to the same 53-bit FP number,
try again with an intermediate precision p × 1.5, and so on.

Average delay for evaluating a function: (processor cycles)

Function Tested values Coq fast Coq std MPFR

arctan 870 (100%) 20 · 106 10 · 107 57 · 103

cos 1289 (91%) 27 · 106 20 · 107 21 · 103

sin 1120 (89%) 32 · 106 81 · 107 21 · 103

tan 1297 (81%) 36 · 106 83 · 107 22 · 103

Guillaume Melquiond Floating-point arithmetic in the Coq system

Intro Numbers Basic ops Elementary ops Conclusion Rounding Computation Performances

Rough performances

Tests against MPFR data sets (53-bit radix-2 mantissas).

Strategy for correct rounding:
First compute with an intermediate precision p = 63.
If the bounds are not rounded to the same 53-bit FP number,
try again with an intermediate precision p × 1.5, and so on.

Average delay for evaluating a function: (processor cycles)

Function Tested values Coq fast Coq std MPFR

arctan 870 (100%) 20 · 106 10 · 107 57 · 103

cos 1289 (91%) 27 · 106 20 · 107 21 · 103

sin 1120 (89%) 32 · 106 81 · 107 21 · 103

tan 1297 (81%) 36 · 106 83 · 107 22 · 103

Guillaume Melquiond Floating-point arithmetic in the Coq system

Intro Numbers Basic ops Elementary ops Conclusion Realizations Application

Outline

1 Number representations

2 Basic arithmetic operators

3 Elementary functions

4 Conclusion
Realizations
Application

Guillaume Melquiond Floating-point arithmetic in the Coq system

Intro Numbers Basic ops Elementary ops Conclusion Realizations Application

Realizations

Pure library. No modifications to Coq.

11400 lines of Coq:

floating-point arithmetic: 4600 lines,

interval arithmetic: 2000 lines,

tactics: 2500 lines.
⇑ Automatic solver for inequalities on real-values expressions.

Guillaume Melquiond Floating-point arithmetic in the Coq system

Intro Numbers Basic ops Elementary ops Conclusion Realizations Application

Verifying inequalities, another example

Global positioning requires knowing the local radius of Earth:

rp(φ) =
a√

1 + (1− f)2 · tan2 φ

This can be approximated by a degree-5 polynomial P
with single-precision coefficients: P(φ2

m − φ2) = r̃p(φ).

P(x) =
4439091

4
+ x ·

(
9023647

4
+ x ·

(
· · · 6661427

131072

))
Goal: Prove

∣∣∣ rp(φ)−r̃p(φ)
rp(φ)

∣∣∣ ≤ 23 · 2−24 when 0 ≤ φ ≤ φm = 715
512 .

Guillaume Melquiond Floating-point arithmetic in the Coq system

Intro Numbers Basic ops Elementary ops Conclusion Realizations Application

Verifying inequalities, another example

Inequality proved with order-1 Taylor interval approximations
on ∼ 105 sub-intervals of [0, φm].

1 Daumas, Melquiond, and Muñoz, in PVS (2005).

An oracle chooses the best sub-intervals and
it generates one PVS script per sub-interval.

Verification: several hours on a 48-core parallel computer.

2 In Coq (2008), a few minutes on a laptop computer.

Differences: No oracle, but floating-point numbers.

Guillaume Melquiond Floating-point arithmetic in the Coq system

Intro Numbers Basic ops Elementary ops Conclusion Realizations Application

Verifying inequalities, another example

Inequality proved with order-1 Taylor interval approximations
on ∼ 105 sub-intervals of [0, φm].

1 Daumas, Melquiond, and Muñoz, in PVS (2005).

An oracle chooses the best sub-intervals and
it generates one PVS script per sub-interval.

Verification: several hours on a 48-core parallel computer.

2 In Coq (2008), a few minutes on a laptop computer.

Differences: No oracle, but floating-point numbers.

Guillaume Melquiond Floating-point arithmetic in the Coq system

Intro Numbers Basic ops Elementary ops Conclusion Realizations Application

Verifying inequalities, another example

Inequality proved with order-1 Taylor interval approximations
on ∼ 105 sub-intervals of [0, φm].

1 Daumas, Melquiond, and Muñoz, in PVS (2005).

An oracle chooses the best sub-intervals and
it generates one PVS script per sub-interval.

Verification: several hours on a 48-core parallel computer.

2 In Coq (2008), a few minutes on a laptop computer.

Differences: No oracle, but floating-point numbers.

Guillaume Melquiond Floating-point arithmetic in the Coq system

Intro Numbers Basic ops Elementary ops Conclusion Realizations Application

Verifying inequalities, another example

Inequality proved with order-1 Taylor interval approximations
on ∼ 105 sub-intervals of [0, φm].

1 Daumas, Melquiond, and Muñoz, in PVS (2005).

An oracle chooses the best sub-intervals and
it generates one PVS script per sub-interval.

Verification: several hours on a 48-core parallel computer.

2 In Coq (2008), a few minutes on a laptop computer.

Differences: No oracle, but floating-point numbers.

Guillaume Melquiond Floating-point arithmetic in the Coq system

Intro Numbers Basic ops Elementary ops Conclusion Realizations Application

Verifying inequalities, another example

1 Require Import Reals.
2 Require Import tactics.
3 Open Local Scope R_scope.
4
5 Definition a := 6378137.
6 Definition f := 1000000000/298257223563.
7 Definition umf2 := (1 - f)².
8 Definition max := 715/512.
9 Definition rp phi := a / sqrt (1 + umf2 * (tan phi)²).

10 Definition arp phi :=
11 let x := max² - phi² in
12 4439091/4 + x * (
13 9023647/4 + x * (
14 13868737/64 + x * (
15 13233647/2048 + x * (
16 -1898597/16384 + x *
17 (-6661427/131072))))).
18
19 Goal
20 forall phi , 0 <= phi <= max ->
21 Rabs ((rp phi - arp phi) / rp phi) <= 23/16777216.
22 Proof.
23 unfold rp, arp , umf2 , a, f, max. intros.
24 Time interval with (i_bisect_diff phi , i_nocheck). (* 4 s *)
25 Time Qed. (* 96 s *)

Tactic parameters:
bisection and order-1 evaluation on φ, check delayed at Qed time,
minimal relative width of intervals: 2−15, precision: 30 bits.

Guillaume Melquiond Floating-point arithmetic in the Coq system

Intro Numbers Basic ops Elementary ops Conclusion Realizations Application

Questions?

Mail: guillaume.melquiond@inria.fr
Web: http://www.msr-inria.inria.fr/soft/coq-interval/

Guillaume Melquiond Floating-point arithmetic in the Coq system

guillaume.melquiond@inria.fr
http://www.msr-inria.inria.fr/soft/coq-interval/

	Intro
	Number representations
	FP numbers
	Libraries
	Modules
	Fast integers

	Basic arithmetic operators
	+ /
	/
	Interval arithmetic

	Elementary functions
	Rounding
	Computation
	Performances

	Conclusion
	Realizations
	Application

