Flocq: A Unified Library for Proving Floating-point Algorithms in Coq

Sylvie Boldo Guillaume Melquiond

INRIA, LRI, ANR F∮ST

2011-07-27

Computer Arithmetic and Formal Proofs

Floating-point arithmetic: a widely-used approach for approximating computations on real numbers.

Numerical issues: exceptional behaviors, inaccurate results. Usually out of the reach of exhaustive testing.

Computer Arithmetic and Formal Proofs

Floating-point arithmetic: a widely-used approach for approximating computations on real numbers.

Numerical issues: exceptional behaviors, inaccurate results. Usually out of the reach of exhaustive testing.

High level of safety thanks to formal methods: model checking, satisfiability, temporal logic, abstract interpretation, and so on. Automated and suitable for large codes.

Computer Arithmetic and Formal Proofs

Floating-point arithmetic: a widely-used approach for approximating computations on real numbers.

Numerical issues: exceptional behaviors, inaccurate results. Usually out of the reach of exhaustive testing.

High level of safety thanks to formal methods: model checking, satisfiability, temporal logic, abstract interpretation, and so on. Automated and suitable for large codes.

What about correctness? Intricate algorithms require formal proofs. (Hopefully they are short.)

Some Prior Work on Formal Proofs for FP Arithmetic

Formal proof: a proof that can be checked automatically by a computer.

• Formalization of standards:

Barrett (Z), Carreño, Miner (PVS), Loiseleur (Coq).

• Certification of low-level designs:

Kaufmann, Lynch, Moore, Russinoff (ACL2), Kaivola, Kohatsu (Forte), Berg, Jacobi (PVS).

• Certification of high-level algorithms: Harrison (HOL Light), Boldo (Coq).

Some Prior Work in Coq

• Float \rightarrow Pff

theorems about FP arithmetic

- any radix, only FLT format (with subnormal numbers),
- axiomatized rounding operators,
- comprehensive library.

• Gappa

verification of FP algorithms

- radix 2, any format,
- effective rounding for dyadic numbers (+, \times),
- dedicated library.
- Coq.Interval

proofs automated by FP computations

- any radix, only FLX format (normal numbers only),
- effective FP operations (+, $\times,$ ÷, $\sqrt{\cdot},$ etc),
- dedicated library, some incomplete proofs.

Some Prior Work in Coq

- Float \rightarrow Pff theorems about FP arithmetic
 - any radix, only FLT format (with subnormal numbers),
 - axiomatized rounding operators,
 - comprehensive library.

• Gappa

```
verification of FP algorithms
```

- radix 2, any format,
- effective rounding for dyadic numbers $(+, \times)$,
- dedicated library.
- Coq.Interval

proofs automated by FP computations

- any radix, only FLX format (normal numbers only),
- effective FP operations (+, \times , \div , $\sqrt{\cdot}$, etc),
- dedicated library, some incomplete proofs.

Motivations

- Ease the combined usage of several formalisms:
 - proof obligations generated by the Why tool,
 - theorems already proved in the Pff library,
 - automation provided by the gappa tactic.

Motivations

- Ease the combined usage of several formalisms:
 - proof obligations generated by the Why tool,
 - theorems already proved in the Pff library,
 - automation provided by the gappa tactic.
- Design a formalization:
 - as generic as possible,
 - that avoids earlier shortcomings,
 - that scales better with future works.

Motivations

- Ease the combined usage of several formalisms:
 - proof obligations generated by the Why tool,
 - theorems already proved in the Pff library,
 - automation provided by the gappa tactic.
- Design a formalization:
 - as generic as possible,
 - that avoids earlier shortcomings,
 - that scales better with future works.
- Explore properties of usual and exotic formats.

 \implies Flocq: a Coq formalization for computer arithmetic.

Core Library

Introduction

- 2 Core library
 - Axiomatic rounding and formats
 - Generalizing formats
 - Rounding operators

3 Auxiliary libraries

Predefined Axiomatic Rounding

Axiomatic rounding: relation Q(x, f) "real x rounds to f."

Predefined relations: rounding downward, upward, toward zero, to nearest, for any format F.

Predefined Axiomatic Rounding

Axiomatic rounding: relation Q(x, f) "real x rounds to f."

Predefined relations: rounding downward, upward, toward zero, to nearest, for any format F.

Example $(\bigtriangledown_F, \text{ rounding toward } -\infty \text{ on } F)$ $\bigtriangledown_F(x, f) \equiv f \in F \land f \leq x \land (\forall g \in F, g \leq x \Rightarrow g \leq f).$

Predefined Axiomatic Rounding

Axiomatic rounding: relation Q(x, f) "real x rounds to f."

Predefined relations: rounding downward, upward, toward zero, to nearest, for any format F.

Example $(\bigtriangledown_F, \text{ rounding toward } -\infty \text{ on } F)$ $\bigtriangledown_F(x, f) \equiv f \in F \land f \leq x \land (\forall g \in F, g \leq x \Rightarrow g \leq f).$

All these relations describe monotone total functions when format F satisfies:

•
$$0 \in F$$
, $\forall x \in \mathbb{R}$, $x \in F \Rightarrow -x \in F$, (zero, symmetry)
• $\forall x \in \mathbb{R}$, $\exists f \in \mathbb{R}$, $\bigtriangledown_F(x, f)$. (existence of rounding down)

Predefined Formats

Definition (Number in radix β)

A floating-point number is a pair $(m, e) \in \mathbb{Z}^2$ that represents the real number $m \cdot \beta^e$. Note: no signed zeros, no infinities, no NaN.

Predefined Formats

Definition (Number in radix β)

A floating-point number is a pair $(m, e) \in \mathbb{Z}^2$ that represents the real number $m \cdot \beta^e$. Note: no signed zeros, no infinities, no NaN.

Format	is the set of all reals $x = m \cdot \beta^e$ such that
$FIX_{e_{\min}}$	$e = e_{\min}$
FLX_p	$ m < \beta^p$
FLXN _p	$x \neq 0 \Rightarrow \beta^{p-1} \leq m < \beta^p$
$FLT_{p,e_{\min}}$	$e_{min} \leq e \wedge m < eta^p$
$FTZ_{p,e_{\min}}$	$x \neq 0 \Rightarrow e_{\min} \leq e \wedge \beta^{p-1} \leq m < \beta^p$

Generalizing Formats

Single parameter: $\varphi : \mathbb{Z} \to \mathbb{Z}$.

Definition (Slice, canonical exponent, normalized mantissa)

- slice(x) = $\lfloor \log_{\beta} |x| \rfloor + 1$,
- $\operatorname{cexp}(x) = \varphi(\operatorname{slice}(x)).$
- smant $(x) = x \cdot \beta^{-\operatorname{cexp}(x)}$,

 $\beta^{\operatorname{slice}(x)-1} \leq |x| < \beta^{\operatorname{slice}(x)}.$

$$x = \operatorname{smant}(x) \cdot \beta^{\operatorname{cexp}(x)}.$$

 $\beta^{\operatorname{slice}(x)-1} < |x| < \beta^{\operatorname{slice}(x)}.$

Generalizing Formats

Single parameter: $\varphi : \mathbb{Z} \to \mathbb{Z}$.

Definition (Slice, canonical exponent, normalized mantissa)

- slice(x) = $\lfloor \log_{\beta} |x| \rfloor + 1$,
- $\operatorname{cexp}(x) = \varphi(\operatorname{slice}(x)).$

• smant
$$(x) = x \cdot \beta^{-\operatorname{cexp}(x)}$$
, $x = \operatorname{smant}(x) \cdot \beta^{\operatorname{cexp}(x)}$.

Definition (Generic format)

Format \mathbb{F}_{φ} is a subset of \mathbb{R} described by φ :

 $x \in \mathbb{F}_{\varphi} \Leftrightarrow x = \mathcal{Z}(\operatorname{smant}(x)) \cdot \beta^{\operatorname{cexp}(x)}.$

Alternatively: $x \in \mathbb{F}_{\varphi} \Leftrightarrow \operatorname{smant}(x) \in \mathbb{Z}$.

Generic Formats and Directed Rounding

Lemma (Validity of φ)

If the following properties hold $\forall e \in \mathbb{Z}$

$$arphi(e) < e \Rightarrow arphi(e+1) \leq e$$
 $e \leq arphi(e) \Rightarrow \left\{egin{array}{l} arphi(arphi(e)+1) \leq arphi(e), \ orall e', \ e' \leq arphi(e) \Rightarrow arphi(e') = arphi(e) \end{array}
ight.$

then for all real x,

•
$$f = \lfloor \mathsf{smant}(x)
floor \cdot eta^{\mathsf{cexp}(x)}$$
 is in \mathbb{F}_{arphi}

• any element of \mathbb{F}_{φ} bigger than f is bigger than x.

Consequence: all the usual rounding relations are meaningful!

Definition (FIX)

Fixed-point format with exponent e_{\min} : $\varphi(e) = e_{\min}$.

Definition (FIX)

Fixed-point format with exponent e_{\min} : $\varphi(e) = e_{\min}$.

Definition (FL*)

Floating-point format with precision *p*:

• unbounded (FLX): $\varphi(e) = e - p$,

Definition (FIX)

Fixed-point format with exponent e_{\min} : $\varphi(e) = e_{\min}$.

Definition (FL*)

Floating-point format with precision *p*:

- unbounded (FLX): $\varphi(e) = e p$,
- bounded with subnormal numbers (FLT): $\varphi(e) = \max(e - p, e_{\min}),$

Definition (FIX)

Fixed-point format with exponent e_{\min} : $\varphi(e) = e_{\min}$.

Definition (FL*)

Floating-point format with precision *p*:

- unbounded (FLX): $\varphi(e) = e p$,
- bounded with subnormal numbers (FLT): $\varphi(e) = \max(e - p, e_{\min}),$
- bounded without subnormal numbers (FTZ): $\varphi(e) = \begin{cases} e - p & \text{if } e - p \ge e_{\min}, \\ e_{\min} + p - 1 & \text{otherwise.} \end{cases}$

Rounding Operators

Lemma (Rounding operators)

Let Zrnd : $\mathbb{R} \to \mathbb{Z}$ increasing such that $\forall x \in \mathbb{Z}$, Zrnd(x) = x.

Assuming φ is valid, the following function is a rounding for \mathbb{F}_{φ} :

 $x \in \mathbb{R} \mapsto \operatorname{Zrnd}(\operatorname{smant}(x)) \cdot \beta^{\operatorname{cexp}(x)} \in \mathbb{F}_{\varphi}.$

Rounding Operators

Lemma (Rounding operators)

Let Zrnd : $\mathbb{R} \to \mathbb{Z}$ increasing such that $\forall x \in \mathbb{Z}$, Zrnd(x) = x.

Assuming φ is valid, the following function is a rounding for \mathbb{F}_{φ} :

 $x \in \mathbb{R} \mapsto \operatorname{Zrnd}(\operatorname{smant}(x)) \cdot \beta^{\operatorname{cexp}(x)} \in \mathbb{F}_{\varphi}.$

Example (Usual rounding modes)

Toward $-\infty$: $\lfloor \cdot \rfloor$. Toward $+\infty$: $\lceil \cdot \rceil$. Toward zero: $\mathcal{Z}(\cdot)$. To nearest: $\lfloor \cdot \rceil_{\text{even}}$, $\lfloor \cdot \rceil_{\text{away}}$.

Flushing to Zero

Example (Flush-to-zero)

Rounding to nearest number with p digits but with subnormal numbers flushed to zero:

•
$$\varphi(e) = \begin{cases} e-p & \text{if } e-p \ge e_{\min}, \\ e_{\min}+p-1 & \text{otherwise.} \end{cases}$$

• $\operatorname{Zrnd}(x) = \begin{cases} \lfloor x \rceil & \text{if } |x| \ge 1, \\ 0 & \text{otherwise.} \end{cases}$

Auxiliary Libraries

- 2 Core library
- 3 Auxiliary libraries
 - High-level properties
 - Computable operators

4 Conclusion

High-Level Properties: Addition

Theorem (Sterbenz)

Assuming that φ is valid and nondecreasing,

$$orall x,y\in \mathbb{F}_arphi, \; rac{y}{2}\leq x\leq 2y \Rightarrow x-y\in \mathbb{F}_arphi.$$

High-Level Properties: Addition

Theorem (Sterbenz)

Assuming that φ is valid and nondecreasing,

$$\forall x, y \in \mathbb{F}_{arphi}, \ rac{y}{2} \leq x \leq 2y \Rightarrow x-y \in \mathbb{F}_{arphi}.$$

Theorem (plus_error)

Assuming that φ is valid and nondecreasing and that ${\rm round}_{\varphi}^N$ rounds to nearest,

$$\forall x, y \in \mathbb{F}_{\varphi}, \text{ round}_{\varphi}^{N}(x+y) - (x+y) \in \mathbb{F}_{\varphi}.$$

High-Level Properties: Addition

Theorem (Sterbenz)

Assuming that φ is valid and nondecreasing,

$$\forall x, y \in \mathbb{F}_{\varphi}, \ rac{y}{2} \leq x \leq 2y \Rightarrow x - y \in \mathbb{F}_{\varphi}.$$

Theorem (plus_error)

Assuming that φ is valid and nondecreasing and that ${\rm round}_{\varphi}^{\sf N}$ rounds to nearest,

$$\forall x, y \in \mathbb{F}_{\varphi}, \text{ round}_{\varphi}^{N}(x+y) - (x+y) \in \mathbb{F}_{\varphi}.$$

Weak constraint on $\varphi \Rightarrow$ Valid for FIX, FLX, FLT.

High-Level Properties: Relative Error

Theorem (generic_relative_error_ex)

Assuming that φ is valid and that there exists p and e_{\min} such that

$$\forall k \in \mathbb{Z}, \quad e_{\min} < k \Rightarrow p \le k - \varphi(k).$$

Then, for any rounding operator $\operatorname{round}_{\varphi}$ and for any real x such that $\beta^{e_{\min}} \leq |x|$, there exists ε such that

$$|\varepsilon| < \beta^{1-p}$$
 and round _{φ} $(x) = x \cdot (1 + \varepsilon)$.

High-Level Properties: Relative Error

Theorem (generic_relative_error_ex)

Assuming that φ is valid and that there exists p and e_{\min} such that

$$\forall k \in \mathbb{Z}, \quad e_{\min} < k \Rightarrow p \le k - \varphi(k).$$

Then, for any rounding operator $\operatorname{round}_{\varphi}$ and for any real x such that $\beta^{e_{\min}} \leq |x|$, there exists ε such that

$$|\varepsilon| < \beta^{1-p}$$
 and round $\varphi(x) = x \cdot (1+\varepsilon)$.

Valid for FLX, FLT, FTZ.

Special case: $\beta^{1-p}/2$ when rounding to nearest.

High-Level Properties

Lots of other theorems:

- Error of multiplication is representable in FLX.
- Remainders of \div and $\sqrt{\cdot}$ are representable in FLX.
- Some facts about ulp.

• . . .

Computable Floating-point Operators

- How to round a real number x > 0?
 - an accurate approximation f of x,
 - the relative location of x wrt f.

(guard bits if needed) (round, sticky)

Computable Floating-point Operators

- How to round a real number x > 0?
 - an accurate approximation f of x,
 - the relative location of x wrt f.
- Addition and multiplication:
 - naive algorithm: compute the exact result first.
- Division and square root:
 - scale inputs so that the integer result has enough digits,
 - use the integer remainder to get the relative location.

e evact recult first

(guard bits if needed)

(round, sticky)

Computable Floating-point Operators

- How to round a real number x > 0?
 - an accurate approximation f of x,
 - the relative location of x wrt f.
- Addition and multiplication:
 - naive algorithm: compute the exact result first.
- Division and square root:
 - scale inputs so that the integer result has enough digits,
 - use the integer remainder to get the relative location.

Generic radix, independent of formats (\simeq FLX). Format φ is needed only at round time, if there are enough digits.

(guard bits if needed) (round, sticky)

Application: IEEE-754 Binary Arithmetic

- Exceptional values: signed zeros, infinities, NaN (no payload).
- Conversion from/to binary interchange formats.
- Computable arithmetic operators (+, -, \times , \div , $\sqrt{\cdot}$),

"performed as if it first produced an intermediate result correct to infinite precision and with unbounded range, and then rounded that intermediate..."

Application: IEEE-754 Binary Arithmetic

- Exceptional values: signed zeros, infinities, NaN (no payload).
- Conversion from/to binary interchange formats.
- Computable arithmetic operators (+, -, \times , \div , $\sqrt{\cdot}$),

"performed as if it first produced an intermediate result correct to infinite precision and with unbounded range, and then rounded that intermediate..."

Example (Square root tests from FPAccuracy)

1055 binary64 tests.

```
Definition check inp out :=
bits_of_b64 (b64_sqrt mode_NE (b64_of_bits inp))
        == out.
```

Whole testsuite checked in 3 seconds by Coq.

Conclusion

Flocq: 15 000 lines of Coq, 600 theorems,

- any radix, any format,
- both axiomatic and computable definitions of rounding,
- effective arithmetic operators,
- numerous theorems.

Conclusion

Flocq: 15 000 lines of Coq, 600 theorems,

- any radix, any format,
- both axiomatic and computable definitions of rounding,
- effective arithmetic operators,
- numerous theorems.

Applications:

- Frama-C/Jessie
- CompCert

C code certifier certified C compiler

Questions?

Flocq: http://flocq.gforge.inria.fr/.