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Verifying an equality, an example

While certifying an algorithm for preventing airplane collision,
Carreño and Muñoz had to formally prove:

A plane flying at 250 knots and with a bank angle of 35°

has a turn rate of at least 3° each second.

In other words,
3π

180
≤ g

v
· tan

(
35π

180

)
with g = 9.8 m/s2 and v = 250 · 514

1000 m/s.
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Verifying an equality, an example

The inequality is trivially true since

3π

180
≈ 0.052 and

g

v
· tan

(
35π

180

)
≈ 0.053.

Proved in PVS by Lester and Muñoz
thanks to interval computations on rational bounds.
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Formal proofs and floating-point computations

Kepler’s conjecture on 3D sphere packing.

Hales splits the problem into thousands of configurations.
Each configuration is described by a system with 6 variables,
then solved by interval computations on floating-point bounds.

Confidence of the reviewers: only 95%
due to the computationally-intensive proof.

Hales now aims to perform a formal proof
in order to achieve 100% confidence.

But what about computations?
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Computations and proofs

Natural numbers:

1 type nat = O | S of nat (* 5 = SSSSSO * )
2 let rec plus x y =
3 match x with
4 | O -> y
5 | S x’ -> plus x’ (S y)

Proof by computation:

1 Goal (plus 3 5) = (plus 5 3). trivial.

Standard positive integers:

1 type pos = H | B0 of pos | B1 of pos
2 (* 26 = B0B1B0B1H * )
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Floating-point arithmetic in the Coq system

Goal: Implement an efficient arithmetic inside a formal system.

1 Number representations

2 Basic arithmetic operators

3 Elementary functions

4 Conclusion
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FP numbers
Libraries
Modules
Fast integers
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3 Elementary functions
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Formats

Definition (Floating-point number)

Floating-point numbers in radix β:

Pairs of integers (m, e) ∈ Z2 interpreted as m · βe ∈ R.

Not-a-Number ⊥ for exceptional behavior: 1
0 ,
√
−1, etc.

Unbounded exponent range =⇒ no overflow nor underflow.
No infinities nor signed zeros.
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Rounding

Some real numbers are not representable as floating-point values.
E.g. 1

3 for β = 2,
√

2 for any β.

Solution: Use a FP value close to the real number instead.
Uniquely defined according to a precision and a rounding direction.

Example: In radix 10 and precision 4, π is rounded to:

3141 · 10−3 when rounding toward −∞ or zero,

3142 · 10−3 when rounding toward +∞ or to nearest.

Rounding direction and precision are specified for each operation:

Fadd rnd UP 500 : Fβ → Fβ → Fβ.
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Existing floating-point libraries

A few libraries on floating-point numbers:

Moore, Lynch, and Kaufmann’s library in ACL2.

Daumas, Rideau, and Théry’s library in Coq.

Harrison’s library in HOL light.

Definition of rounding to −∞:

downward(format, f , x) =
f ∈ format ∧ f ≤ x ∧ ∀g ∈ format, g ≤ x ⇒ g ≤ f .

Rounding predicates:

useful for certifying floating-point programs,

useless for computing with floating-point numbers.
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Modular design

The library provides a generic multi-radix implementation
based on Coq’s standard integers. But

an optimized radix-2 arithmetic is better for computations, and/or

the user may trust the integer arithmetic units of the CPU.

Using Coq’s module system:

an interface (module type) describes floating-point operations,

several implementations (modules) provides them:

GenericFloat α: any radix α, standard integers,
SpecificFloat StdZRadix2: radix 2, standard integers,
SpecificFloat BigIntRadix2: radix 2, fast integers.
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Fast integers: Native 31-bit integers

Arithmetic on 31-bit integers has been formally defined in Coq.

Addition returns an integer and a carry.

Multiplication returns high and low parts of the result.

Spiwack has modified the virtual machine to improve performance:

Closed-term integers are compressed into machine words
(Ocaml-like encoding).

Addition, division, rotation, leading-zero count, etc
are delegated to the CPU.
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Fast integers: Trees of 31-bit integers

Grégoire and Théry have defined an integer type
as a binary tree with int31 leaves.

a7 a6 a2 a1 a0

0
a3

a =
∑
k

ak · 231·k

Logarithmic complexity for accessing digits.

Divide-and-conquer algorithms,
e.g. Karatsuba’s multiplication.
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Addition and multiplication

The set of floating-point numbers Fβ − {⊥} is a ring
for the addition and multiplication on real numbers.

FP addition and multiplication first compute the exact value:

(m1, e1) + (m2, e2)→ (m1 · βe1−e2 + m2, e2) for e2 ≤ e1.

(m1, e1)× (m2, e2)→ (m1 ·m2, e1 + e2).

This value is then rounded to the target precision.
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Division and square root

For the division of (m1, e1) by (m2, e2):

1 Increase the width of the input: (m′1, e
′
1) = (m1 · βk , e1 − k),

so that bm′1/m2c has at least p digits.

2 Perform an integer operation on mantissa: (bm′1/m2c, e ′1 − e2).

3 Round the number to p digits,
according to the difference (m′1 −m2 · bm′1/m2c)−m2/2.

Similarly for the square root of (m, e):

2 Perform an integer operation on mantissa: (b
√

m′c, e ′/2).

3 Round according to (m′ − b
√

m′c2)− (2 · b
√

m′c − 1)/2.
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Intervals

Definition (Interval)

An interval is a closed connected subset of the real numbers, or ⊥I .

Some subsets can be represented as pairs of FP numbers I = F2:

x ∈ [⊥,⊥]⇒ x ∈ R,

x ∈ [⊥, b ]⇒ x ∈ R ∧ x ≤ b,

x ∈ [ a ,⊥]⇒ x ∈ R ∧ a ≤ x ,

x ∈ [ a , b ]⇒ x ∈ R ∧ a ≤ x ≤ b,

x ∈ ⊥I holds for any x ∈ R ∪ {⊥}.
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Interval arithmetic

Interval evaluations can serve as proofs of bounds,
when they satisfy the containment property:

x ∈ Ix ∧ y ∈ Iy =⇒ x � y ∈ Ix � Iy

for � ∈ {+,−,×,÷}. Also for unary functions:
√
, . . .

Arithmetic operations on intervals with FP bounds:

[a, b] + [c , d ] = [5(a + c),4(b + d)],

[a, b]− [c , d ] = [5(a− d),4(b − c)],

. . .
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Elementary functions

Elementary functions: cos, arctan, exp, etc.
Difficulty: Their mathematical result y cannot generally be split
into representable floating-point numbers.

No correct rounding for elementary functions:

They return an interval enclosing the mathematical value.

Precision is only an hint for the intermediate computations.
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Computing elementary functions

Argument reduction until the input is smaller than 1
2 :{

cos x = 2 · (cos x
2 )2 − 1

sign(sin x) = sign(sin x
2 ) · sign(cos x

2 )

sin x = sign(sin x) ·
√

1− (cos x)2 (Only for |x | ≤ 220.)

Evaluation of series until the truncated part is negligible:

sin x = x · (1− x2

6 + · · ·+ ε) with |ε| ≤ x2·n

(2·n+1)! ≤ β
−p

by interval arithmetic:

sin x ∈ X · (1− X 2

6 + · · ·+ [± |X |2·n
(2·n+1)! ]) for x ∈ X .
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Rough performances

Tests against MPFR data sets (53-bit radix-2 mantissas).

Strategy for correct rounding:
First compute with an intermediate precision p = 63.
If the bounds are not rounded to the same 53-bit FP number,
try again with an intermediate precision p × 1.5, and so on.

Average delay for evaluating a function: (processor cycles)

Function Tested values Coq fast Coq std MPFR

arctan 870 (100%) 20 · 106 10 · 107 57 · 103

cos 1289 (91%) 27 · 106 20 · 107 21 · 103

sin 1120 (89%) 32 · 106 81 · 107 21 · 103

tan 1297 (81%) 36 · 106 83 · 107 22 · 103
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Realizations

Pure library. No modifications to Coq.

11400 lines of Coq:

floating-point arithmetic: 4600 lines,

interval arithmetic: 2000 lines,

tactics: 2500 lines.
⇑ Automatic solver for inequalities on real-values expressions.
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Verifying inequalities, another example

Global positioning requires knowing the local radius of Earth:

rp(φ) =
a√

1 + (1− f )2 · tan2 φ

This can be approximated by a degree-5 polynomial P
with single-precision coefficients: P(φ2

m − φ2) = r̃p(φ).

P(x) =
4439091

4
+ x ·

(
9023647

4
+ x ·

(
· · · 6661427

131072

))
Goal: Prove

∣∣∣ rp(φ)−r̃p(φ)
rp(φ)

∣∣∣ ≤ 23 · 2−24 when 0 ≤ φ ≤ φm = 715
512 .
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Verifying inequalities, another example

Inequality proved with order-1 Taylor interval approximations
on ∼ 105 sub-intervals of [0, φm].

1 Daumas, Melquiond, and Muñoz, in PVS (2005).

An oracle chooses the best sub-intervals and
it generates one PVS script per sub-interval.

Verification: several hours on a 48-core parallel computer.

2 In Coq (2008), a few minutes on a laptop computer.

Differences: No oracle, but floating-point numbers.
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Verifying inequalities, another example

1 Require Import Reals.
2 Require Import tactics.
3 Open Local Scope R_scope.
4
5 Definition a := 6378137.
6 Definition f := 1000000000/298257223563.
7 Definition umf2 := (1 - f)².
8 Definition max := 715/512.
9 Definition rp phi := a / sqrt (1 + umf2 * (tan phi)²).

10 Definition arp phi :=
11 let x := max² - phi² in
12 4439091/4 + x * (
13 9023647/4 + x * (
14 13868737/64 + x * (
15 13233647/2048 + x * (
16 -1898597/16384 + x *
17 ( -6661427/131072))))).
18
19 Goal
20 forall phi , 0 <= phi <= max ->
21 Rabs ((rp phi - arp phi) / rp phi) <= 23/16777216.
22 Proof.
23 unfold rp, arp , umf2 , a, f, max. intros.
24 Time interval with (i_bisect_diff phi , i_nocheck). (* 4 s *)
25 Time Qed. (* 96 s *)

Tactic parameters:
bisection and order-1 evaluation on φ, check delayed at Qed time,
minimal relative width of intervals: 2−15, precision: 30 bits.
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Questions?

Mail: guillaume.melquiond@inria.fr
Web: http://www.msr-inria.inria.fr/soft/coq-interval/
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