Special Session on Interval Arithmetic IEEE Interval Standard WG – P1788

William Edmonson Guillaume Melquiond

Department of Electrical & Computer Engineering North Carolina State University

Proval, Laboratoire de Recherche en Informatique INRIA Saclay–IdF, CNRS, Université Paris Sud

June 8, 2009

Interval Arithmetic

Extension of real arithmetic operators to intervals. (Intervals \equiv closed connected subsets of real numbers.)

Property (Inclusion)

For \boldsymbol{x} and \boldsymbol{y} intervals, and for $\diamond \in \{+,-,\times,\div,\ldots\},$

$$\forall x \in \mathbf{x}, \ \forall y \in \mathbf{y}, \quad x \diamond y \in \mathbf{x} \diamond \mathbf{y}.$$

Interval Arithmetic

Extension of real arithmetic operators to intervals. (Intervals \equiv closed connected subsets of real numbers.)

Property (Inclusion)

For **x** and **y** intervals, and for $\diamond \in \{+, -, \times, \div, \ldots\}$,

$$\forall x \in \mathbf{x}, \ \forall y \in \mathbf{y}, \quad x \diamond y \in \mathbf{x} \diamond \mathbf{y}.$$

Interval arithmetic is part of the toolbox for reliable computing.

Example: Newton Interval Method

Lemma (Newton interval Method)

Given a function f, its first derivative f', and some of their interval extensions f and f', the sequence (\mathbf{x}_n) of intervals

$$\mathbf{x}_{n+1} = \mathbf{x}_n \cap \left(\mathbf{m}_n - \frac{\mathbf{f}(\mathbf{m}_n)}{\mathbf{f}'(\mathbf{x}_n)} \right) \quad \text{with } \mathbf{m}_n = [\textit{mid}(\mathbf{x}_n)]$$

converges, and each \mathbf{x}_n contains all the roots of f in \mathbf{x}_0 .

(Easy improvement: isolate roots into separate intervals.)

Reliability: all the roots are accounted for, even if the interval computations are over-approximated.

• Runtime bounds on computation errors.

- Runtime bounds on computation errors.
- Constraint propagation; solving satisfiability problems.

- Runtime bounds on computation errors.
- Constraint propagation; solving satisfiability problems.
- Global optimization.

- Runtime bounds on computation errors.
- Constraint propagation; solving satisfiability problems.
- Global optimization.
- Solutions of systems of differential equations.

- Runtime bounds on computation errors.
- Constraint propagation; solving satisfiability problems.
- Global optimization.
- Solutions of systems of differential equations.
- Mathematical proofs, e.g., Hales' proof of Kepler's conjecture.

Floating-Point Bounds

Representing enclosures with floating-point bounds: $[a, b] = \{x \mid a \le x \le b\}, [a, +\infty), (-\infty, b], (-\infty, +\infty).$

Property (Basic operators) Given $u \in [\underline{u}, \overline{u}]$ and $v \in [\underline{v}, \overline{v}]$, • $-u \in [-\overline{u}, -\underline{u}]$, • $\sqrt{u} \in [down(\sqrt{u}), up(\sqrt{\overline{u}})]$ for $\underline{u} \ge 0$, • $u + v \in [down(\underline{u} + \underline{v}), up(\overline{u} + \overline{v})]$, • ...

Floating-Point Bounds

Representing enclosures with floating-point bounds: $[a, b] = \{x \mid a \le x \le b\}, [a, +\infty), (-\infty, b], (-\infty, +\infty).$

IEEE 754 provides portability for infinities, directed rounding, etc.

• Kaucher arithmetic: algebraization of bounded intervals

$$[a, b] + opp([a, b]) = [0, 0]$$
 with $opp([a, b]) = [-a, -b]$,
 $[a, b] \times inv([a, b]) = [1, 1]$ with $inv([a, b]) = [a^{-1}, b^{-1}]$.

- Kaucher arithmetic: algebraization of bounded intervals
 [a, b] + opp([a, b]) = [0, 0] with opp([a, b]) = [-a, -b],
 - $[a, b] \times inv([a, b]) = [1, 1]$ with $inv([a, b]) = [a^{-1}, b^{-1}]$.
- Modal arithmetic:

Inner- and outer-approximations of expressions.

- Kaucher arithmetic: algebraization of bounded intervals
 [a, b] + opp([a, b]) = [0, 0] with opp([a, b]) = [-a, -b],
 - $[a, b] \times inv([a, b]) = [1, 1]$ with $inv([a, b]) = [a^{-1}, b^{-1}]$.
- Modal arithmetic:

Inner- and outer-approximations of expressions.

• Midpoint-radius representation:

$$\langle m,r\rangle = \{x \mid m-r \leq x \leq m+r\}.$$

- Kaucher arithmetic: algebraization of bounded intervals
 [a, b] + opp([a, b]) = [0, 0] with opp([a, b]) = [-a, -b],
 - $[a, b] \times inv([a, b]) = [1, 1]$ with $inv([a, b]) = [a^{-1}, b^{-1}]$.
- Modal arithmetic:

Inner- and outer-approximations of expressions.

• Midpoint-radius representation:

$$\langle m,r\rangle = \{x \mid m-r \leq x \leq m+r\}.$$

• C-set models:

Infinities as first-class citizens.

1966 Moore's book

1966 Moore's book

Floating-point arithmetic standardization

- 1985 IEEE 754 standard on binary FP
- 2008 IEEE 754 revision

- 1966 Moore's book
- Floating-point arithmetic standardization
 - 1985 IEEE 754 standard on binary FP
 - 2008 IEEE 754 revision
- Programming language standardization effort
 - 1990 Fortran
 - 2006 C++ (ongoing)

- 1966 Moore's book
- Floating-point arithmetic standardization
 - 1985 IEEE 754 standard on binary FP
 - 2008 IEEE 754 revision
- Programming language standardization effort
 - 1990 Fortran
 - 2006 C++ (ongoing)
- January 2008, Dagstuhl meeting:

Should interval arithmetic be pushed into IEEE 754R, or should it have its own separate standard?

Working Group

Approved by IEEE on 2008-06-12.

Officers accepted on 2008-11-08, after being elected by the registered participants:

Chair	Nathalie Revol
Vice chairs	Baker Kearfott, John Pryce
Secretary	William Edmonson
Vote tabulator	George Corliss
Tech. editors	David Lester, John Pryce
Archivist	Guillaume Melquiond
Webmaster	Jürgen Wolff von Gudenberg

Organization

Meetings:

- SCAN 2008, El Paso, Texas
- PPAM 2009, Wroclaw, Poland

Organization

Meetings:

- SCAN 2008, El Paso, Texas
- PPAM 2009, Wroclaw, Poland

Motion discussions and votes on the mailing-list:

- 65 voting members,
- 135 participants,
- 1500 emails.

Organization

Meetings:

- SCAN 2008, El Paso, Texas
- PPAM 2009, Wroclaw, Poland

Motion discussions and votes on the mailing-list:

- 65 voting members,
- 135 participants,
- 1500 emails.

Currently processing our 5th motion.

Participating to IEEE 1788

• Join the mailing-list.

Send an email to nathalie.revol@ens-lyon.fr mentioning names, affiliation, and address.

Register on the IEEE-SA website.
 (IEEE membership is not mandatory.)