
Introduction Core library Auxiliary libraries Conclusion

Flocq: A Unified Library for Proving
Floating-point Algorithms in Coq

Sylvie Boldo Guillaume Melquiond

INRIA, LRI, ANR F
∮
ST

2011-07-27

S. Boldo, G. Melquiond Flocq: Floats in Coq ARITH’20 1 / 21



Introduction Core library Auxiliary libraries Conclusion Introduction Prior work Motivations

Computer Arithmetic and Formal Proofs

Floating-point arithmetic: a widely-used approach
for approximating computations on real numbers.

Numerical issues: exceptional behaviors, inaccurate results.
Usually out of the reach of exhaustive testing.

High level of safety thanks to formal methods: model checking,
satisfiability, temporal logic, abstract interpretation, and so on.
Automated and suitable for large codes.

What about correctness? Intricate algorithms require formal proofs.
(Hopefully they are short.)

S. Boldo, G. Melquiond Flocq: Floats in Coq ARITH’20 2 / 21



Introduction Core library Auxiliary libraries Conclusion Introduction Prior work Motivations

Computer Arithmetic and Formal Proofs

Floating-point arithmetic: a widely-used approach
for approximating computations on real numbers.

Numerical issues: exceptional behaviors, inaccurate results.
Usually out of the reach of exhaustive testing.

High level of safety thanks to formal methods: model checking,
satisfiability, temporal logic, abstract interpretation, and so on.
Automated and suitable for large codes.

What about correctness? Intricate algorithms require formal proofs.
(Hopefully they are short.)

S. Boldo, G. Melquiond Flocq: Floats in Coq ARITH’20 2 / 21



Introduction Core library Auxiliary libraries Conclusion Introduction Prior work Motivations

Computer Arithmetic and Formal Proofs

Floating-point arithmetic: a widely-used approach
for approximating computations on real numbers.

Numerical issues: exceptional behaviors, inaccurate results.
Usually out of the reach of exhaustive testing.

High level of safety thanks to formal methods: model checking,
satisfiability, temporal logic, abstract interpretation, and so on.
Automated and suitable for large codes.

What about correctness? Intricate algorithms require formal proofs.
(Hopefully they are short.)

S. Boldo, G. Melquiond Flocq: Floats in Coq ARITH’20 2 / 21



Introduction Core library Auxiliary libraries Conclusion Introduction Prior work Motivations

Some Prior Work on Formal Proofs for FP Arithmetic

Formal proof: a proof that can be checked automatically
by a computer.

Formalization of standards:
Barrett (Z), Carreño, Miner (PVS), Loiseleur (Coq).

Certification of low-level designs:
Kaufmann, Lynch, Moore, Russinoff (ACL2), Kaivola,
Kohatsu (Forte), Berg, Jacobi (PVS).

Certification of high-level algorithms:
Harrison (HOL Light), Boldo (Coq).

S. Boldo, G. Melquiond Flocq: Floats in Coq ARITH’20 3 / 21



Introduction Core library Auxiliary libraries Conclusion Introduction Prior work Motivations

Some Prior Work in Coq

Float → Pff theorems about FP arithmetic

any radix, only FLT format (with subnormal numbers),
axiomatized rounding operators,
comprehensive library.

Gappa verification of FP algorithms

radix 2, any format,
effective rounding for dyadic numbers (+, ×),
dedicated library.

Coq.Interval proofs automated by FP computations

any radix, only FLX format (normal numbers only),
effective FP operations (+, ×, ÷,

√
·, etc),

dedicated library, some incomplete proofs.

S. Boldo, G. Melquiond Flocq: Floats in Coq ARITH’20 4 / 21



Introduction Core library Auxiliary libraries Conclusion Introduction Prior work Motivations

Some Prior Work in Coq

Float → Pff theorems about FP arithmetic

any radix, only FLT format (with subnormal numbers),
axiomatized rounding operators,
comprehensive library.

Gappa verification of FP algorithms

radix 2, any format,
effective rounding for dyadic numbers (+, ×),
dedicated library.

Coq.Interval proofs automated by FP computations

any radix, only FLX format (normal numbers only),
effective FP operations (+, ×, ÷,

√
·, etc),

dedicated library, some incomplete proofs.

S. Boldo, G. Melquiond Flocq: Floats in Coq ARITH’20 4 / 21



Introduction Core library Auxiliary libraries Conclusion Introduction Prior work Motivations

Motivations

Ease the combined usage of several formalisms:

proof obligations generated by the Why tool,
theorems already proved in the Pff library,
automation provided by the gappa tactic.

Design a formalization:

as generic as possible,
that avoids earlier shortcomings,
that scales better with future works.

Explore properties of usual and exotic formats.

=⇒ Flocq: a Coq formalization for computer arithmetic.

S. Boldo, G. Melquiond Flocq: Floats in Coq ARITH’20 5 / 21



Introduction Core library Auxiliary libraries Conclusion Introduction Prior work Motivations

Motivations

Ease the combined usage of several formalisms:

proof obligations generated by the Why tool,
theorems already proved in the Pff library,
automation provided by the gappa tactic.

Design a formalization:

as generic as possible,
that avoids earlier shortcomings,
that scales better with future works.

Explore properties of usual and exotic formats.

=⇒ Flocq: a Coq formalization for computer arithmetic.

S. Boldo, G. Melquiond Flocq: Floats in Coq ARITH’20 5 / 21



Introduction Core library Auxiliary libraries Conclusion Introduction Prior work Motivations

Motivations

Ease the combined usage of several formalisms:

proof obligations generated by the Why tool,
theorems already proved in the Pff library,
automation provided by the gappa tactic.

Design a formalization:

as generic as possible,
that avoids earlier shortcomings,
that scales better with future works.

Explore properties of usual and exotic formats.

=⇒ Flocq: a Coq formalization for computer arithmetic.

S. Boldo, G. Melquiond Flocq: Floats in Coq ARITH’20 5 / 21



Introduction Core library Auxiliary libraries Conclusion Rounding & formats Generic formats Rounding operators

Core Library

1 Introduction

2 Core library
Axiomatic rounding and formats
Generalizing formats
Rounding operators

3 Auxiliary libraries

4 Conclusion

S. Boldo, G. Melquiond Flocq: Floats in Coq ARITH’20 6 / 21



Introduction Core library Auxiliary libraries Conclusion Rounding & formats Generic formats Rounding operators

Predefined Axiomatic Rounding

Axiomatic rounding: relation Q(x , f ) “real x rounds to f .”

Predefined relations: rounding downward, upward, toward zero,
to nearest, for any format F .

Example (5F , rounding toward −∞ on F )

5F (x , f ) ≡ f ∈ F ∧ f ≤ x ∧ (∀g ∈ F , g ≤ x ⇒ g ≤ f ).

All these relations describe monotone total functions
when format F satisfies:

0 ∈ F , ∀x ∈ R, x ∈ F ⇒ −x ∈ F , (zero, symmetry)

∀x ∈ R, ∃f ∈ R, 5F (x , f ). (existence of rounding down)

S. Boldo, G. Melquiond Flocq: Floats in Coq ARITH’20 7 / 21



Introduction Core library Auxiliary libraries Conclusion Rounding & formats Generic formats Rounding operators

Predefined Axiomatic Rounding

Axiomatic rounding: relation Q(x , f ) “real x rounds to f .”

Predefined relations: rounding downward, upward, toward zero,
to nearest, for any format F .

Example (5F , rounding toward −∞ on F )

5F (x , f ) ≡ f ∈ F ∧ f ≤ x ∧ (∀g ∈ F , g ≤ x ⇒ g ≤ f ).

All these relations describe monotone total functions
when format F satisfies:

0 ∈ F , ∀x ∈ R, x ∈ F ⇒ −x ∈ F , (zero, symmetry)

∀x ∈ R, ∃f ∈ R, 5F (x , f ). (existence of rounding down)

S. Boldo, G. Melquiond Flocq: Floats in Coq ARITH’20 7 / 21



Introduction Core library Auxiliary libraries Conclusion Rounding & formats Generic formats Rounding operators

Predefined Axiomatic Rounding

Axiomatic rounding: relation Q(x , f ) “real x rounds to f .”

Predefined relations: rounding downward, upward, toward zero,
to nearest, for any format F .

Example (5F , rounding toward −∞ on F )

5F (x , f ) ≡ f ∈ F ∧ f ≤ x ∧ (∀g ∈ F , g ≤ x ⇒ g ≤ f ).

All these relations describe monotone total functions
when format F satisfies:

0 ∈ F , ∀x ∈ R, x ∈ F ⇒ −x ∈ F , (zero, symmetry)

∀x ∈ R, ∃f ∈ R, 5F (x , f ). (existence of rounding down)

S. Boldo, G. Melquiond Flocq: Floats in Coq ARITH’20 7 / 21



Introduction Core library Auxiliary libraries Conclusion Rounding & formats Generic formats Rounding operators

Predefined Formats

Definition (Number in radix β)

A floating-point number is a pair (m, e) ∈ Z2

that represents the real number m · βe .

Note: no signed zeros, no infinities, no NaN.

Format is the set of all reals x = m · βe such that

FIXemin e = emin

FLXp |m| < βp

FLXNp x 6= 0⇒ βp−1 ≤ |m| < βp

FLTp,emin emin ≤ e ∧ |m| < βp

FTZp,emin x 6= 0⇒ emin ≤ e ∧ βp−1 ≤ |m| < βp

S. Boldo, G. Melquiond Flocq: Floats in Coq ARITH’20 8 / 21



Introduction Core library Auxiliary libraries Conclusion Rounding & formats Generic formats Rounding operators

Predefined Formats

Definition (Number in radix β)

A floating-point number is a pair (m, e) ∈ Z2

that represents the real number m · βe .

Note: no signed zeros, no infinities, no NaN.

Format is the set of all reals x = m · βe such that

FIXemin e = emin

FLXp |m| < βp

FLXNp x 6= 0⇒ βp−1 ≤ |m| < βp

FLTp,emin emin ≤ e ∧ |m| < βp

FTZp,emin x 6= 0⇒ emin ≤ e ∧ βp−1 ≤ |m| < βp

S. Boldo, G. Melquiond Flocq: Floats in Coq ARITH’20 8 / 21



Introduction Core library Auxiliary libraries Conclusion Rounding & formats Generic formats Rounding operators

Generalizing Formats

Single parameter: ϕ : Z→ Z.

Definition (Slice, canonical exponent, normalized mantissa)

slice(x) = blogβ |x |c+ 1, βslice(x)−1 ≤ |x | < βslice(x).

cexp(x) = ϕ(slice(x)).

smant(x) = x · β− cexp(x), x = smant(x) · βcexp(x).

Definition (Generic format)

Format Fϕ is a subset of R described by ϕ:

x ∈ Fϕ ⇔ x = Z(smant(x)) · βcexp(x).

Alternatively: x ∈ Fϕ ⇔ smant(x) ∈ Z.

S. Boldo, G. Melquiond Flocq: Floats in Coq ARITH’20 9 / 21



Introduction Core library Auxiliary libraries Conclusion Rounding & formats Generic formats Rounding operators

Generalizing Formats

Single parameter: ϕ : Z→ Z.

Definition (Slice, canonical exponent, normalized mantissa)

slice(x) = blogβ |x |c+ 1, βslice(x)−1 ≤ |x | < βslice(x).

cexp(x) = ϕ(slice(x)).

smant(x) = x · β− cexp(x), x = smant(x) · βcexp(x).

Definition (Generic format)

Format Fϕ is a subset of R described by ϕ:

x ∈ Fϕ ⇔ x = Z(smant(x)) · βcexp(x).

Alternatively: x ∈ Fϕ ⇔ smant(x) ∈ Z.

S. Boldo, G. Melquiond Flocq: Floats in Coq ARITH’20 9 / 21



Introduction Core library Auxiliary libraries Conclusion Rounding & formats Generic formats Rounding operators

Generic Formats and Directed Rounding

Lemma (Validity of ϕ)

If the following properties hold ∀e ∈ Z

ϕ(e) < e ⇒ ϕ(e + 1) ≤ e

e ≤ ϕ(e)⇒
{
ϕ(ϕ(e) + 1) ≤ ϕ(e),
∀e ′, e ′ ≤ ϕ(e)⇒ ϕ(e ′) = ϕ(e),

then for all real x ,

f = bsmant(x)c · βcexp(x) is in Fϕ,

any element of Fϕ bigger than f is bigger than x .

Consequence: all the usual rounding relations are meaningful!

S. Boldo, G. Melquiond Flocq: Floats in Coq ARITH’20 10 / 21



Introduction Core library Auxiliary libraries Conclusion Rounding & formats Generic formats Rounding operators

Usual Formats

Definition (FIX)

Fixed-point format with exponent emin: ϕ(e) = emin.

Definition (FL*)

Floating-point format with precision p:

unbounded (FLX): ϕ(e) = e − p,

bounded with subnormal numbers (FLT):
ϕ(e) = max(e − p, emin),

bounded without subnormal numbers (FTZ):

ϕ(e) =

{
e − p if e − p ≥ emin,
emin + p − 1 otherwise.

S. Boldo, G. Melquiond Flocq: Floats in Coq ARITH’20 11 / 21



Introduction Core library Auxiliary libraries Conclusion Rounding & formats Generic formats Rounding operators

Usual Formats

Definition (FIX)

Fixed-point format with exponent emin: ϕ(e) = emin.

Definition (FL*)

Floating-point format with precision p:

unbounded (FLX): ϕ(e) = e − p,

bounded with subnormal numbers (FLT):
ϕ(e) = max(e − p, emin),

bounded without subnormal numbers (FTZ):

ϕ(e) =

{
e − p if e − p ≥ emin,
emin + p − 1 otherwise.

S. Boldo, G. Melquiond Flocq: Floats in Coq ARITH’20 11 / 21



Introduction Core library Auxiliary libraries Conclusion Rounding & formats Generic formats Rounding operators

Usual Formats

Definition (FIX)

Fixed-point format with exponent emin: ϕ(e) = emin.

Definition (FL*)

Floating-point format with precision p:

unbounded (FLX): ϕ(e) = e − p,

bounded with subnormal numbers (FLT):
ϕ(e) = max(e − p, emin),

bounded without subnormal numbers (FTZ):

ϕ(e) =

{
e − p if e − p ≥ emin,
emin + p − 1 otherwise.

S. Boldo, G. Melquiond Flocq: Floats in Coq ARITH’20 11 / 21



Introduction Core library Auxiliary libraries Conclusion Rounding & formats Generic formats Rounding operators

Usual Formats

Definition (FIX)

Fixed-point format with exponent emin: ϕ(e) = emin.

Definition (FL*)

Floating-point format with precision p:

unbounded (FLX): ϕ(e) = e − p,

bounded with subnormal numbers (FLT):
ϕ(e) = max(e − p, emin),

bounded without subnormal numbers (FTZ):

ϕ(e) =

{
e − p if e − p ≥ emin,
emin + p − 1 otherwise.

S. Boldo, G. Melquiond Flocq: Floats in Coq ARITH’20 11 / 21



Introduction Core library Auxiliary libraries Conclusion Rounding & formats Generic formats Rounding operators

Rounding Operators

Lemma (Rounding operators)

Let Zrnd : R→ Z increasing such that ∀x ∈ Z, Zrnd(x) = x .

Assuming ϕ is valid, the following function is a rounding for Fϕ:

x ∈ R 7→ Zrnd(smant(x)) · βcexp(x) ∈ Fϕ.

Example (Usual rounding modes)

Toward −∞: b·c. Toward +∞: d·e.
Toward zero: Z(·). To nearest: b·eeven, b·eaway.

S. Boldo, G. Melquiond Flocq: Floats in Coq ARITH’20 12 / 21



Introduction Core library Auxiliary libraries Conclusion Rounding & formats Generic formats Rounding operators

Rounding Operators

Lemma (Rounding operators)

Let Zrnd : R→ Z increasing such that ∀x ∈ Z, Zrnd(x) = x .

Assuming ϕ is valid, the following function is a rounding for Fϕ:

x ∈ R 7→ Zrnd(smant(x)) · βcexp(x) ∈ Fϕ.

Example (Usual rounding modes)

Toward −∞: b·c. Toward +∞: d·e.
Toward zero: Z(·). To nearest: b·eeven, b·eaway.

S. Boldo, G. Melquiond Flocq: Floats in Coq ARITH’20 12 / 21



Introduction Core library Auxiliary libraries Conclusion Rounding & formats Generic formats Rounding operators

Flushing to Zero

Example (Flush-to-zero)

Rounding to nearest number with p digits
but with subnormal numbers flushed to zero:

ϕ(e) =

{
e − p if e − p ≥ emin,
emin + p − 1 otherwise.

Zrnd(x) =

{
bxe if |x | ≥ 1,
0 otherwise.

S. Boldo, G. Melquiond Flocq: Floats in Coq ARITH’20 13 / 21



Introduction Core library Auxiliary libraries Conclusion High-level properties Computable operators

Auxiliary Libraries

1 Introduction

2 Core library

3 Auxiliary libraries
High-level properties
Computable operators

4 Conclusion

S. Boldo, G. Melquiond Flocq: Floats in Coq ARITH’20 14 / 21



Introduction Core library Auxiliary libraries Conclusion High-level properties Computable operators

High-Level Properties: Addition

Theorem (Sterbenz)

Assuming that ϕ is valid and nondecreasing,

∀x , y ∈ Fϕ,
y

2
≤ x ≤ 2y ⇒ x − y ∈ Fϕ.

Theorem (plus error)

Assuming that ϕ is valid and nondecreasing
and that roundN

ϕ rounds to nearest,

∀x , y ∈ Fϕ, roundN
ϕ (x + y)− (x + y) ∈ Fϕ.

Weak constraint on ϕ ⇒ Valid for FIX, FLX, FLT.

S. Boldo, G. Melquiond Flocq: Floats in Coq ARITH’20 15 / 21



Introduction Core library Auxiliary libraries Conclusion High-level properties Computable operators

High-Level Properties: Addition

Theorem (Sterbenz)

Assuming that ϕ is valid and nondecreasing,

∀x , y ∈ Fϕ,
y

2
≤ x ≤ 2y ⇒ x − y ∈ Fϕ.

Theorem (plus error)

Assuming that ϕ is valid and nondecreasing
and that roundN

ϕ rounds to nearest,

∀x , y ∈ Fϕ, roundN
ϕ (x + y)− (x + y) ∈ Fϕ.

Weak constraint on ϕ ⇒ Valid for FIX, FLX, FLT.

S. Boldo, G. Melquiond Flocq: Floats in Coq ARITH’20 15 / 21



Introduction Core library Auxiliary libraries Conclusion High-level properties Computable operators

High-Level Properties: Addition

Theorem (Sterbenz)

Assuming that ϕ is valid and nondecreasing,

∀x , y ∈ Fϕ,
y

2
≤ x ≤ 2y ⇒ x − y ∈ Fϕ.

Theorem (plus error)

Assuming that ϕ is valid and nondecreasing
and that roundN

ϕ rounds to nearest,

∀x , y ∈ Fϕ, roundN
ϕ (x + y)− (x + y) ∈ Fϕ.

Weak constraint on ϕ ⇒ Valid for FIX, FLX, FLT.

S. Boldo, G. Melquiond Flocq: Floats in Coq ARITH’20 15 / 21



Introduction Core library Auxiliary libraries Conclusion High-level properties Computable operators

High-Level Properties: Relative Error

Theorem (generic relative error ex)

Assuming that ϕ is valid and that there exists p and emin such that

∀k ∈ Z, emin < k ⇒ p ≤ k − ϕ(k).

Then, for any rounding operator roundϕ and for any real x such
that βemin ≤ |x |, there exists ε such that

|ε| < β1−p and roundϕ(x) = x · (1 + ε).

Valid for FLX, FLT, FTZ.
Special case: β1−p/2 when rounding to nearest.

S. Boldo, G. Melquiond Flocq: Floats in Coq ARITH’20 16 / 21



Introduction Core library Auxiliary libraries Conclusion High-level properties Computable operators

High-Level Properties: Relative Error

Theorem (generic relative error ex)

Assuming that ϕ is valid and that there exists p and emin such that

∀k ∈ Z, emin < k ⇒ p ≤ k − ϕ(k).

Then, for any rounding operator roundϕ and for any real x such
that βemin ≤ |x |, there exists ε such that

|ε| < β1−p and roundϕ(x) = x · (1 + ε).

Valid for FLX, FLT, FTZ.
Special case: β1−p/2 when rounding to nearest.

S. Boldo, G. Melquiond Flocq: Floats in Coq ARITH’20 16 / 21



Introduction Core library Auxiliary libraries Conclusion High-level properties Computable operators

High-Level Properties

Lots of other theorems:

Error of multiplication is representable in FLX.

Remainders of ÷ and
√
· are representable in FLX.

Some facts about ulp.

. . .

S. Boldo, G. Melquiond Flocq: Floats in Coq ARITH’20 17 / 21



Introduction Core library Auxiliary libraries Conclusion High-level properties Computable operators

Computable Floating-point Operators

How to round a real number x > 0?

an accurate approximation f of x , (guard bits if needed)
the relative location of x wrt f . (round, sticky)

Addition and multiplication:

naive algorithm: compute the exact result first.

Division and square root:

scale inputs so that the integer result has enough digits,
use the integer remainder to get the relative location.

Generic radix, independent of formats (' FLX).
Format ϕ is needed only at round time, if there are enough digits.

S. Boldo, G. Melquiond Flocq: Floats in Coq ARITH’20 18 / 21



Introduction Core library Auxiliary libraries Conclusion High-level properties Computable operators

Computable Floating-point Operators

How to round a real number x > 0?

an accurate approximation f of x , (guard bits if needed)
the relative location of x wrt f . (round, sticky)

Addition and multiplication:

naive algorithm: compute the exact result first.

Division and square root:

scale inputs so that the integer result has enough digits,
use the integer remainder to get the relative location.

Generic radix, independent of formats (' FLX).
Format ϕ is needed only at round time, if there are enough digits.

S. Boldo, G. Melquiond Flocq: Floats in Coq ARITH’20 18 / 21



Introduction Core library Auxiliary libraries Conclusion High-level properties Computable operators

Computable Floating-point Operators

How to round a real number x > 0?

an accurate approximation f of x , (guard bits if needed)
the relative location of x wrt f . (round, sticky)

Addition and multiplication:

naive algorithm: compute the exact result first.

Division and square root:

scale inputs so that the integer result has enough digits,
use the integer remainder to get the relative location.

Generic radix, independent of formats (' FLX).
Format ϕ is needed only at round time, if there are enough digits.

S. Boldo, G. Melquiond Flocq: Floats in Coq ARITH’20 18 / 21



Introduction Core library Auxiliary libraries Conclusion High-level properties Computable operators

Application: IEEE-754 Binary Arithmetic

Exceptional values: signed zeros, infinities, NaN (no payload).

Conversion from/to binary interchange formats.

Computable arithmetic operators (+, −, ×, ÷,
√
·),

“performed as if it first produced an intermediate result correct to infinite
precision and with unbounded range, and then rounded that intermediate. . . ”

Example (Square root tests from FPAccuracy)

1055 binary64 tests.

Definition check inp out :=
bits_of_b64 (b64_sqrt mode_NE (b64_of_bits inp))

== out.

Whole testsuite checked in 3 seconds by Coq.

S. Boldo, G. Melquiond Flocq: Floats in Coq ARITH’20 19 / 21



Introduction Core library Auxiliary libraries Conclusion High-level properties Computable operators

Application: IEEE-754 Binary Arithmetic

Exceptional values: signed zeros, infinities, NaN (no payload).

Conversion from/to binary interchange formats.

Computable arithmetic operators (+, −, ×, ÷,
√
·),

“performed as if it first produced an intermediate result correct to infinite
precision and with unbounded range, and then rounded that intermediate. . . ”

Example (Square root tests from FPAccuracy)

1055 binary64 tests.

Definition check inp out :=
bits_of_b64 (b64_sqrt mode_NE (b64_of_bits inp))

== out.

Whole testsuite checked in 3 seconds by Coq.

S. Boldo, G. Melquiond Flocq: Floats in Coq ARITH’20 19 / 21



Introduction Core library Auxiliary libraries Conclusion

Conclusion

Flocq: 15 000 lines of Coq, 600 theorems,

any radix, any format,

both axiomatic and computable definitions of rounding,

effective arithmetic operators,

numerous theorems.

Applications:

Frama-C/Jessie C code certifier

CompCert certified C compiler

S. Boldo, G. Melquiond Flocq: Floats in Coq ARITH’20 20 / 21



Introduction Core library Auxiliary libraries Conclusion

Conclusion

Flocq: 15 000 lines of Coq, 600 theorems,

any radix, any format,

both axiomatic and computable definitions of rounding,

effective arithmetic operators,

numerous theorems.

Applications:

Frama-C/Jessie C code certifier

CompCert certified C compiler

S. Boldo, G. Melquiond Flocq: Floats in Coq ARITH’20 20 / 21



Introduction Core library Auxiliary libraries Conclusion

Questions?

Flocq: http://flocq.gforge.inria.fr/.

S. Boldo, G. Melquiond Flocq: Floats in Coq ARITH’20 21 / 21

http://flocq.gforge.inria.fr/

	Introduction
	Introduction
	Prior work
	Motivations

	Core library
	Axiomatic rounding and formats
	Generalizing formats
	Rounding operators

	Auxiliary libraries
	High-level properties
	Computable operators

	Conclusion

