Trusting Computations: a Mechanized Proof from
Partial Differential Equations to Actual Program™

Sylvie Boldo®P, Francois Clément®*, Jean-Christophe Filliatre®?®, Micaela
Mayero?, Guillaume Melquiond®?, Pierre Weis®

%Inria, Inria Saclay — ile—de-ance, Palaiseau cedex, F-91120
LRI, UMR 8623, Université Paris-Sud, CNRS, Orsay cedex, F-91405
¢Inria, Inria Paris — Rocquencourt, Le Chesnay cedex, F-78153
ALIPN, UMR 7030, Université de Paris-Nord, CNRS, Villetaneuse, F-93430

Abstract

Computer programs may go wrong due to exceptional behaviors, out-of-bound
array accesses, or simply coding errors. Thus, they cannot be blindly trusted.
Scientific computing programs make no exception in that respect, and even bring
specific accuracy issues due to their massive use of floating-point computations.
Yet, it is uncommon to guarantee their correctness. Indeed, we had to extend
existing methods and tools for proving the correct behavior of programs to
verify an existing numerical analysis program. This C program implements the
second-order centered finite difference explicit scheme for solving the 1D wave
equation. In fact, we have gone much further as we have mechanically verified
the convergence of the numerical scheme in order to get a complete formal
proof covering all aspects from partial differential equations to actual numerical
results. To the best of our knowledge, this is the first time such a comprehensive
proof is achieved.

Keywords: Acoustic wave equation, Formal proof of numerical program,
Convergence of numerical scheme, Rounding error analysis

2010 MSC: 65M06,

2010 MSC: 35L05,

2010 MSC: 68Q60,

2010 MSC: 03B70

*This research was supported by the ANR projects CerPAN (ANR-05-BLAN-0281-04) and
F§st (ANR-08-BLAN-0246-01).
*Corresponding author
Email addresses: Sylvie.Boldo@inria.fr (Sylvie Boldo), Francois.Clement@inria.fr
(Frangois Clément), Jean-Christophe.Filliatre@inria.fr (Jean-Christophe Fillidtre),
Micaela.Mayero@lipn.univ-paris13.fr (Micaela Mayero), Guillaume.Melquiond@inria.fr
(Guillaume Melquiond), Pierre.Weis@inria.fr (Pierre Weis)

Preprint submitted to Computers & Mathematics with Applications July 19, 2014

1. Introduction

Given an appropriate set of mathematical equations (such as ODEs or PDEs)
modeling a physical event, the usual simulation process consists of two stages.
First, the continuous equations are approximated by a set of discrete equations,
called the numerical scheme, which is then proved to be convergent. Second,
the set of discrete equations is implemented as a computer program, which is
eventually run to perform simulations.

The modeling of critical systems requires correctness of the modeling pro-
grams in the sense that there is no runtime error and the computed value is an
accurate solution to the mathematical equations. The correctness of the pro-
gram relies on the correctness of the two stages. Note that we do not consider
here the issue of adequacy of the mathematical equations with the physical phe-
nomenon of interest. We take the differential equation as a starting point in the
simulation process. Usually, the discretization stage is justified by a pen-and-
paper proof of the convergence of the selected scheme, while, following [38], the
implementation stage is ratified by both code verification and solution verifica-
tion. Code verification (checking for bugs) uses manufactured solutions; it is
called wvalidation by tests below. Solution verification (checking for convergence
of the numerical scheme at runtime) usually uses a posteriori error estimates to
control the numerical errors; it is out of scope for this paper, nevertheless we
briefly address the issue in the final discussion. The drawback of pen-and-paper
proofs is that human beings are fallible and errors may be left, for example in
long and tedious proofs involving a large number of subcases. The drawback
of validation by tests is that, except for exhaustive testing which is impossible
here, it does not imply a proof of correctness in all possible cases. Therefore, one
may overestimate the convergence rate, or miss coding errors, or underestimate
round-off errors due to floating-point computations. In short, this methodology
only hints at the correctness of modeling programs but does not guarantee it.

The fallibility of pen-and-paper proofs and the limitations of validation by
tests is not a new problem, and has been a fundamental concern for a long time
in the computer science community. The answer to this question came from
mathematical logic with the notion of logical framework and formal proof. A
logical framework provides tools to describe mathematical objects and results,
and state theorems to be proved. Then, the proof of those theorems gets all
its logical steps verified in the logical framework by a computer running a me-
chanical proof checker. This kind of proof forbids logical errors and prevents
omissions: it is a formal proof. Therefore, a formal proof can be considered as
a perfect pen-and-paper proof.

Fortunately, logical frameworks also support the definition of computer pro-
grams and the specification of their properties. The correctness of a program
can then be expressed as a formal proof that no execution of the program will
go wrong and that it has the expected mathematical properties. A formal proof
of a program can be considered as a comprehensive validation by an exhaustive
set of tests. Note, however, that we verify the program at the source code level
and do not consider here compilation problems, nor external attacks.

Mechanical proof checkers are mainly used to formalize mathematics and are
routinely used to prove programs in the field of integer arithmetic and symbolic
computation. We apply the same methodology to numerical programs in order
to obtain the same safety level in the scientific computing field. The simulation
process is revisited as follows. The discretization stage requires some preliminary
work in the logical framework; we must implement the necessary mathematical
concepts and results to describe continuous and discrete equations (in particular,
the notion of convergent numerical scheme). Given this mathematical setting,
we can write a faithful formal proof of the convergence of the discrete solution
towards the solution to the continuous problem. Then, we can specify the
modeling program and the properties of the computed values, and obtain a
formal proof of its correctness. If we specify that computed values are close
enough to the actual solution of the numerical scheme, then the correctness
proof of the program ensures the correctness of the whole simulation process.

This revised simulation process seems easy enough. However, the difficulty
of the necessary formal proofs must not be underestimated, notably because
scientific computing adds specific difficulties to specifications and proofs. The
discretization stage uses real numbers and real analysis theory. The usual the-
orems and tools of real analysis are still in their infancy in mechanical proof
checkers. In addition, numerical programs use floating-point arithmetic. Prop-
erties of floating-point arithmetic are complex and highly nonintuitive, which is
yet another challenge for formal proofs of numerical programs.

To summarize, the field of scientific computing has the usual difficulties
of formal proof for mathematics and programs, and the specific difficulties of
real analysis and its relationships to floating-point arithmetic. This complexity
explains why mechanical proof checkers are mostly unknown in scientific com-
puting. Recent progress [36], 17, 23] [16] in providing mechanical proof check-
ers with formalizations of real analysis and IEEE-754 floating-point arithmetic
makes formal proofs of numerical programs tractable nowadays.

In this article, we conduct the formal proof of a very simple C program im-
plementing the second-order centered finite difference explicit scheme for solving
the one-dimensional acoustic wave equation. This is a first step towards the for-
mal proof of more complex programs used in critical situations. This article
complements a previous publication about the same experiment [12]. This time
however, we do not focus on the advances of some formal proof techniques, but
we rather present an overview of how formal methods can be useful for scientific
computing and what it takes to apply them.

Formal proof systems are relatively recent compared with mathematics or
computer science. The system considered as the first proof assistant is Au-
tomath. It has been designed by de Bruijn in 1967 and has been very influential
for the evolution of proof systems. As a matter of comparison, the FORTRAN
language was born in 1954. Almost all modern proof assistants then appeared
in the 1980s. In particular, the first version of Coq was created in 1984 by Co-
quand and Huet. The ability to reason about numerical programs came much
later, as it requires some formal knowledge of arithmetic and analysis. In Coq,
real numbers were formalized in 1999 and floating-point numbers in 2001. One

can note that some of these developments were born from interactions between
several domains, and so is this work.

The formal proofs are too long to be given here in extenso, so the paper only
explains general ideas and difficulties. The annotated C program and the full
Coq sources of the formal development are available from [I1].

The paper is organized as follows. The notion of formal proof and the
main formal tools are presented in Section [2} Section [3| describes the PDE, the
numerical scheme, and their mathematical properties. Section [] is devoted to
the formal proof of the convergence of the numerical scheme, Section [f] to the
formal proof of the boundedness on the round-off error, and Section [6] to the
formal proof of the C program implementing the numerical scheme. Finally,
Section [7] paints a broader picture of the study.

A glossary of terms from the mathematical logic and computer science fields

is given in The main occurrences of such terms* are emphasized

in the text by using italic font and superscript star.

2. Formal Proof

Modern mathematics can be seen as the science of abstract objects, e.g. real
numbers, differential equations. In contrast, mathematical logic researches the
various languages used to define such abstract objects and reason about them.
Once these languages are formalized, one can manipulate and reason about
mathematical proofs: What makes a valid proof? How can we develop one?
And so on. This paves the way to two topics we are interested in: mechanical
verification™ of proofs, and automated deduction of theorems. In both cases, the
use of computer-based tools will be paramount to the success of the approach.

2.1. What is a Formal Proof?

When it comes to abstract objects, believing that some properties are true
requires some methods of judgment. Unfortunately, some of these methods
might be fallible: they might be incorrect in general, or their execution might
be lacking in a particular setting. Logical reasoning aims at eliminating any
unjustified assumption and ensuring that only infallible inferences are used, thus
leading to properties that are believed to be true with the greatest confidence.

The reasoning steps that are applied to deduce from a property believed to
be true a new property believed to be true is called an inference rule*. They are
usually handled at a syntactic level: only the form of the statements matters,
their content does not. For instance, the modus ponens rule states that, if both
properties “A” and “if A then B” hold, then property “B” holds too, whatever
the meaning of A and B. Conversely, if one deduces “B” from “A” and “if
C' then B”, then something is amiss: while the result might hold, its proof is
definitely incorrect.

This is where formal proofs* show up. Indeed, since inference rules are
simple manipulations of symbols, applying them or checking that they have
been properly applied do not require much intelligence. (The intelligence lies

in choosing which one to apply.) Therefore, these tasks can be delegated to a
computer running a formal system. The computer will perform them much more
quickly and systematically than a human being could ever do it. Assuming that
such formal systems have been designed with careﬂ the results they produce
are true with the greatest confidence.

The downside of formal proofs is that they are really low-level; they are
down to the most elementary steps of a reasoning. It is no longer possible to
dismiss some steps of the proofs, trusting the reader to be intelligent enough
to fill the blanks. Fortunately, since inference rules are mechanical by nature,
a formal system can also try to apply them automatically without any user
interaction. Thus it will produce new results, or at least proofs of known results.
At worst, one could imagine that a formal system applies inference rules blindly
in sequence until a complete proof of a given result is found. In practice, clever
algorithms have been designed to find the proper inference steps for domain-
specific properties. This considerably eases the process of writing formal proofs.
Note that numerical analysis is not amenable to automatic proving yet, which
means that related properties will require a lot of human interaction, as shown
in Section [6.21

It should have become apparent by now that formal systems are primarily
aimed at proving and checking mathematical theorems. Fortunately, programs
can be turned into semantically* equivalent abstract objects that formal sys-
tems can manipulate, thus allowing to prove theorems about programs. These
theorems might be about basic properties of a program, e.g. it will not evaluate
arrays outside their bounds. They might also be about higher-level properties,
e.g. the computed results have such and such properties. For instance, in this
paper, we are interested in proving that the values computed by the program
are actually close to the exact solution to the partial differential equation. Note
that these verifications are said to be static: they are done once and for all, yet
they cover all the future executions of a program.

Formal verification of a program comes with a disclaimer though, since a
program is not just an abstract object, it also has a concrete behavior once
executed. Even if one has formally proved that a program always returns the
expected value, mishaps might still happen. Perfect certainty is unachievable.
First and foremost, the specification* of what the program is expected to com-
pute might be wrong or just incomplete. For instance, a random generator could
be defined as being a function that takes no input and returns a value between 0
and 1. One could then formally verify that a given function satisfies such a spec-
ification. Yet that does not tell anything about the actual randomness of the
computed value: the function might always return the same number while still
satisfying the specification. This means that formal proofs do not completely

IThe core of a formal system is usually a very small program, much smaller than any
proof it will later have to manipulate, and thus easy to check and trust. For instance, while
expressive enough to tackle any proof of modern mathematics, the kernel of HOL Light is just
200 lines long.

remove the need for testing, as one still needs to make sure specifications are
meaningful; but they considerably reduce the need for exhaustive testing.

Another consideration regarding the extent of confidence in formally verified
programs stems from the fact that programs do not run in isolation, so formal
methods have to make some assumptions. Basically, they assume that the pro-
gram executed in the end is the one that was actually verified and not some
variation of it. This seems an obvious assumption, but practice has shown that
a program might be miscompiled, that some malware might be poking memory
at random, that a computer processor might have design flaws, or even that
the electromagnetic environment might cause bit flips either when verifying the
program, or when executing it. So the trust in what a program actually com-
putes will still be conditioned to the trust in the environment it is executed
in. Note that this issue is not specific to verified programs, so they still have
the upper hand over unverified programs. Moreover, formal methods are also
applied to improve the overall trust in a system: formal verification of hardware
design is now routine, and formal verification of compilers [34] [15] and operating
systems [32] are bleeding edge research topics.

2.2. Formal Proof Tools at Work

There is not a single tool that would allow us to tackle the formal verifica-
tion™ of the C program we are interested in. We will use different tools depend-
ing on the kind of abstract objects we want to manipulate or prove properties
about.

The first step lies in running the tool Frama-C over the program (Sec-
tion . We have slightly modified the C program by adding comments
stating what the program is expected to compute. These annotations* are
just mathematical properties of the program variables, e.g. the result variables
are close approximations to the values of the exact solution. Except for these
comments, the code was not modified. Frama-C takes the program and the
annotations and it generates a set of theorems. What the tool guarantees is
that, if we are able to prove all these theorems, then the program is formally
verified. Some of these theorems ensure that the execution will not cause ex-
ceptional behaviors: no accesses out of the bounds of the arrays, no overflow
during computations, and so on. The other theorems ensure that the program
satisfies all its annotations.

At this point, we can run tools over the generated theorems, in the hope
that they will automatically find proofs of them. For instance, Gappa (Sec-
tion is suited for proving theorems stating that floating-point operations
do not overflow or that their round-off error is bounded, while SMT solvers*
(Section will tackle theorems stating that arrays are never accessed out
of their bounds. Unfortunately, more complicated theorems require some user
interaction, so we have used the Coq proof assistant (Section to help us in
writing their formal proofs. This is especially true for theorems that deal with
the more mathematically-oriented aspect of verification, such as convergence of
the numerical scheme.

2.2.1. Coq

CocE| is a formal system that provides an expressive language to write mathe-
matical definitions, executable algorithms, and theorems, together with an inter-
active environment for proving them [6]. Coq’s formal language combines both
a higher-order logic* and a richly-typed functional programming* language [19].
In addition to functions and predicates, Coq allows the specification of math-
ematical theorems and software specifications*, and to interactively develop
formal proofs of those.

The architecture of Coq can be split into three parts. First, there is a rela-
tively small kernel that is responsible for mechanically checking formal proofs.
Given a theorem proved in Coq, one does not need to read and understand the
proof to be sure that the theorem statement is correct, one just has to trust this
kernel.

Second, Coq provides a proof development system so that the user does not
have to write the low-level proofs that the kernel expects. There are some inter-
active proof methods (proof by induction, proof by contradiction, intermediate
lemmas, and so on), some decision™ and semi-decision algorithms (e.g. proving
the equality between polynomials), and a tactic* language for letting the user
define his or her own proof methods. Note that all these high-level proof tools
do not have to be trusted, since the kernel will check the low-level proofs they
produce to ensure that all the theorems are properly proved.

Third, Coq comes with a standard library. It contains a collection of basic
and well-known theorems that have already been formally proved beforehand.
It provides developments and axiomatizations about sets, lists, sorting, arith-
metic, real numbers, and so on. In this work, we mainly use the Reals standard
library [36], which is a classical axiomatization of an Archimedean ordered com-
plete field. It comes from the Coq standard library and provides all the basic
theorems about analysis, e.g. differentials, integrals. It does not contain more
advanced topics such as the Fourier transform and its properties though.

Here is a short example taken from our alpha.v file [11]:

Lemma Rabs_le_trans: forallabcd: R,

Rabs (a — ¢) + Rabs (c — b) <d — Rabs (a — b) <d.
Proof.
intros a b cd H.
replace (a — b) with ((a
apply Rle_trans with (2 :
Qed.

—¢) + (c — b)) by ring.
= H); apply Rabs _triang.

The function Rabs is the absolute value on real numbers. The lemma states
that, for all real numbers a, b, ¢, and d, if |a — ¢| + |¢ — b| < d, then |a — b] < d.
The proof is therefore quite simple. We first introduce variables and call H the
hypothesis of the conditional stating that |a — ¢| + |¢ — b] < d. To prove that

%http://coq.inria.fr/

http://coq.inria.fr/

|a — b < d, we first replace a — b with (a — ¢) + (¢ — b), the proof of that being
automatic as it is only an algebraic ring equality. Then, we are left to prove
that |(a — ¢) + (¢ — b)| < d. We use transitivity of <, called Rle_trans, and
hypothesis H. Then, we are left to prove that |(a —c)+ (c—b)| < |a—c|+|c—b].
This is exactly the triangle inequality, called Rabs_triang. The proof ends with
the keyword Qed.

The standard library does not come with a formalization of floating-point
numbers. For that purpose, we use a large Coq library called PFFE| initially de-
veloped in [22] and extended with various results afterwards [§]. It is a high-level
formalization of the IEEE-754 international standard for floating-point arith-
metic [37,B0]. This formalization is convenient for human interactive proofs as
testified by the numerous proofs using it. The huge number of lemmas available
in the library (about 1400) makes it suitable for a large range of applications.
The library has been superseded since then by the Flocq library [I7] and both
libraries were used to prove the floating-point results of this work.

2.2.2. Frama-C, Jessie, Why, and the SMT Solvers

We use the Frama-C platforrrﬁ to perform formal verification of C programs
at the source-code level. Frama-C is an extensible framework that combines
static analyzers* for C programs, written as plug-ins, within a single tool. In
this work, we use the Jessie plug-in [35] for deductive verification*. C programs
are annotated* with behavioral contracts written using the ANSI C Specifica-
tion Language (ACSL for short) [4]. The Jessie plug-in translates them to the
Jessie language [35], which is part of the Why verification platform [28]. This
part of the process is responsible for translating the semantics* of C into a set of
Why logical definitions (to model C types, memory heap, and so on) and Why
programs (to model C programs). Finally, the Why platform computes verifi-
cation conditions* from these programs, using traditional techniques of weakest
preconditions [25], and emits them to a wide set of existing theorem provers,
ranging from interactive proof assistants* to automated theorem provers*. In
this work, we use the Coq proof assistant (Section 2.2.1), SMT solvers* Alt-
Ergo [I8], CVC3 [3], and Z3 [24], and the automated theorem prover Gappa
(Section [2.2.3). Details about automated and interactive proofs can be found
in Section [6.2l The dataflow from C source code to theorem provers can be
depicted as follows:

Shttp://lipforge.ens-1lyon.fr/www/pff/
dhttp://www.frama-c.cea.fr/

http://lipforge.ens-lyon.fr/www/pff/
http://www.frama-c.cea.fr/

Coq

par=s
ACSL-annotated Frama-C Wh —
C program - (Jessie plug—in)J_" Y <: CVC(C3
(S
GappaJ

More precisely, to run the tools on a C program, we use a graphical interface
called gWhy. A screenshot is displayed in Figure[] in Section[6] In this interface,
we may call one prover on several goals*. We then get a graphical view of how
many goals are proved and by which prover.

In ACSL, annotations are written using first-order logic*. Following the pro-
gramming by contract approach, the specifications involve preconditions, post-
conditions, and loop invariants*. The contract of the following function states
that it computes the square of an integer x, or rather a lower bound on it:

//@ requires x > 0;
//@ ensures \result x \result <x;
int square_root(int x);

The precondition, introduced with requires, states that the argument x is non-
negative. Whenever this function is called, the toolchain will generate a theorem
stating that the input is nonnegative. The user then has to prove it to ensure
the program is correct. The postcondition, introduced with ensures, states the
property satisfied by the return value \result. An important point is that, in the
specification, arithmetic operations are mathematical, not machine operations.
In particular, the product \result * \result cannot overflow. Simply speaking,
we can say that C integers are reflected within specifications as mathematical
integers, in an obvious way.

The translation of floating-point numbers is more subtle, since one needs to
talk about both the value actually computed by an expression, and the ideal
value that would have been computed if we had computers able to work on real
numbers. For instance, the following excerpt from our C program specifies the
relative error on the content of the dx variable, which represents the grid step

Az (see Section [3.2):

dx = 1./ni;

/*@ assert
@ dx> 0. && dx <0.5 &&
©@ \abs(\exact(dx) — dx) / dx < Ox1.p—53;
@x/

The identifier dx represents the value actually computed (seen as a real num-
ber), while the expression \exact(dx) represents the value that would have been

computed if mathematical operators had been used instead of floating-point op-
erators. Note that 0x1.p—53 is a valid ACSL literal (and C too) meaning 1-2753
(which is also the machine epsilon on binary64 numbers).

2.2.8. Gappa

The Gappa tooﬂ adapts the interval-arithmetic* paradigm to the proof of
properties that occur when verifying numerical applications [21]. The inputs
are logical formulas quantified over real numbers whose atoms* are usually
enclosures of arithmetic expressions inside numeric intervals. Gappa answers
whether it succeeded in verifying it. In order to support program verification™,
one can use rounding functions inside expressions. These unary operators take
a real number and return the closest real number in a given direction that is
representable in a given binary floating-point format. For instance, assuming
that operator o rounds to the nearest binary64 floating-point number, the fol-
lowing formula states that the relative error of the floating-point addition is
bounded [30]:

Va,y €R, 3 € R, |g] <27° and o(o(x) + o(y)) = (o(x) + o(y))(1 +¢).

Converting straight-line* numerical programs to Gappa logical formulas is
easy and the user can provide additional hints if the tool were to fail to verify a
property. The tool is specially designed to handle codes that perform convoluted
floating-point manipulations. For instance, it has been successfully used to
verify a state-of-the-art library of correctly-rounded elementary functions [23].
In the current work, Gappa has been used to check much simpler properties. In
particular, no user hint was needed to automatically prove them. Yet the length
of their proofs would discourage even the most dedicated users if they were to
be manually handled. One of the properties is the round-off error of a local
evaluation of the numerical scheme (Section . Other properties mainly deal
with proving that no exceptional behavior occurs while executing the program:
due to the initial values, all the computed values are sufficiently small to never
cause overflow.

Verification of some formulas requires reasonings that are so long and in-
tricate [23], that it might cast some doubts on whether an automatic tool can
actually succeed in proving them. This is especially true when the tool ends
up proving a property stronger than what the user expected. That is why
Gappa also generates a formal proof that can be mechanically checked by a
proof assistant. This feature has served as the basis for a Coq tactic* for auto-
matically proving goals* related to floating-point and real arithmetic [I4]. Note
that Gappa itself is not verified, but since Coq verifies the proofs that Gappa
generates, the goals are formally proved.

This tactic has been used whenever a verification condition* would have been
directly proved by Gappa, if not for some confusing notations or encodings of

Shttp://gappa.gforge.inria.fr/

10

http://gappa.gforge.inria.fr/

matrix elements. We just had to apply a few basic Coq tactics to put the goal
into the proper form and then call the Gappa tactic to prove it automatically.

3. Numerical Scheme for the Wave Equation

We have chosen to study the numerical solution to the one-dimensional
acoustic wave equation using the second-order centered explicit scheme as it
is simple, yet representative of a wide class of scientific computing problems.
First, following [5], we describe and state the different notions necessary for the
implementation of the numerical scheme and its analysis. Then, we present the
annotations added in the source code to specify the behavior of the program.

3.1. Continuous Equation

We consider Q = [Zmin,Tmax], & one-dimensional homogeneous acoustic
medium characterized by the constant propagation velocity ¢. Let p(x,t) be
the acoustic quantity, e.g. the transverse displacement of a vibrating string,
or the acoustic pressure. Let po(x) and p;(x) be the initial conditions. Let us
consider homogeneous Dirichlet boundary conditions.

The one-dimensional acoustic problem on {2 is set by

VE>0, Yz eQ, (L(c)p)(a,t) %(x,t) +A@Q)p(z,t) =0, (1)
Ve, (Lip)(z,0) %(%0) = p1(2), (2)
VeeQ, (Lop)(x,0) = p(x,0) = po(x), (3)

Vvt >0, P(Zmin, t) = p(Tmax,t) =0 (4)

where the differential operator A(c) acting on function ¢ is defined as

e 0?
A@f¥—35£~ (5)

We assume that under reasonable regularity conditions on the Cauchy data pg
and pi, for each ¢ > 0, there exists a unique solution p to the initial-boundary
value problem defined by Equations to . Of course, it is well-known that
the solution to this partial differential equation is given by d’Alembert’s for-
mula [33]. But simply assuming existence of a solution instead of exhibiting
it ensures that our approach scales to more general cases for which there is
no known analytic expression of a solution, e.g. when propagation velocity c
depends on space variable x.

We introduce the positive definite quadratic quantity

2

=

B0 5| 20| + 5 o0l G

11

def def def
where (q,r) = [, q(@)r(z)de, |l = (q,q) and al%) = (A(c)q,q). The

first term is interpreted as the kinetic energy, and the second term as the po-
tential energy, making E the mechanical energy of the acoustic system.

Let pg (resp. p1) represent the function defined on the entire real axis R
obtained by successive antisymmetric extensions in space of pg (resp. p1). For
example, we have, for all * € [2Zmin — Tmaxs Tmin), Po(T) = —Po(2Zmin — T).
The image theory [31] stipulates that the solution of the wave equation defined
by Equations to coincides on domain §2 with the solution of the same
wave equation but set on the entire real axis R, without the Dirichlet boundary
condition , and with extended Cauchy data pg and p;.

3.2. Discrete Equations
Let us consider the time interval [0,%max]. Let imax (resp. kmax) be the
number of intervals of the space (resp. time) discretization. We deﬁneﬁ

def Tmax — Lmin . def | £ — Tmin
A - P = _—
x Z'max 5 ZAL(x) \‘ Az J) (7)
def tmax def t
At = kai(t) = | —|. 8
Fmas ad(t) {AtJ (®)

The regular discrete grid approximating §2 X [0, tmax| is defined byE]

Vk € (0. kmax), Vi € [0-imax), X % (2, %) < (2min + iAz, KAL), (9)

For a function ¢ defined over € X [0, tmax] (resp. §2), the notation g, (with a
roman index h) denotes any discrete approximation of ¢ at the points of the grid,
i.e. a discrete function over [0..imax] X [0..kmax) (resp. [0..imax]). By extension,
the notation gy, is also a shortcut to denote the matrix (¢¥)o<i<i,...0<k<kma

(resp. the vector (¢;)o<i<in..)- The notation @, (with a bar over it) is reserved

to specify th