
BIT manuscript No.
(will be inserted by the editor)

Computing predecessor and successor in rounding to nearest

Siegfried M. Rump · Paul Zimmermann ·
Sylvie Boldo · Guillaume Melquiond

Received: / Accepted:

Abstract We give simple and efficient methods to compute and/or estimate the pre-
decessor and successor of a floating-point number using only floating-point opera-
tions in rounding to nearest. This may be used to simulate interval operations, in
which case the quality in terms of the diameter of the result is significantly improved
compared to existing approaches.

Keywords Floating-point arithmetic · rounding to nearest, predecessor · successor ·
directed rounding

Mathematics Subject Classification (2000) MSC 68-04 ·MSC 68N30

1 Introduction and notation

Throughout the paper we assume a floating-point arithmetic according to the IEEE 754
and IEEE 854 arithmetic standards [3,4] with rounding to nearest. Denote the set of

S. M. Rump
Institute for Reliable Computing, Hamburg University of Technology,
Schwarzenbergstraße 95, 21071 Hamburg, Germany,
and Visiting Professor at Waseda University, Faculty of Science and Engineering,
3–4–1 Okubo, Shinjuku-ku, Tokyo 169–8555, Japan
E-mail: rump@tu-harburg.de

P. Zimmermann
Centre de Recherche INRIA Nancy - Grand Est, Équipe-projet CACAO, Bâtiment A,
615 rue du jardin botanique, F-54600 Villers-lès-Nancy, France
E-mail: Paul.Zimmermann@loria.fr

S. Boldo
INRIA Saclay - Île-de-France, Parc Orsay Université - ZAC des Vignes,
4 rue Jacques Monod - Bâtiment N, F-91893 Orsay Cedex, France
E-mail: Sylvie.Boldo@inria.fr

G. Melquiond
Centre de recherche commun INRIA - Microsoft Research,
28 rue Jean Rostand, F-91893 Orsay Cedex, France
E-mail: Guillaume.Melquiond@inria.fr

2 Siegfried M. Rump et al.

(single or double precision) floating-point numbers by F, including −∞ and +∞, and
let fl : R→ F denote rounding to nearest according to IEEE 754. This includes espe-
cially the default rounding mode, to nearest “ties to even” and the rounding to nearest
“ties to away” (away from zero) defined in the revision of the IEEE 754 standard,
IEEE 754-2008, that we follow in this paper. Define for single and double precision
u, the relative rounding error unit, and η , the smallest positive subnormal floating-
point number:

single precision double precision
(binary32) (binary64)

u 2−24 2−53

η 2−149 2−1074

Let β be the radix used in this floating-point format. We require β to be even
and greater than one. This includes especially 2, 10, and their powers. For a format
of precision p “digits” in radix β , we define u as half the distance between 1 and its
successor, i.e.:

u =
β 1−p

2
.

Then u and η satisfy:

∀ ◦ ∈ {+,−,×,÷} ∀ a,b ∈ F\{±∞} : fl(a◦b) = (a◦b)(1+λ)+ µ (1.1)

with |λ | ≤ u and |µ| ≤ η/2 and at least one of λ ,µ is zero, provided fl(a◦b) is finite.
Note that for addition and subtraction µ is always zero. An important property of the
rounding is the monotonicity, that is

∀x,y ∈ R : x≤ y ⇒ fl(x)≤ fl(y). (1.2)

In particular, this implies

x ∈ R, f ∈ F, x≤ f ⇒ fl(x)≤ f , (1.3)

which means that rounding cannot “jump” over a floating-point number. The floating-
point predecessor and successor of a real number x ∈ R are defined by

pred(x) := max{ f ∈ F : f < x} and succ(x) := min{ f ∈ F : x < f},

respectively, where, according to IEEE 754, ±∞ are considered to be floating-point
numbers. For example, succ(1) = 1+2u. Using (1.1) it is not difficult to see that for
finite 0≤ c ∈ F, as long as succ(c) is finite:

min(c(1−2u),c−η)≤ pred(c) and succ(c)≤max(c(1+2u),c+η), (1.4)

and similarly for c < 0. For a,b ∈ F and finite c := fl(a ◦ b) the monotonicity (1.2)
implies

a◦b ∈ [c1,c2] where c1 := fl(fl(c−fl(2u|c|))−η)
and c2 := fl(fl(c+fl(2u|c|))+η). (1.5)

(Note that similarly to (1.1), the above remains true if a ◦ b is replaced by any real
y, for example y = sinx, as long as c is the correct rounding of y.) This is the usual

Computing predecessor and successor in rounding to nearest 3

basis of interval libraries to emulate directed roundings using only rounding to nearest
(see, for example, [5]). It is disadvantageous because for 1.5 ·2k ≤ |a◦b|< 2k+1 the
interval [c1,c2] is twice as wide as it needed to be, i.e., 4 ulps (units in the last place)
instead of 2 ulps.

The IEEE 754-2008 standard [3] requires availability of a function nextUp —
and similarly nextDown — where nextUp(a) is the least floating-point number in
the format of a that compares greater than a.

The function nextUp thus computes the successor of a floating-point number.
This just amounts to adding η if directed roundings, as requested by IEEE 754, are
available. However, performing a computation using directed roundings may not be
supported by the programming language in use, or it may depend on a rounding mode
change, which usually involves a flush of the processor pipeline. So the function
benefits from using the default rounding mode only, which is to nearest with ties to
even as requested for binary formats, and recommended for decimal formats by IEEE
754-2008.

In [2] a corresponding algorithm is given by splitting the floating-point number
into two parts, treating the second part as an integer and adding/subtracting 1 regard-
ing possible carry. The algorithm does the job, but is slow. In [1] a corresponding
routine is given assuming that the exponent range is unlimited and that a fused mul-
tiply and accumulate instruction is available, that is a ·b+ c with only one rounding.

The contributions of this paper are the following. First we describe a simple
and efficient routine (Algorithm 1) for any radix to compute an interval [c1,c2] with
c1,c2 ∈ F containing a ◦ b for all a,b ∈ F and ◦ ∈ {+,−,×,÷} provided fl(a ◦ b) is
finite (Theorem 2.1). We then focus on binary arithmetic (radix 2), and prove that if
a◦b is not a floating-point number, the result of Algorithm 1 is always best possible1

except a small range near underflow (Theorem 2.2). Finally we describe a slightly
more complicated variant (Algorithm 2) that always returns the best possible interval
in binary arithmetic, and compare its efficiency with the C99 nextafter implemen-
tation.

2 The results

We use the “unit in the first place” ufp(x) defined for x ∈ R by

ufp(0) := 0 and ufp(x) := β
blogβ |x|c for x 6= 0.

It denotes the weight of the most significant digit in the representation of x. Then

∀ 0 6= x ∈ R : ufp(x)≤ |x|< β ufp(x). (2.1)

This concept introduced by the first author proved to be useful in delicate analyses of
the accuracy of floating-point algorithms [6]. The definition is independent of some

1 Since we don’t know if c := fl(a ◦ b) is smaller or larger than a ◦ b, the best possible interval is
[pred(c),succ(c)] of 2 ulps, unless c is a power of the radix.

4 Siegfried M. Rump et al.

floating-point format. Define

U := { f ∈ F : | f |< β

2
u−1

η}. (2.2)

For example, in IEEE 754-2008 binary64 format (double precision), U = { f ∈ F :
| f |< 2−1021}. Note that 1

2 u−1η is the smallest positive normal floating-point number.
For positive c∈F such that succ(c) is finite the following properties are easily verified
(see also [6]):

if c ∈ U : pred(c) = c−η , succ(c) = c+η , (2.3)

if c 6∈ U, c 6= β
k : pred(c) = c−2uufp(c), succ(c) = c+2uufp(c), (2.4)

if c 6∈ U, c = β
k : pred(c) = c− 2

β
uufp(c), succ(c) = c+2uufp(c). (2.5)

Moreover, define for c ∈ F\{±∞} with pred(c) and succ(c) finite:

M−(c) :=
1
2
(
pred(c)+ c

)
and M +(c) :=

1
2
(
c+ succ(c)

)
. (2.6)

It follows for c ∈ F, x ∈ R,

x < M−(c)⇒ fl(x)≤ pred(c) and M +(c) < x⇒ succ(c)≤ fl(x)
M−(c) < x⇒ c≤ fl(x) and x < M +(c)⇒ fl(x)≤ c. (2.7)

2.1 General radix β

For c ∈ F consider the following algorithm.

Algorithm 1 Bounds for predecessor and successor of finite c ∈ F in rounding to
nearest

e = fl(fl(φ |c|)+η) % φ = u
(

1+ 4
β

u
)

= succ(u)
cinf = fl(c− e)
csup = fl(c+ e)

Note that we need a reasonable floating-point format to ensure that φ is a floating-
point number. More precisely, we need η ≤ 2u2 (which in turn implies η ≤ 4

β
u2, or

equivalently 2u 6∈ U, because η is a power of the radix). This does happen on any
real-life floating-point format (all IEEE formats included). If not, then the last bit of
φ is lost due to underflow.

The following results have been formally checked using the Coq automatic proof
checker and a previous formalization of floating-point numbers [7,8].

Theorem 2.1 Let finite c ∈ F be given, and assume u≤ β−2

2 . Let cinf and csup be
the quantities computed by Algorithm 1. Then

cinf ≤ pred(c) and succ(c)≤ csup . (2.8)

Computing predecessor and successor in rounding to nearest 5

REMARK. The technical assumption u≤ β−2

2 is satisfied by any practical implemen-
tation of floating-point arithmetic: it means that we have at least 3 digits of precision.

PROOF OF THEOREM 2.1. Since F = −F and fl(−x) = −fl(x) for x ∈ R, we may
assume without loss of generality c≥ 0. If c ∈ U, then e≥ η and (2.3) imply (2.8).

It remains to prove (2.8) for 0 ≤ c 6∈ U. One verifies (2.8) for c being the largest
positive floating-point number, hence we assume without loss of generality that succ(c)
is finite.

We first prove that for e as computed in Algorithm 1 we have

e > uufp(c). (2.9)

First note that 0 ≤ c /∈ U means c ≥ β

2 u−1η . Also note that uufp(c) ∈ F. By (1.2),
(2.1), (2.4) and (2.5),

c′ := fl(φc) = fl(succ(u)c)≥ fl(succ(u)ufp(c)). (2.10)

If ufp(c)succ(u) is normal, i.e., ufp(c)succ(u)≥ 1
2 u−1η , then

e = fl(c′+η)≥ c′ ≥ fl(ufp(c)succ(u)) = ufp(c)succ(u) > uufp(c),

which proves (2.9). If ufp(c)succ(u) ∈ U, i.e., ufp(c)succ(u) < β

2 u−1η , then (2.10),
(1.2) and (2.1) imply

c′ ≥ fl(ufp(c)succ(u))≥ fl(uufp(c)) = uufp(c). (2.11)

We split the remaining in two cases. First, suppose c′ = fl(φc) < β

2 u−1η . Then
c′ ∈ U, and (2.3), (2.11) yield (2.9) as e = fl(c′+η) = c′+η > uufp(c).

The second and last case corresponds to ufp(c)succ(u)< β

2 u−1η and c′≥ β

2 u−1η .
Then

c′ = fl(φc)≥ β

2
u−1

η > ufp(c)succ(u) > uufp(c),

and finally e = fl(c′+η)≥ c′ > uufp(c), so that the proof of (2.9) is finished.
We now prove Theorem 2.1 for c 6∈ U. By (2.4) and (2.5) we know

c−uufp(c)≤M−(c) and M +(c) = c+uufp(c),

so (2.9) and (2.7) yield

c− e < M−(c) and M +(c) < c+ e (2.12)

and prove (2.8). The theorem is proved. �
Note that the inequalities are far from sharp in a radix different from 2. The worst

case in radix 10 corresponds to computing the predecessor of a power of the radix.
For example, let c = 1 as in Figure 2.1, then e = φ and cinf = fl(1−φ) = 1−u while
pred(c) = 1− u

5 . The computed cinf is equal to pred(pred(pred(pred(pred(c))))).
REMARK. Theorem 2.1 remains valid if e is computed with a fused multiply-add
(fma) in Algorithm 1. Let e′ = fl(φ |c|+ η) the value computed with a fma, which
might differ from e = fl(fl(φ |c|)+η). Either usucc(c) is normal, then e′ ≥ fl(φ |c|) =
c′ > uufp(c) as demonstrated in the proof of Theorem 2.1; or usucc(c) is subnor-
mal, then e′ ≥ fl(uc+η)≥ fl(uufp(c)+η) = uufp(c)+η since uufp(c) ∈ F and is
subnormal in that case. Thus in both cases e′ > uufp(c) remains valid.

6 Siegfried M. Rump et al.

$1$$\cinf$ $\suce(1)$

$\pred(1)$

1cinf

pred(1)

succ(1)

Fig. 2.1 Worst case for computing the predecessor in radix 10.

2.2 Binary arithmetic

In this section we assume β = 2, thus u is a power of two, and φ = u(1 + 2u) =
succ(u). For a general radix we proved that the inequalities in (2.8) are satisfied for all
finite floating-point numbers. Here we show that equality holds for binary arithmetic
except a small range near the underflow threshold.

Theorem 2.2 Assume binary arithmetic, i.e., β = 2, with at least 4 bits of precision,
i.e., u ≤ 1

16 . Assume the rounding is “ties to even”, or “ties to away” as defined by
IEEE 754-2008. Then for all finite c ∈ F with |c| /∈ [1

2 ,2]u−1η the quantities cinf
and csup computed by Algorithm 1 satisfy

cinf = pred(c) and succ(c) = csup . (2.13)

REMARK 1. For IEEE 754 binary64 format the excluded range [1
2 ,2]u−1η is

[2−1022,2−1020], which corresponds to two binades around the subnormal threshold.
In this range Algorithm 1 returns cinf = pred(pred(c)) and csup = succ(succ(c)),
i.e., it is one bit off.

REMARK 2. It is easy to see from the proof that when u≤ 1
32 , the assertions remain

true for any tie-breaking rule in rounding to nearest.

PROOF OF THEOREM 2.2. Without loss of generality we assume 0 ≤ c ∈ F. If c <
1
2 u−1η , then c≤ 1

2 u−1η−η by (2.3), so that

φc≤ 1
2
(1+2u)η−u(1+2u)η <

1
2

η

implies fl(φc) = 0. Hence e = η , and the theorem is proved for c < 1
2 u−1η .

It remains to prove (2.13) for c > 2u−1η . We first show

e≤ 5
2

uufp(c). (2.14)

First,
c≤ pred(2ufp(c)) = 2(1−u)ufp(c)

Computing predecessor and successor in rounding to nearest 7

follows by (2.1) and (2.5) and also for 2ufp(c) in the overflow range, so that

φc = u(1+2u)c < 2u(1+u)ufp(c) =: (1+u)C. (2.15)

Since ufp(c)≥ 2u−1η it follows that C = 2uufp(c) ∈ F. If C ≥ 1
2 u−1η , then

φc < (1+u)C = M +(C),

because C = ufp(C), and (2.7) yields c′ = fl(φc)≤C. If C < 1
2 u−1η , then C≤ 1

4 u−1η

and (2.15) and C ∈ F give

c′ = fl(φc)≤ fl(C +
1
4

η) = C,

so that ufp(c)≥ 2u−1η with c′ ≤C in both cases C≥ 1
2 u−1η and C < 1

2 u−1η proves

e = fl(c′+η)≤ fl(C +
1
2

uufp(c)) = fl(
5
2

uufp(c)) =
5
2

uufp(c)

and thus (2.14).
Now we prove the equalities in (2.13) for c > 2u−1η . From (2.4) and (2.14) and

(2.5) we have

c+ e≤ succ(c)+
1
2

uufp(c) < M +(succ(c)),

since M +(succ(c))≥ succ(c)+uufp(c), so that csup = fl(c+e)≤ succ(c) by (2.6).
Together with Theorem 2.1, this proves the right equality in (2.13). A similar argu-
ment applies when pred(pred(c))≥ ufp(c) and shows cinf = fl(c− e)≥ pred(c) in
that case. It remains to prove the left equality in (2.13) for ufp(c) ∈ {pred(c),c}.

If pred(c) = ufp(c), i.e., c = ufp(c)(1+2u), then we prove e < 5
2 uufp(c) as fol-

lows:

e = fl(c′+η)≤ fl(u(
3
2

+4u)ufp(c))≤ fl(2uufp(c)) = 2uufp(c),

since we proved above that C = 2uufp(c) is in F. Hence

c− e > c− 5
2

uufp(c) = pred(c)− 1
2

uufp(c),

and fl(c− e)≥ pred(c) follows.
Finally, if c = ufp(c), then c is a power of 2 and c > 2u−1η implies c ≥ 4u−1η .

We distinguish three cases. First, assume c≥ 1
2 u−2η . Then φc ∈ F and c′ = fl(φc) =

φc = uc+2u2c≤ 9
8 uc by u≤ 1

16 . Furthermore, uc≥ 1
2 u−1η ≥ 8η , so that c′+η ≤

9
8 uc+ 1

8 uc implies

e = fl(c′+η)≤ fl(
5
4

uc) =
5
4

uc <
3
2

uc.

Second, assume c < 1
4 u−2η . Then uc ≤ φc < uc + 1

2 η , which shows that c′ =
fl(φc) = uc. Hence

e = fl(c′+η)≤ fl(
5
4

uc) =
5
4

uc <
3
2

uc.

8 Siegfried M. Rump et al.

Therefore (2.5) implies pred(c) = (1−u)c and M−(pred(c)) = (1− 3
2 u)c, and (2.7)

finishes the first and the second case.
Third, assume c = 1

4 u−2η . Then

φc = uc+
1
2

η ,

and this is the only case where the tie-breaking rule is important. If the computation
of fl(φc) is rounded to nearest with ties to even, then c′ = fl(φc) = uc and the proof of
the second case holds. Let us finally assume rounding to nearest with “ties to away”.
Then with uc = 1

4 u−1η :

c′ = fl(φc) = fl(uc+
1
2

η) = uc+η

and

e = fl(c′+η) = uc+2η .

Hence

csup = fl(c+ e) = fl
(
uc(1+u+8u2)

)
= uc(1+2u) = succ(c) .

Finally, u≤ 1
16 and rounding ties to away implies

cinf = fl(c− e) = fl
(
uc(1−u−8u2)

)
= uc(1−u) = pred(c) .

That last subcase ends the proof. �

We mention that the assumption u ≤ 1
16 is necessary to prove the inequalities in

(2.8) to be equalities. This is seen by u = 1
8 , η = 1

32 and c = 1 /∈ [1
2 ,2]u−1η = [1

8 , 1
2].

Given a,b ∈ F, rigorous and mostly sharp bounds for a◦b,◦ ∈ {+,−,×,÷} can
be computed by applying Algorithm 1 to c := fl(a ◦ b). This holds for the square
root as well. Although addition and subtraction cause no error if the result is in the
underflow range, the extra term η cannot be omitted in the computation of e because
it is needed for c slightly outside the underflow range.

Algorithm 1 computes floating-point numbers cinf and csup bounding the pre-
decessor and successor of its input c from below and above, respectively. In binary
arithmetic, although the inequalities in (2.8) are proved to be equalities outside a
small range near underflow, one may wish to eliminate exceptional cases so that al-
ways equality holds in (2.8). This is achieved by the following algorithm.

Computing predecessor and successor in rounding to nearest 9

Algorithm 2 Computation of the predecessor and successor of finite c ∈ F in binary
arithmetic with rounding to nearest

if |c| ≥ 1
2 u−2η then

e = fl(φ |c|) % φ = u(1+2u) = succ(u)
cinf = fl(c− e)
csup = fl(c+ e)

elseif |c|< u−1η

cinf = fl(c−η)
csup = fl(c+η)

else
C = fl(u−1c)
e = fl(φ |C|)
cinf = fl(fl(C− e) ·u)
csup = fl(fl(C + e) ·u)

Theorem 2.3 Let finite c ∈ F be given in binary radix, and let cinf ,csup ∈ F be
the quantities computed by Algorithm 2. Assume u ≤ 1

16 , and that 1
2 u−3η does not

cause overflow. Then

cinf = pred(c) and succ(c) = csup . (2.16)

PROOF. By the symmetry of F and the symmetry of the formulas in Algorithm 2 we
may assume without loss of generality that c > 0. As for Algorithm 1 one verifies
the assertions for c being the largest positive floating-point number, hence we assume
without loss of generality that succ(c) is finite. We first prove (2.16) for the “if”-
clause. Denote

e′ = fl(fl(φ |c|)+η)
cinf ′ = fl(c− e′)
csup ′ = fl(c+ e′)

These are the quantities (with a prime appended) computed by Algorithm 1. The
monotonicity (1.2) implies e≤ e′ and therefore

cinf ′ ≤ cinf and csup ≤ csup ′.

Then u≤ 1
16 , |c| ≥ 8u−1η and Theorem 2.2 imply

cinf ′ = pred(c) and succ(c) = csup ′.

Hence, (2.16) is true if we prove

c− e < M−(c) and M +(c) < c+ e

because this implies cinf = fl(c− e) ≤ pred(c) and csup = fl(c + e) ≥ succ(c),
respectively. But usucc(c) > 1

2 u−1η and (2.10) give

e = fl(φc)≥ fl(usucc(c)) = usucc(c) > uufp(c),

and the result follows by (2.4) and (2.5).

10 Siegfried M. Rump et al.

The validity of (2.16) in the “elseif”-clause follows by (2.3). The “else”-clause
is applied to u−1η ≤ |c| < 1

2 u−2η , with |C| ≥ u−2η , so that the computation of C
cannot cause overflow and C = fl(u−1c) = u−1c. Now the code is similar to the one
in the “if”-clause applied to a scaled c, where the final multiplication by u is exact
too. �

If c is not very near to the underflow range, Algorithm 2 needs 2 flops to compute
only one neighbor, and 3 flops to compute both. In any case a branch is needed, which
we intentionally avoided in Algorithm 1.

Algorithms 1 and 2 may be used to bound the true value of an operation ◦ ∈
{+,−,×,÷}: If c = fl(a◦b), then

cinf ≤ a◦b≤ csup (2.17)

for cinf ,csup computed by Algorithm 1 or 2. However, no rounding error occurs
for addition or subtraction of floating-point numbers if the result is less than u−1η .
Hence one may try to develop an algorithm to compute cinf ,csup satisfying

cinf = pred(c) and succ(c) = csup for |c| ≥ u−1η ,
cinf = c and c = csup otherwise. (2.18)

Then (2.17) would still be satisfied. To do this one may try to use

e = fl(φ ′|c|)
cinf = fl(c− e)
csup = fl(c+ e)

with a suitable factor φ ′ other than φ = u(1 + 2u). In fact, in binary arithmetic, the
factor φ in Algorithm 1 or 2 can be varied in a wide range without jeopardizing the
quality of the results. With rounding to nearest with ties to even, there is no universal
factor φ ′ to satisfy (2.18). Consider φ ′ = upred(3

2) and c = u−1η , then

e = fl(pred(
3
2
)η) = η and csup = fl(u−1

η +η) = u−1
η = c 6= succ(c),

so φ ′ ≥ 3
2 u is necessary. But then we obtain for c = 1

e = fl(
3
2

u) =
3
2

u and cinf = fl(1− 3
2

u) = 1−2u = pred(pred(c)) 6= pred(c).

With rounding to nearest ties to away, both cases above give as expected succ(c) and
pred(c), respectively, and one might hope to find a universal factor for this rounding
mode. However, consider φ ′ = u and c = pred(u−1η) = u−1(1−u)η . Then

e = fl((1−u)η) = η and csup = fl(c+ e) = succ(c) 6= c,

so φ ′ < u is necessary. But for c = 1 then

e = fl(φ ′) = φ
′ < u and csup = fl(1+u) = 1 6= succ(c),

and (2.18) is again not satisfied.

Computing predecessor and successor in rounding to nearest 11

We have implemented Algorithm 2 in the C language, and compared it to the C99
nextafter(c, +Inf) function call which in GNU libc implements the algorithm
from [2]. We obtained the following timings in seconds for 10 million calls on a
2.667Ghz Core 2 under Linux with gcc 4.3.0 (using inline code):

input nextafter Algorithm 2
[2−969,21024) 1.020s 0.464s
[2−1021,2−969) 1.020s 0.639s
[2−1022,2−1021) 1.020s 6.220s
[2−1074,2−1022) 12.434s 30.743s

NaN 0.425s 0.006s
+Inf 0.596s 0.208s
-Inf 0.990s 0.497s

The range [2−969,21024) corresponds to the “if”-branch of Algorithm 2, [2−1021,2−969)
to the “else”-branch, and [2−1074,2−1021) to the “elseif”-branch. The timings for
[2−1022,2−1021) are better than those for [2−1074,2−1022); this is most probably due
to the fact that [2−1022,2−1021) is still in the normal range, while [2−1074,2−1022) is in
the subnormal range, for which floating-point operations are usually slower in hard-
ware. In conclusion, Algorithm 2 is clearly faster than nextafter, except in a tiny
range near the subnormal domain.

3 Conclusion

We presented algorithms to compute (bounds for) the predecessor and successor of
a floating-point number. The user may choose between the branch-free and fast vari-
ant Algorithm 1, the results of which always bound the true result, and are equal to
neighbors except for a tiny range near underflow. Or the slightly slower Algorithm 2
computing always the neighbors of a floating-point number, without exception, which
clearly outperforms nextafter.

Our algorithms may be used to simulate interval operations without changing
the rounding mode. The advantage of Algorithm 1 over formula (1.5) for computing
rigorous bounds of a◦b is that the width is often halved (see Fig. 3.1).

Fig. 3.1 Minimal, median, average and maximal difference in ulps between bounds of enclosing interval
with formula (1.5) and Algorithm 1, for IEEE 754 binary64 format. For each range between consecutive
powers of two, 1,000,000 random values of c were used. The excluded range [1

2 ,2]u−1η from Theorem 2.2
corresponds to [2−1022,2−1020].

range formula (1.5) Algorithm 1
[1/2,1] 2 / 2 / 2.999696 / 4 2 / 2 / 2.000000 / 2

[2−1020,2−1019] 2 / 4 / 3.250584 / 4 2 / 2 / 2.000000 / 2
[2−1021,2−1020] 4 / 4 / 4.000000 / 4 2 / 2 / 2.999696 / 4
[2−1022,2−1021] 4 / 4 / 4.999696 / 6 4 / 4 / 4.000000 / 4
[2−1023,2−1022] 4 / 4 / 4.000000 / 4 2 / 2 / 2.000000 / 2
[2−1024,2−1023] 2 / 2 / 2.000000 / 2 2 / 2 / 2.000000 / 2

12 Siegfried M. Rump et al.

However, this applies only if a,b ∈ F. In applications often interval operations
A◦B for thick intervals A,B are executed. The wider A and B are, the less is the gain
of Algorithm 1 compared to (1.5).

References

1. S. Boldo and J.-M. Muller. Some Functions Computable with a Fused-mac. In Paolo Montuschi and
Eric Schwarz, editors, Proceedings of the 17th Symposium on Computer Arithmetic, pages 52–58, Cape
Cod, USA, 2005.

2. W.J. Cody, Jr. and J.T. Coonen. Algorithm 722: Functions to support the IEEE standard for binary
floating-point arithmetic. ACM Transactions on Mathematical Software, 19(4):443–451, 1993.

3. Institute of Electrical, and Electronic Engineers. IEEE Standard for Floating-Point Arithmetic. IEEE
Standard 754-2008. Revision of ANSI-IEEE Standard 754-1985. Approved June 12, 2008: IEEE
Standards Board.

4. American National Standards Institute, Institute of Electrical, and Electronic Engineers. IEEE Standard
for Radix-Independent Floating-Point Arithmetic. ANSI/IEEE Standard, Std. 854-1987, 1987.

5. R.B. Kearfott, M. Dawande, K. Du, and C. Hu. Algorithm 737: INTLIB: A Portable Fortran 77 Interval
Standard-Function Library. ACM Transactions on Mathematical Software, 20(4):447–459, 1994.

6. S.M. Rump, T. Ogita, and S. Oishi. Accurate Floating-point Summation Part I: Faithful Rounding.
SIAM Journal on Scientific Computing (SISC), 31(1):189–224, 2008.

7. M. Daumas, L. Rideau, and L. Théry. A generic library of floating-point numbers and its application
to exact computing. In 14th International Conference on Theorem Proving in Higher Order Logics,
Edinburgh, Scotland, pp. 169–184, 2001.

8. S. Boldo. Preuves formelles en arithmétiques à virgule flottante. Ph.D. dissertation, École Normale
Supérieure de Lyon, 2004.

