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Introduction Prelim Ex:Sine Ex:Division Conclusion

Why Floating-point Arithmetic?

The real world is much more continuous than one could hope,
so real numbers tend to creep in all the applications.

How to compute with them?

Use a subset, e.g. rational or algebraic numbers.

Compute with arbitrary precision.

Approximate operations, e.g. floating-point numbers.

Speed of FP operations is high and deterministic,
but all bets are off with respect to the quality of FP results:
precision is known, but accuracy is not.
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Why is FP Arithmetic Amenable to Formal Proof?

IEEE-754 standard for FP arithmetic

Every operation shall be performed as if it first produced
an intermediate result correct to infinite precision and
with unbounded range, and then rounded that result.

Concise specification, suitable for program verification.

It is all about real numbers.
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Tutorial: FP Algorithms and Proof Automation

What kind of proof automation can we expect?

Nothing new today, all the tools are at least 5-year old.

Example (FP algorithms and their Coq proofs)

1 Approximate the sine function:
a straightforward proof about method and round-off errors.

2 Perform an integer division:
an intricate proof about convergent computations and
exclusion zones.
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Outline

1 Introduction

2 Preliminaries
Rounding operators
Tools and libraries
Interval arithmetic

3 A straightforward example: sine around zero

4 An intricate example: integer division

5 Conclusion
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Exceptional Values

Floating-point computations can lead to exceptional behaviors:

invalid operations:
√
−1,

overflow: 2× 2× · · · × 2.

When proving a FP algorithm, the very first step is to prove that

exceptional behaviors cannot arise, or

they are properly handled.

Today’s talk is not about floating-point exceptions.
Let us assume that they are proved not to occur.
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Floating-point Numbers and Real Numbers

Since there are no exceptional behaviors,
floating-point numbers can be embedded into real numbers.

Representable numbers

F = {m · βe ∈ R | m, e ∈ Z ∧ |m| < βp ∧ e ≥ emin}

with β, p, and emin depending on the format.

Rounding operators

The result of an addition a⊕ b is ◦(a + b)
with ◦ : R→ F a monotonic function that is the identity on F.
◦(·) depends on the destination format and the rounding direction.
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Tools and Libraries

Flocq: Coq formalization of floating-point arithmetic
(any radix, any format).

Gappa: C++ program for proving arithmetic properties
involving rounding operators.

Interval: Coq tactic for proving bounds on differentiable
real-valued expressions.
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Interval Arithmetic

Interval arithmetic extends operations on real numbers to
operations on closed connected subsets of real numbers.

Application

Instead of proving ∀x ∈ [a, b], f (x) ∈ [c , d ],
you can prove F ([a, b]) ⊆ [c , d ],
assuming that F is an interval extension of f .

Evaluating F is easy; it involves operations on bounds only:

x ∈ [a, b] ∧ y ∈ [c , d ]⇒ x + y ∈ [a + c , b + d ].

This makes interval arithmetic suitable for automatically proving
bounds on real-valued expressions.
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Example: Sine Around Zero

How to efficiently compute sin x for |x | ≤ 1
with a relative accuracy bounded by 103 · 2−16?

Example (Toy sine)

float toy_sin(float x) {
if (fabsf(x) < 0x1p -5f) return x;
return x * (1.0f - x * x * 0x28e9p -16f);

}

An actual implementation of sin would

use more than just 2 polynomials, and/or

perform an argument reduction.

But the proof process is the same!
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Approximating a Mathematical Function

How to compute an accurate FP approximation of g(x) for any x?

1 Find an approximation ĝ of g that uses only real operations
that can be approximated by your floating-point unit.

Bound the method error εm ≥ |ĝ(x)/g(x)− 1|.

2 Write g̃ that implements ĝ with floating-point operations.

Bound the round-off error εr ≥ |g̃(x)/ĝ(x)− 1|.

3 Compose both bounds to get ε ≥ |g̃(x)/g(x)− 1|.

Proving correctness is just a matter of computing tight bounds
for these expressions.
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Method Error (Relative)

Method error: x ·(1−x2·10473·2−16)
sin x − 1.

Tactic interval knows how to bound such an expression.
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Binary32 Round-off Error (Relative)

Round-off error: ◦(x ·◦(1−◦(◦(x2)·10473·2−16)))
x ·(1−x2·10473·2−16)

− 1.

Tactic gappa knows how to bound such an expression.
(And how to compose method and round-off errors.)
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Correctness Statement in Coq

Notation fsub x y :=
(round radix2 binary32_fmt rndNE (x - y)).

Notation fmul x y :=
(round radix2 binary32_fmt rndNE (x * y)).

Definition fsin x :=
if Rle_lt_dec (pow2 (-5)) (Rabs x) then

fmul x (fsub 1 (fmul (fmul x x)
(10473 * pow2 (-16))))

else x.

Lemma sine_spec : forall x, Rabs x <= 1 ->
Rabs (fsin x - sin x) <= 103* pow2 (-16) *

Rabs (sin x).
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Proof Sketch in Coq

Lemma sine_spec : forall x, Rabs x <= 1 ->
Rabs (fsin x - sin x) <= 103 * pow2 (-16) *

Rabs (sin x).
Proof.
intros x Bx. unfold fsin.
case Rle_lt_dec ; intros Bx ’.
- (* |x| >= 1/32, degree -3 approx *)

assert (Rabs (x * (1 - x * x * (10473* pow2 (-16))) -
sin x) <= 102* pow2 (-16) * Rabs (sin x)).

(* bound the method error *)
interval with (i_bisect_diff x).

(* bound the round -off and total errors *)
gappa.

- (* |x| < 1/32, degree -1 approx *)
destruct (MVT_cor2 sin cos).
interval.

Qed.
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What the Actual Coq Proof Looks Like
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A Few Words About the interval Tactic

The scourge of interval arithmetic: the dependency effect.

Example

If y ∈ [0, 1], then y − y ∈ [0− 1, 1− 0] = [−1, 1].
Impossible to prove y − y = 0 by interval arithmetic.

Note: the method error ĝ(x)− g(x) shows such an effect.

interval

“interval” performs naive interval arithmetic.

“with (i bisect x)” subdivides the input range of x.

“with (i bisect diff x)” subdivides and applies order-1
arithmetic: ∀x ∈ X , f (x) ∈ f (x0) + (X − x0)× f ′(X ).
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Integer Division on Itanium

Intel Itanium processors have no hardware divisor.
How to efficiently perform a division with just add and mul?

Example (Division of 16-bit unsigned integers on Itanium)

// Inputs: dividend a in f6, divisor b in f7, 1 + 2−17 in f9
frcpa.s1 f8 ,p6=f6 ,f7 ;;

(p6) fma.s1 f6=f6 ,f8 ,f0
(p6) fnma.s1 f7=f7 ,f8 ,f9 ;;
(p6) fma.s1 f8=f7 ,f6 ,f6 ;;

fcvt.fx.trunc.s1 f8=f8
// Output: ba/bc in f8

Cornea, Iordache, Harrison, Markstein, “Integer Divide and Remainder
Operations in the Intel IA-64 Architecture,” RNC 2000.

Harrison, “Formal verification of IA-64 division algorithms,” TPHOL 2000.
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Integer Division on Itanium

Example (Division of 16-bit unsigned integers on Itanium)

y0 ≈ 1/b [frcpa]

q0 = ◦(a× y0)

e0 = ◦(1 + 2−17 − b × y0)

q1 = ◦(e0 × q0 + q0)

q = bq1c

with ◦(·) rounding to nearest on the extended 82-bit format.

Correctness of the division

∀a, b ∈ [[1; 65535]], q = ba/bc.
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Correctness Statement in Coq

Notation fma x y z :=
(round radix2 register_fmt rndNE (x * y + z)).

Axiom frcpa : R -> R.
Axiom frcpa_spec : forall x : R,

1 <= Rabs x <= 65536 ->
generic_format radix2 (FLT_exp _ 11) (frcpa x) /\
Rabs (frcpa x - 1/x) <= 4433* pow2 (-21) * Rabs (1/x).

Definition div_u16 a b :=
let y0 := frcpa b in
let q0 := fma a y0 0 in
let e0 := fnma b y0 (1 + pow2 (-17)) in
let q1 := fma e0 q0 q0 in
Zfloor q1.

Lemma div_u16_spec : forall a b,
(1 <= a <= 65535)%Z ->
(1 <= b <= 65535)%Z ->
div_u16 a b = (a / b)%Z.
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Proof Sketch

Theorem (Exclusion zones)

Given a and b positive integers.
If 0 ≤ a× (q1/(a/b)− 1) < 1, then bq1c = ba/bc.

Proof.

By equivalence between the following properties:

1 ba/bc ≤ q1 < ba/bc+ 1.

2 b × ba/bc − a ≤ b × q1 − a < b × (ba/bc+ 1)− a.

3 −(a mod b) ≤ a× (q1/(a/b)− 1) < b − (a mod b).

Notice the relative error between the FP value q1 and the real a/b.
So proving the correctness is just a matter of bounding this error.
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Proof Sketch Continued

Bounding the method error q̂1 − a/b and the round-off error
q1 − q̂1 and composing them does not work at all.

What the developers knew when designing the algorithm:

If not for 2−17, the code would perform a Newton iteration:
q̂1/(a/b)− 1 = −ε2

0 with ε0 = y0/(1/b)− 1.

By taking into account 2−17,
q̂1/(a/b)− 1 = −ε2

0 + (1 + ε0) · 2−17.
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Proof Sketch, the Coq Version

Lemma div_u16_spec : forall a b,
(1 <= a <= 65535)%Z -> (1 <= b <= 65535)%Z ->
div_u16 a b = (a / b)%Z.

Proof.
intros a b Ba Bb.
apply Zfloor_imp.
cut (0 <= b * q1 - a < 1).

lra.
set (err := (q1 - a / b) / (a / b)).
replace (b * q1 - a) with (a * err) by field.
set (y0 := frcpa b).
set (Mq0 := a * y0 + 0).
set (Me0 := 1 + pow2 (-17) - b * y0).
set (Mq1 := Me0 * Mq0 + Mq0).
set (eps0 := (y0 - 1 / b) / (1 / b)).
assert ((Mq1 - a / b) / (a / b) =

-(eps0 * eps0) + (1 + eps0) * pow2 (-17)) by field.
generalize (frcpa_spec b) (FIX_format_Z2R radix2 a)

(FIX_format_Z2R radix2 b).
gappa.
Qed.
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What the Actual Coq Proof Looks Like
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A few Words About the gappa Tactic

Starting from a formula, Gappa saturates a set of theorems to
deduce new properties until it encounters a contradiction.

Supported properties

BND(x , I ) ≡ x ∈ I
ABS(x , I ) ≡ |x | ∈ I
REL(x , y , I ) ≡ ∃ε ∈ I , x = y · (1 + ε)
FIX(x , e) ≡ ∃m ∈ Z, x = m · 2e
FLT(x , p) ≡ ∃m, e ∈ Z, x = m · 2e ∧ |m| < 2p

NZR(x) ≡ x 6= 0
EQL(x , y) ≡ x = y

On the example, Gappa tries to apply about 2000 theorems.
The final proof manipulates about 100 properties.
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Where Does the Specification of frcpa Come From?

How do we know |ε0| ≤ 4433 · 2−21 and that y0 fits on 11 bits?
By reading the pseudo-code:

fp_ieee_recip(den)
{

RECIP_TABLE [256] = {
0x3fc ,0x3f4 ,0x3ec ,0x3e4 ,0x3dd ,0x3d5 ,0x3cd ,0x3c6 ,
// ... 29 lines ...
0x020 ,0x01e ,0x01c ,0x01a ,0x018 ,0x015 ,0x013 ,0x011 ,
0x00f ,0x00d ,0x00b ,0x009 ,0x007 ,0x005 ,0x003 ,0x001 ,

};

tmp_index = den.significand {62:55};
tmp_res.significand = (1 << 63) | (RECIP_TABLE[

tmp_index] << 53);
tmp_res.exponent = FP_REG_EXP_ONES - 2 - den.

exponent;
tmp_res.sign = den.sign;
return (tmp_res);

}
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Correctness of frcpa

Definition recip_table :=
2044::2036::2028::2020::2013::2005::1997::1990::
1982::1975::1967::1960::1953::1945::1938::1931::
...

Lemma frcpa_spec : forall i x,
(0 <= i < 256)%nat ->
INR (256 + i)/256 <= x <= INR (256 + S i)/256 ->
Rabs (nth i recip_table 0 / 2048 - 1 / x) <=

4433 * pow2 (-21) * Rabs (1 / x).
Proof.
intros i x Bi Bx.
destruct (le_eq_or_S _ _ (proj1 Bi)).

interval.
destruct (le_eq_or_S _ _ (proj1 Bi)).

interval.
(* ... repeat 254 more times *)
Qed.
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Conclusion

Gappa supports:

arithmetic operators: +, ×,
√
·,

rounding operators for fixed- and floating-point numbers,
constraints and algebraic relations.

Interval supports:

elementary functions: cos, arctan, exp,
order-1 interval arithmetic.

Issues:

verifying Gappa-generated proofs is slow;
order-1 IA is not enough for some applications.

Guillaume Melquiond Automations for Verifying Floating-point Algorithms in Coq



Introduction Prelim Ex:Sine Ex:Division Conclusion

Conclusion

Gappa supports:

arithmetic operators: +, ×,
√
·,

rounding operators for fixed- and floating-point numbers,
constraints and algebraic relations.

Interval supports:

elementary functions: cos, arctan, exp,
order-1 interval arithmetic.

Issues:

verifying Gappa-generated proofs is slow;
order-1 IA is not enough for some applications.

Guillaume Melquiond Automations for Verifying Floating-point Algorithms in Coq



Introduction Prelim Ex:Sine Ex:Division Conclusion

Conclusion

Gappa supports:

arithmetic operators: +, ×,
√
·,

rounding operators for fixed- and floating-point numbers,
constraints and algebraic relations.

Interval supports:

elementary functions: cos, arctan, exp,
order-1 interval arithmetic.

Issues:

verifying Gappa-generated proofs is slow;
order-1 IA is not enough for some applications.

Guillaume Melquiond Automations for Verifying Floating-point Algorithms in Coq



Introduction Prelim Ex:Sine Ex:Division Conclusion

Questions?

Flocq: http://flocq.gforge.inria.fr/

Gappa: http://gappa.gforge.inria.fr/

Interval: https://www.lri.fr/~melquion/soft/coq-interval/

Guillaume Melquiond Automations for Verifying Floating-point Algorithms in Coq
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