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Gappa is a tool designed to formally verify the correctness of numerical softwares and hardwares.
It uses interval arithmetic and forward error analysis to bound mathematical expressions that
involve rounded as well as exact operators. It then generates a theorem and its proof for each
verified enclosure. This proof can be automatically checked with a proof assistant, such as Coq or
HOL Light. It relies on the facts of a large companion library we have developed. This Coq library
provides theorems dealing with addition, multiplication, division, and square root, for both fixed-
and floating-point arithmetics. Gappa uses multiple-precision dyadic fractions for the endpoints of
intervals and performs forward error analysis on rounded operators when necessary. When asked,
Gappa reports the best bounds it is able to reach for a given expression in a given context. This
feature can be used to identify where the set of facts and automatic techniques implemented in
Gappa becomes insufficient. Gappa handles seamlessly additional properties expressed as interval
properties or rewriting rules in order to establish more intricate bounds. Recent work showed that
Gappa is suited to discharge proof obligations generated for small pieces of software. They may
be produced by third-party tools and the first applications of Gappa use proof obligations written
by designers or obtained from traces of execution.

Categories and Subject Descriptors: G.4 [Mathematical Software]: Certification and Testing

General Terms: Interval Arithmetic, Floating-Point, Proof System

Additional Key Words and Phrases: Forward error analysis, Dyadic fraction, Coq, PVS, HOL
Light, Proof obligation

1. INTRODUCTION

Gappa is a simple and efficient tool for formally certifying bounds in computer
arithmetic [Revy 2006] and in the engineering of numerical software [de Dinechin
et al. 2006; Melquiond and Pion 2007; Boldo et al. 2008] and hardware [Michard
et al. 2006]. Gappa handles arithmetic expressions on real and rational num-
bers and their evaluations in computers on fixed- and floating-point data formats.
Properties that are most often needed involve:

—ranges of rounded expressions to prevent exceptional behaviors (overflow, division
by zero, and so on),

—ranges of absolute and/or relative errors to characterize the accuracy of results.

To the best of our knowledge, Gappa is a tool that was missing in computer
arithmetic and related research areas. Gappa is not the first tool able to formally
verify static ranges and error bounds. In particular, two other projects are currently
mixing interval arithmetic and automatic proof checking [Gameiro and Manolios
2004; Daumas et al. 2005]. The first one uses ACL2 [Kaufmann et al. 2000] and
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the second one uses PVS [Owre et al. 1992]. Gappa is, however, the first tool able
to certify these bounds when the program relies on advanced numerical recipes like
error compensation, iterative refinement, etc.

Gappa provides invisible formal methods [Tiwari et al. 2003] in the sense that
it delivers formal certificates to users that are not expected to ever write any piece
of proof in any formal proof system. It may become in the future a key asset
for development teams that want to meet the highest Common Criteria Evaluated
Assurance Level (EAL 7) [Schlumberger 2003; Rockwell Collins 2005] for numerical
applications using fixed- and floating-point arithmetics.

Gappa considers and combines many techniques of fixed- and floating-point arith-
metics modeled by dyadic fractions, multiple precision arithmetic, interval arith-
metic, forward error analysis, expression rewriting, and automatic proof checking.
Linking together these techniques and ensuring that the implemented pieces of soft-
ware cooperate to cover a significant breadth of skills commonly used in computer
arithmetic was certainly the challenge that prevented the development of competi-
tors to Gappa. The functionalities of Gappa presented here show its potential in
tackling generic problems that are unreachable with other available tools.

Countless efficient algorithms use symbolic computation or interval arithmetic
to produce bounds on expressions but seldom provide gateways to automatic proof
checkers. The continuing work on interval arithmetic [Neumaier 1990; Jaulin et al.
2001] has created a huge set of useful techniques to deliver accurate answers in
a reasonable time. Each technique is adapted to a specific class of problems and
most evaluations yield accurate bounds only if they are handled by the appropriate
techniques in the appropriate order. Blending interval arithmetic and properties on
dyadic fractions has also been heavily used in computer arithmetic [Rump et al.
2005].

Gappa as well as many other projects use computational power to combine ed-
ucated searches and brute force explorations. It performs an exhaustive search on
its built-in set of facts and techniques. It is also able to follow hints given by users
to take into account new techniques.

Gappa is composed of two parts. First, a program written in C++, based on
the Boost interval arithmetic library [Brönnimann et al. 2006] and MPFR [Fousse
et al. 2005], verifies numeric properties given by the user. Along with these verifica-
tions, it generates formal certificates of their validity. Second, a companion library
provides theorems with computable hypotheses. This set of theorems allows a proof
assistant to interpret the formal certificates and hence to automatically check the
validity of the numeric properties. The proof assistants we use are Coq [Huet et al.
2004] and HOL Light [Harrison 2000], but ongoing work shows that Gappa can
generate formal certificates for other proof assistants.

Proofs generated by Gappa typically contain thousands to hundreds of thousands
of lines. Some fully developed examples range from 4,800 lines [de Dinechin et al.
2006] to 755,009 lines [Boldo et al. 2008]. Gappa simplifies a valid proof once it has
been produced in order to reduce the certification time, as in-depth proof checking
is and will remain much slower than processor-native evaluation.

We first describe the input language of Gappa and we detail its built-in rewriting
rules. We then present the set of theorems and interval operators Gappa relies on
ACM Transactions on Mathematical Software, Vol. V, No. N, March 2009.
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to prove numeric properties and we describe how it interacts with proof checkers,
extending [Daumas and Melquiond 2004]. We finish this report with perspectives,
experiments, and concluding remarks.

2. DESCRIPTION OF THE INPUT LANGUAGE OF GAPPA

Consider for example that y is the result of a portion of code without loops and
branches. The definition of y is an expression involving rounded operators and
rounded constants. We may define Y (uppercase) as the exact answer without any
rounding error. The expression Y is identical to y except that rounded operators are
replaced by exact operators and rounded constants are replaced by exact constants.
Constants may be defined either explicitly, e.g. 42, or by enclosing them in a range,
e.g. Pi ∈ [3.14, 3.15]. In the second case, Gappa produces results valid for any real
Pi between 3.14 and 3.15. In particular, the results are valid for the mathematical
constant π.

If some numeric terms were considered negligible and were optimized out of the
implementation y, these terms are introduced in Y . So the expression y gives the
effectively computed value while the expression Y gives the ideal value y tries to
approximate.

In order to certify the correctness of this code, we will possibly need

—an interval containing all the possible values of y to guarantee that y does not
overflow and produces no invalid result (and similarly for all the sub-terms of y),

—an interval containing all the possible values of y− Y or (y− Y )/Y to guarantee
that y is accurate and close to Y .

The grammar of the input language to Gappa is presented in Figure 1. It has
been designed to efficiently express such needs. An input file is composed of three
parts: a set of aliases (PROG, detailed in Section 2.1), the proposition to be proved
(PROP, detailed in Section 2.2), and a set of hints (HINTS, detailed in Sections 2.3
and 2.4). When successful, Gappa produces a Coq or a HOL Light file with the
proof of PROP. Its validity can be checked by Coq using the companion library and
by HOL Light using a set of axioms until a companion library becomes available.

2.1 Definitions of aliases to describe programs (PROG)

Aliases of expressions are defined by constructions of the form IDENT = REAL. The
identifiers then become available for later definitions, the proposition, and the hints.
This construction is neither an equality nor an affectation but rather an alias.
Gappa uses the identifier for its outputs and in the formal proof instead of machine
generated names. An identifier cannot be aliased more than once, even if the right
hand sides of both aliases are equivalent. Nor can it be aliased after being used as
an unbounded variable. For example b = a * 2; a = 1; is not allowed. Using flex

notation, IDENT tokens (a superset of VARID and FUNID tokens) are defined as

{alpha}({alpha}|{digit}|_)* with alpha [a-zA-Z] and digit [0-9]

Rounding operators are used in the arithmetic expressions describing numerical
codes. They are real functions yielding rounded values according to the target data
format (precision and minimum exponent, or lsb weight) and a predefined rounding
mode amongst the ones presented in Table I. For modes that are not defined by
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IEEE 754 standard [Stevenson et al. 1987] and its forthcoming revision, see [Even
and Seidel 1999; Boldo and Melquiond 2008] and references herein. A floating-
point format should also specify the maximum exponent and non-numeric values
such as signed infinities and NaNs (Not-a-Number). Gappa’s formalism as well
as others introduced for automatic proof checking are based on real numbers and
cope difficultly with propagating non-numeric values. This issue is consistently
addressed by proving that no overflows nor division by 0 occur in numerical code.

Fixed- and floating-point rounding can be expressed with the following operators
where rounding parameters FUNCTION PARAMS are listed between angle brackets:

float < precision , minimum_exponent , rounding_direction >(...)

fixed < lsb_weight , rounding_direction >(...)

The syntax above can be abbreviated for the floating-point formats of Table II
and for (fixed-point) integer arithmetic:

float < name , rounding_direction >(...)

int < rounding_direction >(...)

Aliases are permitted for rounding operators: Their definitions are prefixed by
the @ sign. Gappa does not allow quantification over a set of rounding modes but
the alias mechanism allows to quickly switch from one rounding mode to another.
Running Gappa 4 times with files differing only in 1 line is sufficient to prove a
property for every rounding mode of the IEEE 754 standard.

Line 1 below defines the rnd function as rounding to nearest using IEEE 754
standard for 32 bit floating-point data. The example shows various ways of ex-
pressing rounded operations using the alternate constructions of EQUAL. When all
the arithmetic operations on the right hand side of an alias are followed by the
same rounding operator (as visible Line 2), this operator can be put once and for
all on the left of the equal symbol (as presented Line 3).

1 @rnd = float < ieee_32 , ne >;

2 y = rnd(x * rnd(1 - x));

3 z rnd= x * (1 - x);

Notice that Gappa will complain that y and z are two different names for the same
expression. Indeed, Gappa tries to reuse as many user-defined names as possible in
the generated proof. So the expression will be given the name y whenever it occurs
in the proof. But this also means that there will not be any reference to z in the
proof, which may be surprising to the user, hence the warning.

We will see in Section 2.3 that Gappa operates at the syntactical level. There-
fore it cannot use even the simplest theorem of calculus to match mathematically
equivalent expressions or identify common sub-expressions.

2.2 Formalizing the proposition (PROP) that Gappa proves

The proposition PROP that Gappa is expected to prove is written between brackets
as presented below.

{ x - 2 in [-2,0] /\ (x + 1 in [0,2] -> y in [3,4])

-> not x <= 1 \/ x + y in ? }

ACM Transactions on Mathematical Software, Vol. V, No. N, March 2009.
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Table I. Rounding modes available in Gappa
Alias Meaning

zr toward zero
aw away from zero
dn toward minus infinity (down)
up toward plus infinity
od to odd mantissas
ne to nearest, tie breaking to even mantissas
no to nearest, tie breaking to odd mantissas
nz to nearest, tie breaking toward zero
na to nearest, tie breaking away from zero
nd to nearest, tie breaking toward minus infinity
nu to nearest, tie breaking toward plus infinity

Table II. Predefined floating-point formats available in Gappa
Alias Meaning

ieee 32 IEEE-754 single precision
ieee 64 IEEE-754 double precision
ieee 128 IEEE-754 quadruple precision
x86 80 80 bit extended precision

It may contain any conjunction /\, disjunction \/, implication ->, or negation of
enclosures of expressions. Enclosures are either inequalities or bounded ranges on
expressions REAL. Ranges may be left unspecified by using question marks instead of
intervals. Endpoints of intervals and bounds of inequalities are numerical constants
SNUMBER. These constants can either be written with the usual decimal notation (e.g.
11.2e-17), with the C99 hexadecimal notation (e.g. 0xE1.3Ap-13), or with a mixed
notation: decimal mantissa / power-of-two exponent (e.g. 142b-3 = 142 ·2−3). This
leads to the following flex notations for SNUMBER

(({ integer }(\.{ integer }?)?)|(\.{ integer }))([eE][ -+]?{ integer })?

{integer }([bB][ -+]?{ integer })?

0x(({ hexa }(\.{ hexa }?)?)|(\.{ hexa }))([pP][ -+]?{ integer })?

with integer matching {digit}+ and hexa matching [0-9a-fA-F]+. In addition,
SNUMBER can match several notations for zero.

Expressions REAL may contain numeric constants SNUMBER, identifiers IDENT/VARID,
user-defined as well as built-in rounding operators FUNCTION, and arithmetic oper-
ators: addition, subtraction, multiplication, division, absolute value, square root,
negation, and fused multiply-and-add. Identifiers that are not aliased to any ex-
pression (see Section 2.1) are assumed to be universally quantified. For instance,
in the example above, the proposition has an implicit prefix

∀ x ∈ R ∀ y ∈ R.

The goal of Gappa is to prove the whole logical proposition. If question marks are
used in some expression enclosures, Gappa suggests intervals for these enclosures
such that the proposition can be proved. In the example above, Gappa suggests
x + y ∈ [3, 5], which happens to be the tightest interval such that the proposition
ACM Transactions on Mathematical Software, Vol. V, No. N, March 2009.
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holds. Question marks are mostly useful for the debugging and development of
proofs, as Gappa then displays the bounds it has obtained for the given expressions.
Unexpectedly large bounds may hint that Gappa needs some indications from the
user (see Sections 2.3 and 2.4).

Since Gappa stores interval endpoints as dyadic fractions, it produces an error
message when a goal contains an interval so tight that it has to be replaced with an
empty interval. For example, Gappa is unable to prove the goal 13/10 in [1.3,1.3],
as the empty set is the biggest representable subset of the set {1.3}.

The fact that bounds are numerical constants is not a strong limitation to the
use of Gappa. For example, linear dependencies on intervals can be introduced
by manipulating expressions: The enclosure y − Y ∈ [−i × 10−6, i × 10−6] is not
allowed, but the enclosure (y−Y )/i ∈ [−10−6, 10−6] is allowed [Boldo et al. 2008].

2.3 Rewriting expressions to suppress some dependency effects (first use of HINT)

Let Y be an expression and y an approximation of Y . The absolute error is y − Y
and the relative error is (y − Y )/Y . As soon as Gappa has computed some ranges
for y and Y , it naively computes an enclosing interval of y−Y and (y−Y )/Y using
theorems on subtraction and division of intervals.

Unfortunately, expressions y and Y are strongly correlated and error ranges com-
puted that way are useless. To suppress some dependency effects and reproduce
many of the techniques used in numerical analysis and in computer arithmetic [Ka-
han 1965; Higham 2002; Boldo and Daumas 2004; de Dinechin et al. 2004], Gappa
manipulates error expressions through a set of built-in pattern-matching as well as
user-defined rewriting rules.

We assume that y = rnd(a+ b) and Y = A+B. Gappa uses the sub xals rule to
transform the absolute error rnd(a+ b)− (A+B) into (rnd(a+ b)− (a+ b))+((a+
b)−(A+B)). It then finds an enclosure of the first term using a theorem on the rnd
rounding operator. For the second term, Gappa performs a second rewrite with the
add mibs rule: (a + b)− (A + B) is equal to (a−A) + (b−B). This transformation
gives sensible results, as long as a and b are close to A and B respectively.

Table III contains some of the rules Gappa tries to apply automatically. There are
two kinds of rewriting rules. Rules of the first kind are presented in the upper part
of the table, for example add firs. They are meant to produce simpler expressions.
Rules of the second kind are presented in the lower part of the table, for example
sub xals. They are used to reproduce common practices of computer arithmetic by
introducing intermediate terms in expressions. In order for an expression to match
an uppercase letter in such a rule, the expression that matches the same letter in
lowercase has to be tagged as an approximation of the former.

In the example above, the rule sub xals was applied because Gappa automatically
tags rnd(e) as an approximation of e, for any expression e, since rnd is a rounding
operator. Gappa also creates such pairs for expressions that define absolute and
relative errors in some hypotheses of a sub-formula of the proposition PROP.

ACM Transactions on Mathematical Software, Vol. V, No. N, March 2009.
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Table III. Built-in rewriting rules available in Gappa

(1) Rules meant to produce simpler expressions

Rule Before After Condition1

opp mibs −a−−b −(a− b) a 6≡ b
opp mibq (−a−−b)/− b (a− b)/b b 6= 0 ∧ a 6≡ b
add mibs (a + b)− (c + d) (a− c) + (b− d) a 6≡ c ∧ b 6≡ d
add fils (a + b)− (a + c) b− c b 6≡ c
add firs (a + b)− (c + b) a− c a 6≡ c
sub mibs (a− b)− (c− d) (a− c) +−(b− d) a 6≡ c ∧ b 6≡ d
sub fils (a− b)− (a− c) −(b− c) b 6≡ c
sub firs (a− b)− (c− b) a− c a 6≡ c
mul fils ab− ac a(b− c) b 6≡ c
mul firs ac− bc (a− b)c a 6≡ b
mul mars ab− cd a(b− d) + (a− c)d a 6≡ c ∧ b 6≡ d
mul mals ab− cd (a− c)b + c(b− d) a 6≡ c ∧ b 6≡ d
mul mabs ab− cd a(b− d) + (a− c)b +−((a− c)(b− d)) a 6≡ c ∧ b 6≡ d
mul mibs ab− cd c(b− d) + (a− c)d + (a− c)(b− d) a 6≡ c ∧ b 6≡ d
mul filq (ab− ac)/(ac) (b− c)/c ac 6= 0 ∧ b 6≡ c
mul firq (ab− cb)/(cb) (a− c)/c bc 6= 0 ∧ a 6≡ c
div mibq (a/b− c/d)/(c/d) ((a− c)/c− (b− d)/d)/(1 + (b− d)/d) bcd 6= 0 ∧ b 6≡ d
div firq (a/b− c/b)/(c/b) (a− c)/c bc 6= 0 ∧ a 6≡ c

square sqrt
√

a×
√

a a a ≥ 0

sqrt mibs
√

a−
√

b (a− b)/(
√

a +
√

b) a ≥ 0 ∧ b ≥ 0 ∧ a 6≡ b

sqrt mibq (
√

a−
√

b)/
√

b
p

1 + (a− b)/b− 1 a ≥ 0 ∧ b > 0 ∧ a 6≡ b
err fabq 1 + (a− b)/b a/b b 6= 0 ∧ a 6≡ b
addf 1 a/(a + b) 1/(1 + b/a) a(a + b) 6= 0 ∧ a 6= 1
addf 2 a/(a + b) 1− 1/(1 + a/b) b(a + b) 6= 0 ∧ a 6= 1
addf 3 a/(a− b) 1/(1− b/a) a(a− b) 6= 0 ∧ a 6= 1
addf 4 a/(a− b) 1 + 1/(a/b− 1) b(a− b) 6= 0 ∧ a 6= 1

(2) Rules meant to reproduce common practices of computer arithmetic

Rule Before After Condition

add xals a + b (a−A) + (A + b)
add xars c + a (c + A) + (a−A))
sub xals2 a− b (a−A) + (A− b) a 6≡ b ∧A 6≡ b
sub xals2 b−A (b− a) + (a−A) A 6≡ b ∧ a 6≡ b
sub xars b− a (b−A) +−(a−A) b 6≡ a
mul xals ab (a−A)b + Ab
mul xars ba b(a−A) + bA
val xabs a A + (a−A)
val xebs A a +−(a−A)
val xabq a A(1 + (a−A)/A) A 6= 0
val xebq A a/(1 + (a−A)/A) aA 6= 0

1Condition a 6≡ b means that a and b are syntactically-different expressions. Condition a(a+b) 6= 0
means that Gappa has to compute enclosures of both a and a+b and check neither of them contain
zero before rewriting the expression.
2Both rules have the same name, since they instantiate the same theorem in the generated proof:

∀x, y, z ∈ R ∀I ∈ IF (x− y) + (y − z) ∈ I ⇒ x− z ∈ I
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For example, on the following input, Gappa computes the bounds [−1.1, 0.1]
by evaluating the expression (bxc − x) + (y − x), since it considers x to be an
approximation of y, and bxc an approximation of x.

@floor = int <dn >;

{ x - y in [ -0.1 ,0.1] -> floor(x) - y in ? }

Thanks to its built-in rules to rewrite expressions and detect approximations,
Gappa is able to automatically verify most properties on numerical applications
that use common practices. Gappa, however, is not a complete decision procedure3

and it may fail to prove some propositions. When that happens, users can give
some hints to the tool.

The first kind of hint allows the user to tag some expressions as approximations
of other expressions. In the previous example, had Gappa not known that bxc is an
approximation of x, the user could have written floor(x) ~ x in order to register
this pair. This kind of hint is useful in order to lead Gappa toward the expressions
that appear in user-defined rewriting rules.

These user-defined rules are the second kind of hint: primary -> secondary. This
rule states that Gappa can use an enclosure of the secondary expression whenever
it needs an enclosure of the primary expression. The following example describes
Newton’s relation between the reciprocal 1

y and its approximation x · (2− x · y).

x * (2 - x * y) - 1/y ->

(x - 1/y) * (x - 1/y) * -y { y <> 0 };

The bracketed expression { y <> 0 } tells Gappa that the hint can be used only
after having proved that y is not zero.

Such rules usually make explicit some techniques applied by designers that are
not necessarily visible in the source code. We cannot expect an automatic tool to
re-discover innovative techniques. Yet, we will incorporate in Gappa any technique
that we find to be commonly used.

In order for the primary -> secondary rule to be valid, any value of primary must
be contained in the computed enclosure of secondary. This property generally holds
if both expressions are equal. As a consequence, Gappa tries to check if they are
equal and warns if they are not, in order to detect mistypings early. Note that
Gappa does not prove that divisors are always different from zero before applying
user-defined rewriting rules, unless requested in the brackets on the right of the
rules. Any user-defined rewriting rule produces an hypothesis in the generated
proof. For the example above, the generated certificate hence depends on the
theorem

∀I ∈ IF y 6= 0 ⇒ (x− 1/y)2 · (−y) ∈ I ⇒ x · (2− x · y)− 1/y ∈ I.

Numerical issues are only a part of the complete verification of a program. In
particular, the certificate generated by Gappa may be inserted in a bigger formal

3While seemingly simple, the formalism of Gappa is rich enough so that any quantifier-free first-
order formula for Peano arithmetic can be expressed. As a consequence, it is impossible to design
an algorithm that is able to automatically decide for all the propositions whether they are provable
or not.
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development. This will require the user to prove that the theorem above holds.
Fortunately, this task is automated in many proof systems, as both expressions
contained in I are provably equal when y is not zero.

2.4 Tiling the range of some quantities (second use of HINT)

Rewriting expressions is usually very efficient but it fails if different proof structures
are needed on various parts of the range of some quantity, as in the example below.
The objective is to prove that a bound is valid for any floating-point input x ∈ [0, 3].
We first state in Gappa that x is not any real number but a floating-point number
by pretending that x is the rounded value of a dummy variable x_ (which can be
instantiated by x itself for example). For the following proposition, a straight error
analysis only works for x ∈ [0, 0.5]. A specific proof is needed for x ∈ [0.5, 3]. It
relies on the fact that rnd(y) − y is always zero there, since x is a floating-point
number. Neither of these proof structures work on the other part of the domain, so
Gappa cannot find a single proof structure that is valid for the whole domain [0, 3].
So this example introduces the last kind of hint that can be used when Gappa is
unable to automatically prove a formula.

@rnd = float < ieee_32 , ne >;

x = rnd(x_);

y = x - 1;

z = x * (rnd(y) - y);

{ x in [0,3] -> |z| <= 1b-26 }

|z| $ x; # tiling hint

This kind of hint instructs Gappa to tile the range of some quantities and to prove
independently the proposition PROP on each tile. In the example Gappa finishes the
proof as soon as it is told (last line) that splitting the range of x allows to compute
better bounds on |z|. There are three constructions for tiling, each involving a $

sign in the hints section:

—Evenly split the range into as many sub-intervals as asked. E.g. $ x in 6 splits
the range of x in six sub-intervals. If the number of intervals is omitted (e.g. $ x)
and no expression is present on the left of $, the default is 4.

—Split an interval on user-provided points. E.g. $ x in (0.5,2) splits the range
[0, 3] of x above in three sub-intervals, the middle one being [0.5, 2].

—Look by dichotomy for a set of tiles such that a given enclosure of the proposition
holds. (This is the kind of tiling used in the example above.) The enclosure has
to be present in the proposition, since Gappa cannot guess its range. The target
enclosure is specified by writing its expression on the left of the $ symbol. If
several expressions are written, the tiling will try to satisfy all of their enclosures.

Several tiling hints can be used in the same script. For instance, the two hints
below will be used sequentially one after the other. The first one splits the range
of u until all the enclosures on a, b, and c are verified. In practice, the order of the
tiling operations may make the difference between success and failure, as tilings use
a lot of memory to replicate the proof trees.

a, b, c $ u;

d, e $ v;
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Users can build higher dimension tilings by using more than one term on the
right of the $ symbol. (This can quickly lead to combinatorial explosions though.)
For example, the following statement asks Gappa to find tilings of u and w such
that the enclosures on a and b are satisfied when the range of v is evenly split into
three sub-intervals.

a, b $ u, v in 3, w

3. GAPPA’S ENGINE

3.1 Work on the logical proposition

The logical proposition the user wants to prove is first modified and loosely broken
into sub-sequents according to the rules of sequent calculus. The objective is to get
an equivalent set of logical propositions that are in a more suitable form. These
new propositions are such that their left hand side is a conjunction of enclosures
and such that their right hand side is a disjunction of trees of conjunctions and
disjunctions of enclosures. In particular, all the negation symbols and the inner
implications are removed. Hence implications of the form e1 ∈ I1∧· · ·∧em ∈ Im ⇒
f1 ∈ J1 ∨ · · · ∨ fm ∈ Jm are suitable for an immediate use by Gappa.

For example, the proposition seen in Section 2.2

{ x - 2 in [-2,0] /\ (x + 1 in [0,2] -> y in [3,4])

-> not x <= 1 \/ x + y in ? }

is transformed into these two propositions:

x ≤ 1 ∧ x− 2 ∈ [−2, 0] =⇒ x + 1 ∈ [0, 2] ∨ x + y ∈ ?

x ≤ 1 ∧ x− 2 ∈ [−2, 0] ∧ y ∈ [3, 4] =⇒ x + y ∈ ?

Gappa then verifies that both propositions hold, in order to prove that the original
proposition does.

Unspecified ranges (question marks) are allowed as long as they appear only on
the right hand sides of these decomposed formulas. Indeed, Gappa is not able to
guess hypotheses from conclusions, so it would only propose the whole set of real
numbers for these ranges, which is correct yet useless.

Inequalities may appear on both sides of the new propositions. Any inequality
on the left hand side will be used only if Gappa can compute an enclosure of the
expression by some other means. If an inequality appears at the top level of the
disjunction on the right hand side, it is copied to the hypotheses as permitted by
classical logic, provided that it is reverted first. For example, proposition

x ∈ [2, 3] ⇒ (y ∈ [4, 5] ∨ z ≥ 6)

is equivalent to proposition

(x ∈ [2, 3] ∧ z ≤ 6) ⇒ (y ∈ [4, 5] ∨ z ≥ 6),

but the second one provides a bigger set of usable enclosures on its left hand side.
Note that support for disjunctions is currently limited: When the right hand side

of the formula is a disjunction of several enclosures, Gappa searches for an enclosure
that holds under the hypotheses of the proposition. For instance, Gappa is unable
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Table IV. Interval operators used in Table V

(a) Arithmetic operators

Operator Constraint Definition

−I
ˆ
−I,−I

˜
I−1 0 6∈ I

ˆ
1/I, 1/I

˜
I + J

ˆ
I + J, I + J

˜
I − J I + (−J)

I × J
ˆ
min(IJ, IJ, IJ, IJ), max(IJ, IJ, IJ, IJ)

˜
I/J 0 6∈ J I × J−1

√
I I ≥ 0

hp
I,

p
I

i
|I| I if I ≥ 0, −I if I ≤ 0,

ˆ
0, max(−I, I)

˜
otherwise

(b) Operators that may (or may not) be defined for each rounding mode rnd of Table I

Operator Constraint Definition

rnd(I) Bound the rounded value based on a bound on the exact value

errrnd,0(I) Uniform bound on the absolute rounding error for fixed-point arithmetic

Bound the absolute rounding error based on a bound on the

errrnd,1(I) exact value

errrnd,2(I) rounded value

errrnd,3(I) magnitude of the exact value

errrnd,4(I) magnitude of the rounded value

Bound the relative rounding error based on a bound on the

errrnd,5(I) 0 6∈ I exact value

errrnd,6(I) 0 6∈ I rounded value

errrnd,7(I) 0 6∈ I magnitude of the exact value

errrnd,8(I) 0 6∈ I magnitude of the rounded value

to prove the valid proposition x ∈ [0, 2] ⇒ x ∈ [0, 1]∨x ∈ [1, 2], as neither x ∈ [0, 1]
nor x ∈ [1, 2] hold under hypothesis x ∈ [0, 2].

3.2 Properties on expressions

Enclosure (BND) is the only predicate available to users but Gappa internally relies
on more predicates to describe properties on an expression x. Such predicates
appear in intermediate lemmas of generated proofs.

BND(x, I) ≡ x ∈ I
ABS(x, I) ≡ |x| ∈ I ∧ I ≥ 0
FIX(x, e) ≡ ∃m ∈ Z, x = m · 2e

FLT(x, p) ≡ ∃m, e ∈ Z, x = m · 2e ∧ |m| < 2p

The FIX and FLT predicates express that the set of computer numbers is gener-
ally a discrete subset of the real numbers, while intervals only consider connected
subsets. They are especially useful for automatically detecting rounded operations
that actually are exact operations, and hence do not contribute any rounding error.

Table V lists most of the theorems used by Gappa. These theorems rely on some
ACM Transactions on Mathematical Software, Vol. V, No. N, March 2009.
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Table V. Theorems on interval arithmetic available from the Coq companion library to Gappa

Target Hypotheses Constraint

BND(rnd(a)− a, I) I ⊃ errrnd,0
BND(rnd(a)− a, I) BND(a, J) I ⊃ errrnd,1(J)
BND(rnd(a)− a, I) BND(rnd(a), J) I ⊃ errrnd,2(J)
BND(rnd(a)− a, I) ABS(a, J) I ⊃ errrnd,3(J)
BND(rnd(a)− a, I) ABS(rnd(a), J) I ⊃ errrnd,4(J)
BND((rnd(a)− a)/a, I) BND(a, J) I ⊃ errrnd,5(J)
BND((rnd(a)− a)/a, I) BND(rnd(a), J) I ⊃ errrnd,6(J)
BND((rnd(a)− a)/a, I) ABS(a, J) I ⊃ errrnd,7(J)
BND((rnd(a)− a)/a, I) ABS(rnd(a), J) I ⊃ errrnd,8(J)
BND(rnd(a), I) BND(a, J) I ⊃ rnd(J)
BND(rnd(a), I) BND(rnd(a), J) I ⊃ J ∩ Frnd

BND(−a, I) BND(a, J) I ⊃ −J
BND(|a|, I) BND(a, J) I ⊃ |J |
BND(

√
a, I) BND(a, J) J ≥ 0 ∧ I ⊃

√
J

BND(a− a, I) 0 ∈ I
BND(a/a, I) ABS(a, J) 1 ∈ I ∧ J > 0
BND(a× a, I) BND(a, J) I ⊃ |J | × |J |
BND(a + b, I) BND(a, J), BND(b, K) I ⊃ J + K
BND(a− b, I) BND(a, J), BND(b, K) I ⊃ J −K
BND(a× b, I) BND(a, J), BND(b, K) I ⊃ JK
BND(a/b, I) BND(a, J), BND(b, K) 0 6∈ K ∧ I ⊃ J/K
ABS(−a, I) ABS(a, J) I ⊃ J
ABS(|a|, I) ABS(a, J) I ⊃ J

ABS(
√

a, I) ABS(a, J) I ⊃
√

J
ABS(a± b, I) ABS(a, J), ABS(b, K) I ⊃ |J −K| ∪ (J + K)
ABS(a× b, I) ABS(a, J), ABS(b, K) I ⊃ J ×K
ABS(a/b, I) ABS(a, J), ABS(b, K) K > 0 ∧ I ⊃ J/K
BND(a, I) ABS(a, J) I ⊃ J ∪ −J
BND(a, I) BND(a, J), ABS(a, K) I ⊃ (J ∩K) ∪ (J ∩ −K)
BND(|a|, I) ABS(a, J) I ⊃ J
ABS(a, I) BND(|a|, J) I ⊃ J
BND(ξ, I) I ⊃ {ξ} (ξ is a constant)
FIX(a± b, e) FIX(a, f), FIX(b, g) e ≤ min(f, g)
FIX(a× b, e) FIX(a, f), FIX(b, g) e ≤ f + g
FLT(a× b, p) FLT(a, q), FLT(b, r) p ≥ q + r
FIX(a, e) FLT(a, q), ABS(a, J) J > 0 ∧ e ≤ 1 + log2(J)− q

FLT(a, p) FIX(a, e), ABS(a, J) p ≥ 1 + log2(J)− e
FIX(a, e) BND(a, [x, x]) ∃m ∈ Z, x = m · 2e

FLT(a, p) BND(a, [x, x]) ∃m, e ∈ Z, x = m · 2e ∧ |m| < 2p

FIX(rnd(a), e) e ≤ ernd
FLT(rnd(a), p) p ≥ prnd
BND(rnd(a)− a, I) FIX(a, e), FLT(a, p) 0 ∈ I ∧ e ≥ ernd ∧ p ≤ prnd

interval operators defined in Table IV. Several interval operators err(·) relate to
the rounding modes. For a given rounding rnd, errrnd,1(I) computes a bound on
the absolute error rnd(x)− x reached when rounding a value x ∈ I, while another
operator errrnd,6(I) computes a bound on the relative error rnd(x)−x

x for rnd(x) ∈ I,
and so on. Not all of the nine operators have to be defined for a given rounding:
Gappa will use whatever operators are available, as they are partly redundant.
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Gappa proceeds by proving properties on real-valued expressions (floating-point
variables, non-rounded values, absolute errors, relative errors, and so on). For
instance, given an expression, it tries to evaluate its attached range. This range
is the intersection of all the intervals obtained by applying theorems or rewriting
rules concerning the expression. When a new or a tightened interval is produced
for an expression, Gappa reapplies all the theorems whose hypotheses depend on
an enclosure of this expression. In turn, this may produce or tighten enclosures
of other expressions. This updating process continues until Gappa has obtained a
proof of the logical proposition or until all the ranges have stopped evolving. In
the later case, either the logical proposition is incorrect, or the tool needs some
additional help in order to prove it.

As Gappa keeps track of its computations in order to later generate a formal
proof, the exploration may exhaust memory if it does not reach a stable state or a
proof of the proposition. This is a common failure of Gappa on huge problems.

3.3 Handling automatic proof checker

From that point, generating a formal proof is simple: Gappa dumps the definitions,
properties, and lemmas, as they are needed. This is performed in such a way that,
as each lemma appears, everything it depends on has already been dumped into the
script. So a lemma is nothing more than an application of the appropriate theorem
in the companion library.

Let us assume that Gappa has used an interval addition in order to prove the
proposition “if x ∈ [1, 2] (property p1) and y ∈ [3, 4] (property p2), then x+y ∈ [0, 6]
(property p3)”. The proof script generated for Coq then contains the following
lemma, which corresponds to an instance of the line BND(a + b, I) of Table V.

1 Lemma l1 : p1 -> p2 -> p3.

2 intros h0 h1.

3 apply add with (1 := h0) (2 := h1) ; finalize.

4 Qed.

The first line defines the lemma: If the hypotheses p1 and p2 hold, the property
p3 holds too. The second line starts the proof in a suitable state by using the intros

tactic of Coq. The third line applies the add theorem of Gappa support library with
the apply tactic.

The add theorem is stated as follows. The lower and upper functions return the
lower and the upper bound of an interval. Intervals are pairs of dyadic fractions
(FF or IF). Fplus2 is the addition of dyadic fractions. Fle2 compares two dyadic
fractions (less or equal) and returns a boolean value. The BND predicate holds,
when its first argument, an expression on real numbers, is an element of its second
argument, an interval defined by dyadic fraction bounds.

Definition add_helper (xi yi zi : FF) :=

Fle2 (lower zi) (Fplus2 (lower xi) (lower yi)) &&

Fle2 (Fplus2 (upper xi) (upper yi)) (upper zi).

Theorem add :

forall x y : R, forall xi yi zi : FF,

BND x xi -> BND y yi ->
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add_helper xi yi zi = true ->

BND (x + y) zi.

The mathematical expression of the theorem is as follows:

add : ∀x, y ∈ R, ∀Ix, Iy, Iz ∈ IF,
x ∈ Ix ⇒ y ∈ Iy ⇒
fadd(Ix, Iy, Iz) = true ⇒
x + y ∈ Iz.

Hypothesis fadd(Ix, Iy, Iz) = true implies Ix + Iy ⊆ Iz. But since its left hand
side is a boolean expression, it can be evaluated by the proof checker in order to
automatically verify that Iz indeed contains the sum x + y. In lemma l1, this
evaluation is triggered by the finalize tactic which checks that the current goal
can be reduced to true = true. This concludes the formal proof.

All the theorems of Gappa’s companion library are built the same way: Instead
of having standard hypotheses that Coq would be unable to automatically decide,
every theorem relies on a computable boolean expression. The companion library
formally proves that, when this expression evaluates to true, the standard hypothe-
ses hold, and hence the goal of the theorem applies. This approach is a simpler
form of reflection techniques [Boutin 1997]. Although the use of booleans seems
to restrict the use of Gappa to the Coq proof checker, the interval arithmetic li-
brary [Muñoz and Lester 2005; Daumas et al. 2005] developed for PVS shows that
proofs through interval computations are also attainable to other proof assistants.

3.4 Dyadic fractions as interval bounds

In order to get computable boolean expressions, a decidable subset of the real num-
bers was chosen to represent interval bounds in the generated certificates. One
possibility would have been the rational numbers. But we decided for a simpler
subset: the dyadic fractions (m · 2e with m and e relative integers). As with the
rational numbers, they can efficiently be added, multiplied, and compared. But the
certification process may also have to emulate some of the rounding operations oc-
curring in numerical codes, and dyadic fractions are the simplest representation for
this purpose. Moreover, they have a smaller footprint when manipulating bounds
on rounding errors. For instance, 2−53 would be written 1/9007199254740992 as a
rational number.

In order to check the certificate, the proof assistant does not have to perform
the exact same computations than Gappa and to check that their results match
Gappa’s ones. It is sufficient to check that Gappa’s results are compatible with
the computations. For instance, if the certificate states that the expression

√
3 is

enclosed in [1, 2], the proof assistant does not have to compute the real number√
3 in order to verify it. It just has to check that the inequalities 0 ≤ 2 and

12 ≤ 3 ≤ 22 hold. Therefore, the proof assistant does not have to perform any
division or square root on the interval bounds. Addition and multiplication are
sufficient when checking a Gappa certificate.

While Gappa performs its own computations with 60-bit precision (and the user
can request a higher precision), the bounds stored in the generated certificates do
not have to be that precise. Any wider interval with less precise bounds can be
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used, as long as no step of the certificate is invalidated. For instance, if Gappa has
to prove that

√
3 is not zero because it appears as a denominator, it computes an

interval enclosure of
√

3 with 60 bits and checks that the lower bound is positive.
Later, when generating the certificate, it will look for a simpler enclosure. It will
notice that

√
3 ∈ [1, 2] is sufficient to prove that

√
3 is not zero. Expanding the

interval enclosure of
√

3 may, however, invalidate other parts of the certificate that
were relying on a tighter enclosure. In order to avoid this issue, Gappa first finds
a correct proof path and then it greedily operates backwards from the last proved
results to the first proved results, widening the intervals along the way.

Such simplifications are important, since a proof checker like Coq is considerably
slower than a specialized mathematical library. As a consequence, these simplified
numbers can considerably speed up the verification process of propositions, espe-
cially when they involve error bounds. For the example of Listing 1 with an error
bound |e − E0| ≤ 137 · 2−31, the simplified numbers incur a 40% speed-up of the
Coq verification.

These considerations are also true for case studies: Searching for a better set of
(possibly overlapping) tiles and certifying it, is always faster than directly certifying
the first tiling that has been found by Gappa. The time spent by Gappa in doing
all the computations over and over in order to find a better set of tiles is negligible
in comparison to the time necessary to certify the property on one single tile with
a proof checker.

4. PERSPECTIVES AND CONCLUDING REMARKS

In our approach to program certification, generation of proof obligations, proof
generation, and proof verification are distinct steps. The intermediate step is per-
formed by Gappa with its own computational methods, and the last one is done by
a proof checker with the help of our support library.

The developments presented so far already allowed us to guarantee the correct
behavior of many useful functions. As we continue using Gappa, we may discover
practices that cannot be handled appropriately. We will extend Gappa, should this
become necessary. Our software, a user’s guide and details of some projects using
Gappa are available on the Internet at the address below.

http://lipforge.ens-lyon.fr/www/gappa/

Gappa is used to certify CRlibm, a library of elementary functions with correct
rounding in the four IEEE-754 rounding modes and performances comparable to
standard mathematical libraries [de Dinechin et al. 2006; de Dinechin et al.
2004]. Listing 1 presents the input file needed to reproduce some parts of an ear-
lier validation in HOL Light [Harrison 1997]. These expressions define an almost
correctly-rounded exponential function in single precision [Tang 1989]. Gappa pro-
duces in less than 2 seconds a proof for Coq outlined in Listings 2. The output
language of Gappa has not been presented since it is a subset of the Coq or HOL
Light input language.

Gappa has also been used to develop robust semi-static filters for the CGAL
project [Melquiond and Pion 2007] and in the validation of delayed linear algebra
over finite fields [Boldo et al. 2008]. For all these applications, either Gappa
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Listing 1. Gappa script proving that e accurately approximates E0 = exp(R0)
when the input R is close to R0

# 1. PROG: Definitions of aliases

# work in single precision

@rnd = float < ieee_32 , ne >;

# a few floating-point constants

a1 = 8388676b-24;

a2 = 11184876b-26;

l2 = 12566158b-48;

s1 = 8572288b-23;

s2 = 13833605b-44;

# the algorithm for computing the exponential

r2 rnd= -n * l2;

r rnd= r1 + r2;

q rnd= r * r * (a1 + r * a2);

p rnd= r1 + (r2 + q);

s rnd= s1 + s2;

e rnd= s1 + (s2 + s * p);

# a few mathematical expressions to simplify later sections

R = r1 + r2;

S = s1 + s2;

E = s1 + (s2 + S * (r1 + (r2 + R * R * (a1 + R * a2 ))));

Er = S * (1 + R + a1 * R * R + a2 * R * R * R + 0);

E0 = S0 * (1 + R0 + a1 * R0 * R0 + a2 * R0 * R0 * R0 + Z);

# 2. PROP: Logical proposition Gappa has to verify

{ # provide the domains and accuracies of some variables

Z in [-55b-39 ,55b-39] /\ S - S0 in [-1b-41,1b-41] /\

R - R0 in [-1b-34,1b-34] /\ R in [0 ,0.0217] /\

n in [ -10176 ,10176] ->

# ask for the range of e and its absolute error

e in ? /\ e - E0 in ? }

# 3. HINTS: Hints provided by the user

e - E0 -> (e - E) + (Er - E0); # valid since E = Er

r1 -> R - r2; # valid since R = r1 + r2

carefully bounds the accumulation of individual errors, or it proves that the result
is exact since no error ever occurred.

When doing a formal development with the help of Gappa, the whole work of
performing the proof is pushed toward it: All the intervals are precomputed and
none of the complex tactics of Coq are used. The proof checker only has to be able
to add, multiply, and compare integers; it does not have to be able to manipulate
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Listing 2. Excerpts of the 2038-line Coq proof produced by Gappa from Listing 1
Require Import Gappa_library.

Section Generated_by_Gappa.

Variable _Z : R.

Variable _R0 : R.

...

Notation r4 := ((r6 + _Z)%R).

Variable _S0 : R.

Notation _E0 := ((_S0 * r4)%R).

...

Notation _e := (float2R (( rounding_float roundNE (24) (149)) (r51 ))).

...

Notation r70 := ((_e - _E0)%R).

...

Definition f49 := Float2 (154166255364809243) ( -81).

Definition f50 := Float2 ( -75807082762648785) ( -80).

Definition i35 := makepairF f50 f49.

Notation p37 := (BND r70 i35).

(* BND(e - E0 , [ -6.27061e-08, 6.37617e -08]) *)

...

Lemma l33 : p1 -> p2 -> p34 -> p35 -> p36 -> p37.

(* BND(e - E0 , [ -6.27061e-08, 6.37617e -08]) *)

intros h0 h1 h2 h3 h4.

apply l34. exact h0. exact h1. exact h2. exact h3. exact h4.

Qed.

End Generated_by_Gappa.

rational or real numbers. Consequently, one of our goals is to generate proofs not
only for Coq or HOL Light, but for other proof checkers too.

Branches and loops handling are outside the scope of this work. Both problems
are not new to program verification and nice results have been published in both
areas. We do not want to propose our solution for these problems. Our decision is
to interact with the two following tools.

—Why [Filliâtre 2003] is a tool to certify programs written in a generic language
(C and Java can be converted to this language). It certifies appropriate memory
allocation and usage. It is able to handle hierarchically structured code with func-
tions and assertions. Why also takes care of conditional branches. It duplicates
the appropriate proof obligations and guarantees that both pieces of code meet
their shared post-conditions. A floating-point formalism designed with Gappa
in mind has recently been added to Why [Boldo and Filliâtre 2007]: Whenever
Why encounters a proof obligation about floating-point numbers, it submits it
to Gappa in order to solve it without any user intervention.

—Fluctuat [Putot et al. 2004] handles loops by effectively computing loop invari-
ants. Once these invariants are provided, Gappa can certify the correct behavior
of any numerical code. Results of Fluctuat will be used as oracles and certified by
Gappa. Should there be a significant bug in Fluctuat, Gappa will stop without
being able to meet its goals as it cannot certify erroneous results.
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