
Coquelicot: A User-Friendly Library of Real Analysis
for Coq

Sylvie Boldo, Catherine Lelay and Guillaume Melquiond

Abstract. Real analysis is pervasive to many applications, if only because it is a suitable tool for
modeling physical or socio-economical systems. As such, its support is warranted in proof assis-
tants, so that the users have a way to formally verify mathematical theorems and correctness of
critical systems. The Coq system comes with an axiomatization of standard real numbers and a li-
brary of theorems on real analysis. Unfortunately, this standard library is lacking some widely used
results. For instance, power series are not developed further than their definition. Moreover, the
definitions of integrals and derivatives are based on dependent types, which make them especially
cumbersome to use in practice. To palliate these inadequacies, we have designed a user-friendly
library: Coquelicot. An easier way of writing formulas and theorem statements is achieved by re-
lying on total functions in place of dependent types for limits, derivatives, integrals, power series,
and so on. To help with the proof process, the library comes with a comprehensive set of theorems
that cover not only these notions, but also some extensions such as parametric integrals, two-
dimensional differentiability, asymptotic behaviors. It also offers some automation for performing
differentiability proofs. Moreover, Coquelicot is a conservative extension of Coq’s standard library
and we provide correspondence theorems between the two libraries. We have exercised the library
on several use cases: in an exam at university entry level, for the definitions and properties of Bessel
functions, and for the solution of the one-dimensional wave equation.

Keywords. Standard real analysis, Coq proof assistant, Library, Generalized limits, Differentiabil-
ity, Parametric integrals, Power series.

1. Introduction
From physics to economy toward chemistry and combinatorial, many phenomena may be modeled
by ordinary or partial differential equations. Unfortunately, studying and solving such equations is
not a trivial matter and any error may have dramatic consequences. Computer algebra systems and
other related tools may be helpful for uncovering such errors. For higher confidence, one can write
detailed proofs of correctness and check them using formal systems. In fact, many proof assistants,
such as Mizar, HOL, PVS, provide a formalization of real analysis. These tools help to find errors,
but their use is often tedious for non-specialists.

The main difficulty when using these tools in the setting of real analysis stems from the gap
between the traditional pen-and-paper proofs and the formal ones. For instance, theorem statements
may be less readable once formalized. Moreover, lemmas from libraries of real analysis are often
inadequate, e.g. because of contrived hypotheses. This makes them unpractical to apply and leads to
proofs longer than they should be.

This work was supported by Project Coquelicot from RTRA Digiteo and Région Île-de-France.

2 S. Boldo, C. Lelay and G. Melquiond

Our system of interest is the Coq proof assistant and we would like to use it for verifying results
of real analysis, e.g. about partial differential equations [5]. This calls for a user-friendly library
that provides limits of sequences and functions, derivatives, integrals, power series, and numerous
theorems that relate these notions. It should be noted that Coq is already distributed with a library
of real analysis. This formalization started with Micaela Mayero’s PhD in 2001 [24]. It was later
extended by Olivier Desmettre. It is based on a classical axiomatization of real numbers and provides
the usual definitions of standard analysis such as finite limits of sequences and univariate functions,
derivatives, Riemann integrals, and power series.

This library suffers from several shortcomings though. First, it has not evolved much since
its inception, so it does not support some modern features of Coq, such as type classes. Another
issue is the lack of homogeneity: some definitions and theorems are missing, naming policy is
chaotic, useless hypotheses are creeping in theorem statements. For instance, arithmetic opera-
tions on power series are not provided; theorems about Riemann integrals are inconveniently named
RiemannInt P1 to P33; monotonicity of square root

√
u <
√
v requires the redundant hypothe-

ses 0 ≤ u, 0 ≤ v, and u < v.
The previous issues make the library a bit unfriendly, but they can be overcome with some

practice. A more salient issue is the overall use of dependent types for defining some notions. For
instance, differentiability is provided by the predicate derivable pt : (R → R) → R →
Set while the differentiation operator has the following type:

derive_pt : ∀ (f : R → R) (x : R), derivable_pt f x → R.

In other words, this operator takes a function f , a real number x, and a proof that f is differentiable
at point x, and it returns the value of the derivative of f at x. This has several consequences. First,
any statement about the derivative of a function has to embed a previously proved lemma about the
differentiability of that function. Second, rewriting an expression such as (f + g)′(x) into f ′(x) +
g′(x), while straightforward in mathematics, is next to impossible to achieve in Coq, as the proof
terms have to be manually built by the user beforehand. Third, these proof terms can quickly blow
up, and thus become impossible for the user to exhibit, e.g. in the case of iterated derivatives or
differentiation under an integral. By the way, integrals in Coq suffer from the same issues. Notice
also that the predicates for differentiability and integrability are defined in the predicative sort Set
of datatypes and not in the impredicative sort Prop of logical propositions. This peculiarity makes
them especially unwieldy in practice.

The standard library is not the sole attempt at formalizing real analysis in Coq. Another mature
project is the C-CoRN / MathClasses library [9], which provides Bishop-like constructive mathemat-
ics. Coq is especially well suited for such a development, as its logic itself is constructive, contrarily
to most other proof assistants. C-CoRN provides even more results than Coq’s standard library, but
we chose not to use it as we decided to build upon the standard library and remain compatible with
it. Moreover, we did not want to force the use of continuous functions only upon the users of our
library.

Another way to build a real analysis library for Coq would be to port John Harrison’s formal-
ization [18]. It encompasses a large piece of real analysis and is now pervasive in most HOL-like
systems, e.g. HOL Light and Isabelle/HOL. Unfortunately, it is built upon axioms specific to HOL
systems, such as excluded middle and Hilbert’s ε operator, and we preferred not to add them, how-
ever compatible they are with Coq’s logic. So we could not use it as a foundation either, even if it
was inspirational.

Therefore, neither of the two libraries already available in Coq are suitable for our purpose,
and porting a library from another system is not an option either. These considerations led to the
Coquelicot project. Our goal was to design a user-friendly formalization of real analysis in Coq.
There were two additional constraints. First, it had to be a conservative extension of the standard
library: no new axioms had to be introduced. Second, it had to use the existing definitions or provide

Coquelicot: A User-Friendly Library of Real Analysis for Coq 3

equivalent ones, so that all the tools built on top of the standard library could be reused transparently
(e.g. tactics such as field or lra).

This paper presents version 1.1 of the Coquelicot library.1 It is available at
http://coquelicot.saclay.inria.fr/

The main features of the library are as follows. It defines total functions for expressing derivatives
and integrals without dependent types. It generalizes limits to the set R = R ∪ {−∞,+∞}. It
provides theorems for doing analysis on multivariate functions, e.g. parametric integrals. It also
provides some automation for performing proofs of differentiability.

Section 2 gives an overview of the real analysis libraries available for some of the predomi-
nant formal systems. Section 3 describes the basic building blocks of our library: axioms, limited
principle of omniscience, compactness, and local properties. Section 4 presents the total functions,
predicates, and lemmas, available for the basic notions of real analysis: limits, derivatives, integrals,
power series. Section 5 shows some of the advanced features of the library: partial derivatives, para-
metric integrals, generalized limits, and automation. Section 6 illustrates the use of Coquelicot on
a few applications: in an exam at university entry level, for the definitions and properties of Bessel
functions, and for the solution of the one-dimensional wave equation.

2. State of the Art
As alluded, there are numerous proofs assistants and many of them have a formalization for real
numbers and standard analysis. The proof assistants and their libraries will be described to give an
idea of their respective power and specifics. For more details, we refer the reader to [7].

We choose to skim over non-standard analysis as it is out of the scope of this paper. Non-
standard analysis is implemented in an extension of the first-order ACL2 system called ACL2(r)
which offers support for reasoning about irrational and complex numbers. It modifies the ACL2 logic
by introducing notions from non-standard analysis and thus avoids quantifiers [14]. There are several
shortcomings that prevent any advanced usage of the real analysis library of ACL2(r). Indeed, the
absence of higher-order logic makes it difficult to manipulate functions. It is even more difficult to
define partial functions. Finally, there is no definition of any integral. The Isabelle/HOL library also
provides non-standard analysis in addition to the standard one. Contrarily to the axiomatic approach
of ACL2(r), hyper-reals are defined as equivalence classes of sequences of real numbers [13].

For the sake of significance, we restrict ourselves to systems that stood the test of time. More-
over they have to come with a standard library for real arithmetic, and to provide features for real
analysis (and not just a construction of real numbers). The standard libraries we have picked out are
those of Mizar, PVS, HOL Light, and Isabelle/HOL. For Coq, we consider both the standard library
and the C-CoRN/MathClasses library.

2.1. Mizar
One goal of Mizar2 [34, 28] is that the proofs be close to the mathematical vernacular, so that math-
ematicians may easily use it. This makes the proofs longer but somehow more readable. The Mizar
Mathematical Library is huge: 9,400 definitions of mathematical concepts and more than 49,000
theorems, that have been accumulated since 1989. In particular, it contains definitions that seldom
appear in other provers, such as limit at infinity, one-side limits, Riemann integral, differentiability
for multivariate functions. The drawback is that Mizar is a fixed system: it cannot be extended or
programmed by the user. There is no computational power nor user-defined automation.

While originally an axiomatization, the formalization of real numbers in Mizar was later
changed to a construction based on Dedekind cuts [35]. Since Mizar is based on set theory, Dedekind

1When a feature of version 1.1 has been removed since then, the concept of version 2.0 is presented instead.
2http://mizar.org/

4 S. Boldo, C. Lelay and G. Melquiond

cuts easily fit in this system and having functions defined on partial domains is straightforward. Un-
fortunately, this set-theoretical approach is not always the most natural to use, and this makes the
statements and proofs less user-friendly.

2.2. PVS
PVS3 is a formal system based on classical higher-order logic [29]. It heavily uses predicate subtypes
and dependent types [33]; the type-correctness conditions are proof obligations generated by the
PVS typechecker, for example to prevent division by zero. Usability and automation are polished
with efficient decision procedures and an abundant use of subtyping information for the proofs. A
large PVS library is maintained by the NASA, and this is where one has to look for real analysis
results.

The PVS system postulates real numbers as a complete Archimedean field. The axioms for
number fields are straightforward. Nine of them give the properties of addition, multiplication, and
their inverses. The last two define subtraction and division from opposite and inverse. Note that no
axiom states 0 6= 1. Indeed, this property comes for free, since PVS integers are mapped to Lisp
integers. In addition to these axioms defining an ordered field, PVS theories postulate the complete-
ness of R by the existence of the least upper bound for any nonempty upper-bounded subset of real
numbers [12].

Many real analysis results are present (even two definitions of the real exponential function),
notably including power series, both Riemann and Lebesgue integrals. Partial functions are easy to
define using sub-typing. Many automated tools are available, including the Manip package for an
easy handling of equalities and inequalities, and a FIELD strategy for equalities on reals. The basic
and efficient GRIND strategy can be extended with additional theories for reals. PVS also provides
some strategies based on numerical computations: numerical performs interval arithmetic to ver-
ify inequalities involving transcendental functions [11]; bernstein performs global optimization
based on Bernstein polynomials to verify systems of polynomial inequalities [27].

2.3. HOL Light and Isabelle/HOL
We now present the real analysis found in various provers that inherit the original HOL prover:
mainly HOL Light4 and Isabelle/HOL5 , but also HOL4 and ProofPower-HOL. Most of them are
based on classical higher-order logic with axioms of infinity, extensionality, and choice in the form
of Hilbert’s operator.

Even if the definition of real numbers may be different, the real analysis library are all inspired
by HOL Light’s one, developed by John Harrison [17]. Here, functions are total and theorems work
only on restricted domains. The Isabelle/HOL library shows the benefits of using filters instead of
nets for expressing limits [19]; it also benefits from type classes.

In HOL Light, real numbers are defined using nearly-additive sequences of natural num-
bers [16]. The existence of the least upper bound of any nonempty bounded set of nearly-additive
sequences is then proved; this theorem is later extended to give the completeness of real numbers.
HOL4 and ProofPower-HOL define real numbers using Dedekind cuts. In Isabelle/HOL, the formal-
ization relies on Cauchy sequences of rational numbers, even though the original version relied on
Dedekind cuts.

These provers intensively use topological spaces for some definitions, such as the convergence
of sequences and functions, differentiability and uniform convergence. Power series are defined and
many results are proved (including differentiability in HOL4 only). All these provers provide a
definition of the Henstock-Kurzweil integral, or gauge integral, while Isabelle/HOL also provides
Lebesgue integral.

3http://pvs.csl.sri.com/
4http://www.cl.cam.ac.uk/users/jrh/hol-light/index.html
5http://isabelle.in.tum.de/

Coquelicot: A User-Friendly Library of Real Analysis for Coq 5

A lot of automated tools are available in those systems. Equalities on reals are handled by
REAL RING and REAL FIELD in HOL Light, and by algebra in Isabelle/HOL using Gröbner
basis. Universally-quantified systems of linear inequalities can be solved by the Fourier-Motzkin-
based procedure REAL ARITH in HOL Light. There are also some tools for quantifier elimination:
ferrack in Isabelle/HOL reduces systems of linear equalities using a procedure inspired by Fer-
rante and Rackoff’s algorithm; REAL ELIM CONV in HOL Light is a procedure for real arithmetic
on multivariate polynomials [25]. A decision procedure based on Positivstellensatz refutations and
sums of squares is also available in HOL Light and Isabelle/HOL.

2.4. Coq Standard Library
As our library, the next two libraries use the Coq6 formal language. Coq is based on the Calculus
of Inductive Constructions which combines both a higher-order logic and a richly-typed functional
programming language [3]. This logic lacks several axioms that are available to many other formal
systems. These include extensionality, Hilbert’s ε operator or its variant the ι operator, and excluded
middle. Moreover, even if a predicate satisfies the excluded-middle property, Coq does not allow its
truth value to be tested inside the body of a function; it can be decided only inside proofs.

The Coq library is structured into two parts: the initial library, which contains elementary
logical notions and data-types, and the standard library, a general-purpose library containing vari-
ous developments and axiomatizations about sets, lists, sorting, arithmetic, real numbers, etc. Real
numbers from the standard library are axiomatic; their axioms are detailed in Section 3.1. Here we
describe only a few notions of the real analysis library.

Riemann integrability is defined with step functions and an ε-δ quantification:

∀ε > 0, there are two step functions ϕ,ψ : [a; b]→ R, such that
(∀t ∈ [a; b], |f(t)− ϕ(t)| ≤ ψ(t)) ∧ |

∫
ψ| < ε.

The value of the integral is then defined as the limit of
∫
ϕ when ε → 0. The standard library

also defines the Newton integral, that is, a function g is Newton integrable if there is a function f
differentiable such that f ′ = g. As mentioned, Riemann integrals (resp. derivatives) have dependent
types, so expressing them requires to exhibit terms proving that the functions are integrable (resp.
differentiable).

The Coq proof assistant comes with numerous tactics. First ring makes it possible to auto-
matically prove equalities between two polynomials, and the field variant of the tactic can cope
with divisions. For proving polynomial equalities using the context, there is nsatz [32] and psatz
that explores cones by increasing degrees [4]. Coq also provides the fourier tactic (superseded
by lra in recent versions) based on Fourier-Motzkin quantifier elimination for solving universally-
quantified systems of linear inequalities.

2.5. Another Coq Library: C-Corn/MathClasses
Proof developments at Nijmegen led to a different library called C-CoRN [9] and its successor
MathClasses [21]. The main idea is to provide Bishop-like constructive mathematics. These libraries
are quite large and generic. For example, the convergence of a real sequence works in any ordered
field and not just real numbers.

The C-CoRN library for Coq constructs real numbers on top of Cauchy sequences [15]. But
Coq, contrarily to HOL-style provers, has poor support for quotient types, so the whole C-CoRN
formalization is built on the notion of setoid. Another distinguishing feature is that the real analysis
of C-CoRN is not built directly upon the setoid of real numbers built from Cauchy sequences, but
rather on an abstract type that satisfies a given signature CReals.

6http://coq.inria.fr/

6 S. Boldo, C. Lelay and G. Melquiond

The MathClasses library is based on the completion monad C defined in [30]. It is a monad
on the category of metric spaces with uniformly continuous functions. R is then defined as C(Q). A
real number x is defined as being nonnegative when

∀ε : Q+, −ε ≤Q x(ε),

where x(ε) is a rational number that approximates x within the distance ε. The order x ≤R y
is then defined as y − x nonnegative. Abstract interfaces are heavily used to ease statements and
proofs [21]. Thanks to type classes, the algebraic and order hierarchies (setoid, group, ring, and so
on) easily benefit from inheritance.

In C-CoRN, functions have to be compatible with the equivalence relation, so that a func-
tion applied to different Cauchy sequences representing the same real number gives equivalent re-
sults. So each function has to come with this property of being well-defined, which forces it to
be naturally continuous. C-CoRN defines the Riemann integral for uniformly continuous functions
as the limit of the sequence of Riemann sums; it comes with a proof of the fundamental theorem
of calculus [10]. The library provides no notion of Riemann integrability because all functions are
continuous thus Riemann integrable. MathClasses defines the Riemann integral too, and even the
Stieltjes integral [31]. First, step functions and partitions are defined. Then, using several monads
including the completion monad, step functions are lifted to define integrable functions. C-CoRN
and MathClasses also define power series as series of functions and use them to define some of the
transcendental functions.

The computational power of these libraries allows to compute effectively any of the defined
objects, including derivatives and integrals. It also allows to prove polynomial and transcendental
inequalities just by computing the values with enough precision as long as there are no variables.

3. Basic Blocks of the Library
Our library is a conservative extension of Coq’s standard library on real numbers. In this section,
we detail what the underlying axioms are. We also show how we built the two main tools for doing
analysis: the ability to compute limits and the ability to extract finite coverings from compact sets.
Finally, we present our take on ε-δ reasoning.

3.1. Coq’s Standard Axioms for Real Numbers
The formalization of real numbers from the standard library is axiomatic rather than definitional.
Instead of building reals as Cauchy sequences or Dedekind cuts of rational numbers and proving
their properties, Coq developers have assumed the existence of a set with the usual properties of the
real line. In other words, the standard library states that there is a set R, some arithmetic operators
−, +, ×, �−1, and a comparison operator <, that have the properties of an ordered field. Except
perhaps for the choice for the domain of �−1, these axioms are not controversial.

To get the proper real line, one also needs this field to be Archimedean and closed under the
supremum bound. A peculiarity of Coq’s standard library comes from the fact that these axioms
are expressed by two functions: one can compute the integer part of a real number, the other can
compute the supremum of an upper-bounded subset of R. Moreover, there is a third function, which
is able to compare two real numbers. Below are the actual definitions from the library:

• Lemma archimed states that up : R→ Z satisfies ∀x ∈ R, x < up(x) ≤ x+ 1.
• Given a subset E of R and some proofs that it is both inhabited (∃x, x ∈ E) and bounded

(∃M, ∀x, x ∈ E ⇒ x ≤ M), function completeness returns a real that is the least upper
bound of E. (It does not, however, provide a real x such that x ∈ E.)
• Given two real numbers x and y, function total order T tells which of x < y, x = y, or
x > y, holds. This is equivalent to the decidability of the equality on real numbers.

Coquelicot: A User-Friendly Library of Real Analysis for Coq 7

Note that the standard library sometimes makes use of the excluded-middle axiom in addition
to the previous ones. The CoqTail project7, however, has shown that it was unneeded. So, for the
purpose of this work, we consider that this axiom is not part of the ones defining real numbers in
Coq’s standard library. We will not use it, nor we will use any other axioms that we could have
defined ourselves or found in some dark corner of the standard library.

3.2. Limited Principle of Omniscience
The conjunction of completeness and total order T causes any formula that satisfies the
excluded-middle principle to become decidable. This strong property is of little interest for our
development though. For doing real analysis, one can derive a more useful property from the axioms
defining real numbers in Coq: the limited principle of omniscience (LPO).

Let P be a decidable predicate on natural numbers. The LPO states that one can decide whether
the property never holds. Moreover, if P (n) happens to hold for some number n, the LPO produces
such a number. The original idea of the proof comes from [20]; the CoqTail project later improved
it by removing the need for the not all ex not consequence of the excluded-middle axiom. We
have improved it further by getting rid of the sizable amount of analysis it needed (geometric series,
logarithm, and so on).

Let us sketch our Coq proof. Since P is decidable, we can build a function f(n) that returns
1/(n+1) if P (n) holds and 0 otherwise. Let us consider the subset of real numbers {f(n) | n ∈ N}.
It is nonempty and bounded by 1, thus its supremum is given by completeness. This supremum
can be tested against 0 by total order T. If it is zero, we deduce ∀n, ¬P (n). Otherwise we
compute its discrete inverse with archimed, which is a value n such that P (n) holds.

The LPO is not immediately useful for analysis. But by applying it twice in a row, one can
deduce whether a sequence of real numbers is bounded, and thus what its supremum and infimum
limits are. This paves the way to deciding whether that sequence has a limit and computing it. As
limits are pervasive in real analysis, this is one of the basic blocks of our work. More details on those
proofs can be found in [6].

3.3. Compactness
Another important tool is the property of compactness, which has numerous applications in tradi-
tional mathematics. For instance, a function continuous on a compact set is uniformly continuous.
Unfortunately, the compactness property is inherently classical, up to the point that constructive
mathematics tend to redefine continuity so that it actually means uniform continuity in order to avoid
compactness. Our goal is to stay as close as possible to traditional analysis, so dropping compactness
is not under consideration.

One of the definitions of a compact set is a set such that, from any cover with open sets, one
can extract a finite subcover. Yet in most of the proofs we are interested in, we do not need the full
strength of this property. Indeed, the extracted sets are useless; only their minimum diameter matters.
Moreover, the finiteness property is only useful so that this minimum is nonzero. As a consequence,
we can replace the traditional definition by a version related to Cousin covers and gauge functions.
Given an interval box [a,b] = [a1, b1]× · · · × [an, bn] and a gauge function δ : Rn → R+, function
compactness value produces a value δ′ > 0 such that

∀x ∈ [a,b], ¬¬∃t ∈ [a,b], |x− t| < δ(t) ∧ δ′ ≤ δ(t).

Notice the double negation before ∃t. Indeed, while we can compute a value of δ′, we have
no way of extracting the subcover that actually satisfies it. In practice, this double negation does
not hinder us since we always use the compactness property to exhibit contradictions. Again, more
details on those proofs can be found in [6].

7http://coqtail.sourceforge.net/

8 S. Boldo, C. Lelay and G. Melquiond

3.4. Local Properties
When it comes to doing analysis, an important tool is the ability to reason about properties that hold
on neighborhoods. For instance, the notion of convergence of f at x toward ` requires, for any ε > 0,
to find a neighborhood V of x such that any point u of V satisfies |f(u) − `| < ε. The situation is
similar for differentiability, except that one uses a pointed neighborhood V \ {x}. Rather than using
arbitrary neighborhoods, topology tells us that looking at open balls centered at x is equivalent. This
is what the locally predicate encodes:

locally(x, P)⇔ (∃δ > 0, ∀u ∈ R, |u− x| < δ ⇒ P (u)).

Convergence then becomes ∀ε > 0, locally(x, (u 7→ |f(u)− `| < ε)).
While there are ways to perform ε-δ reasoning in Coq by relying on existential variables

and delayed instantiation [8], our approach avoids these manipulations entirely. For instance, given
two hypotheses locally(x, P) and locally(x,Q), theorem filter and (see below) gives
locally(x, (u 7→ P (u)∧Q(u))). This theorem takes care of constructing the intersection of both
initial neighborhoods. Such theorems exist for most logical constructs.

The above definition of convergence still contains a ∀ε > 0 quantification. Such ε−δ formulas
are generalized using nets in HOL Light [18] and filters in Isabelle/HOL [19]. The latter formaliza-
tion was inspirational to us, as it avoids the need for an arbitrary ordered set. Convergence above can
now be expressed as ∀P, locally(`, P)⇒ locally(x, f−1(P)). Notice that the quantifiers on
ε and δ are now completely hidden inside the locally expressions. Both expressions locally(`)
and locally(x) are filters.

By choosing filters appropriately, we get definitions for continuity, convergence, and so on. On
a set T , a filter has type (T → Prop)→ Prop, so it can be interpreted either as a set of subsets of T
(intuitively the set of neighborhoods at a given point of T) or as a set of predicates on T (intuitively
the set of properties that hold in some neighborhood of a given point). Filters are predicates that
satisfy the following properties:

Class Filter {T : Type} (F : (T → Prop) → Prop) := {
filter_true : T ∈ F ;
filter_and : ∀ P,Q ⊆ T, P ∈ F ∧Q ∈ F ⇒ P ∩Q ∈ F ;
filter_imp : ∀ P,Q ⊆ T, P ⊆ Q ∧ P ∈ F ⇒ Q ∈ F

}.

Convergence can now be generalized for any function f : T → U at a filter F : (T →
Prop)→ Prop toward a filter G : (U → Prop)→ Prop as

filterlim(f, F,G) := ∀P, P ∈ G⇒ f−1(P) ∈ F

and the original convergence of f at x toward ` is simply the property

filterlim(f,locally(x),locally(`)).

There are two main benefits to using filters in our library. First, it makes it possible to factor
numerous proofs. For instance, the limit of the sum of two sequences lim(un + vn) = limun +
lim vn, the limit of the sum of two functions limt→x(f(x) + g(x)) = limt→x f(x) + limt→x g(x),
the continuity of the sum of two functions f + g, are all instances of the same proof about addition.
Second, filters make it especially simple to prove properties of composition (e.g. g ◦ f is continuous
when f and g are), since it is just a matter of performing a modus ponens.

As mentioned above, locally(x) is defined as a filter in Coquelicot. Another important fam-
ily of filters is Rbar locally. It extends locally to R∪{+∞,−∞} by adding neighborhoods
for infinities, e.g.

Rbar locally(−∞, P)⇔ (∃M ∈ R, ∀u ∈ R, u < M ⇒ P (u)).

Coquelicot: A User-Friendly Library of Real Analysis for Coq 9

standard library - Reals

sup (un)n∈N

lim (un)n∈N

lim (un)n∈N

lim
t→x

f(t)

f ′(x)

∑
n∈N

an

∑
n∈N

anx
n

∫ b

a

f(t) dt

∈ R

∈ R∈ R

FIGURE 1. Dependencies between total functions.

Finally, the last important filter is eventually; it is used to express the convergence of sequences:

eventually(P)⇔ (∃N ∈ N, ∀n ∈ N, N ≤ n⇒ P (n)).

There are some variants of those filters available for specific situations. In particular, one can restrict
a filter to only a subset of space T . For instance, the limit at the left of a point x can be defined using
the following filter:

at left(x, P)⇔ locally(x, (u 7→ u < x⇒ P (u))).

The locally filter is not restricted to the set of real numbers. Coquelicot generalizes it to
any set with an ecart, which is a weak version of metric distance. With respect to a distance, an
ecart is missing two properties. First, the distance between two points can be infinite. This greatly
simplifies proofs when it comes to functional spaces, since supx |f(x) − g(x)| is not always finite.
Second, when the distance between two points is zero, the points do not have to be equal. Again,
this helps with functional spaces, since extensional equality does not imply equality in Coq’s logic.
Other properties of distances, such as triangular inequality, are available.

In Coquelicot, sets with an ecart are characterized by the canonical structure UniformSpace.
In particular, the product of two uniform spaces is itself a uniform space and the resolution mecha-
nism of canonical structures can infer this property on the fly. As a consequence, the locally filter
(and thus all the definitions of continuity, convergence, and so on) is available not only for the set R
but for any set Rn.

4. Usual Notions of Real Analysis
In pen-and-paper proofs, it is common to first write functions or formulas and prove their well-
formedness afterwards. Unfortunately, the derivative from the standard library is defined using de-
pendent types, so one must first prove the differentiability before being allowed to write the deriva-
tive. Our idea is to build total functions for limits, derivatives, and integrals. They return the expected
value in the case of convergence, differentiability, or integrability, and else return an arbitrary value.

10 S. Boldo, C. Lelay and G. Melquiond

4.1. Total Functions on Sequences
As illustrated in Figure 1, we first construct total functions for the extrema of sequences sup and
inf , and then for the superior limit lim and the inferior limit lim. These four functions have the
advantage of being always defined in classical mathematics, without any hypotheses on the input
sequence. Thanks to the limited principle of omniscience, described in Section 3.2, we define them
in Coq, also without hypotheses. The construction is performed as follows.

We first define a predicate is sup seq to characterize the extended real number ` that is the
least upper bound of u : N→ R:

match ` with
| ` ∈ R ⇒ ∀ε > 0, (∀n ∈ N, un <R `+ ε) ∧ (∃n ∈ N, `− ε <R un)

| +∞ ⇒ ∀M ∈ R, ∃n ∈ N, M <R un
| −∞ ⇒ ∀M ∈ R, ∀n ∈ N, un <R M

end.

This definition of the least upper bound for the finite case may seem a bit unusual, but it is more
practical than the equivalent characterization

(∀n ∈ N, un ≤ `) ∧ (∀M ∈ R, (∀n ∈ N, un ≤M)⇒ ` ≤M)

because it is closer to the ε-N definition used for superior and inferior limits.
Using the LPO, we have proved that such an extended real number ` exists for all sequences

of extended real numbers. This lemma is used to build the total function that returns the supremum
of a sequence. Function inf is built similarly.

Superior and inferior limits have also been built using a similar approach: first a predicate to
express “` ∈ R is the superior/inferior limit of the sequence u : N → R”, then lemmas to prove
the existence of such `, and finally total functions. We have also proved some lemmas linking these
limits with extrema, such as LimSup seq u = inf(n 7→ sup(m 7→ un+m)).

4.2. Limit of Sequences and Series
4.2.1. Limits. Limits of sequences are defined for both finite and infinite limits using filters:

Definition is_lim_seq (u : nat → R) (l : Rbar) :=
filterlim u eventually (Rbar_locally l).

This definition is useful to inherit properties from filters. It is sometimes less practical than the ε-N
one, so we have proved the following equivalence formulas:

is lim seq (u, `) ⇔ ∀ε > 0, ∃N ∈ N, ∀n ∈ N, N ≤ n⇒ |un − `| < ε

is lim seq (u,+∞) ⇔ ∀M ∈ R, ∃N ∈ N, ∀n ∈ N, N ≤ n⇒M < un

is lim seq (u,−∞) ⇔ ∀M ∈ R, ∃N ∈ N, ∀n ∈ N, N ≤ n⇒ un < M

where u is a sequence of real numbers and ` a real number.
Thanks to our total functions lim and lim, the limit of a sequence u can be defined as

Lim seq u:=
lim u+ lim u

2
.

We have proved the equivalence between the equality of the superior and inferior limits and the con-
vergence of a sequence. This leads to the correctness of our total function for the limit of convergent
sequences:

Lemma is_lim_seq_unique : ∀ (u : nat → R) (l : Rbar),
is_lim_seq u l → Lim_seq u = l.

This lemma also gives the uniqueness of the limit by transitivity of equality. In case of non-convergent
sequences, Lim seq u returns an extended real number with no specific properties.

Coquelicot: A User-Friendly Library of Real Analysis for Coq 11

4.2.2. Series of real numbers and power series. Series and power series are good examples of
convergence toward a finite number. Indeed, these two kinds of series are defined as the finite limits

is series (a, `)⇔ is lim seq

((
n 7→

n∑
k=0

ak

)
, `

)
and

is pseries (a, `)⇔ is series ((n 7→ anx
n), `)

with a a sequence of real numbers and ` a real number. The partial sum used in these definitions is
equivalent to that of the standard library. Series and power series are then defined as

Series (a):= Lim seq

(
n 7→

n∑
k=0

ak

)
and PSeries (a, x):= Series (n 7→ anx

n).

The convergence radius plays an important role for power series. We define it as follows:

CV radius (a):= sup {r ∈ R |
∑
|anrn| is convergent}

where sup is a total function from nonempty sets to extended real numbers. For better usability, we
prove the equality of this number with sup {r ∈ R | {|anrn| ; n ∈ N} is bounded}.

In contrast with most of the other formalizations, our lemmas about arithmetic and analytic
operations on power series do not need any user intervention to rebuild power series. Therefore, the
user may easily chain lemmas about power series. For example, in most theorem provers, there are
no theorems about multiplication of power series, so the user has to apply those about series and
rebuild a power series afterwards, whereas Coquelicot provides

Lemma PSeries_mult : ∀ (a b : nat → R) (x : R),
Rabs x <R CV_radius a → Rabs x <R CV_radius b
→ PSeries (PS_mult a b) x = PSeries a x × PSeries b x.

where PS mult is the Cauchy product of real sequences.

4.3. Limits of Functions and Derivatives
4.3.1. Limits of functions. As with limits of sequences, limits of functions are defined using filters:

Definition is_lim (f : R → R) (x l : Rbar) :=
filterlim f (Rbar_locally’ x) (Rbar_locally l).

and this definition is proved equivalent to the usual ε-δ one. The total function for limits of sequences
is used to define the limit of functions without proof terms:

Lim (f, x):= Lim seq (f ([x]n))
n∈N ∈ R

where ([x]n)
n∈N is the following sequence of real numbers:

∀n ∈ N,

[x]n := x+

1

n+ 1
[+∞]n := n
[−∞]n := −n

These sequences satisfy ∀x ∈ R, lim ([x]n)
n∈N = x. The correctness of Lim is then an applica-

tion of the composition of a convergent function by a convergent sequence. Again, when f is not
convergent at x, the returned value has no specific properties.

Thanks to the Lim and Lim seq functions, we can provide an improved theorem about the
uniform convergence of function sequences. In particular, contrarily to the version from the standard
library, the user does not have to exhibit the limit of the fn functions. The theorem now states that,

12 S. Boldo, C. Lelay and G. Melquiond

for all sequence of functions (fn)n∈N and all open set D ⊂ R, if (fn)n∈N is uniformly convergent
and ∀x ∈ D, ∀n ∈ N, lim

t→x
fn(t) exists, then

∀x ∈ D, lim
t→x

(
lim
n→∞

fn(t)
)

= lim
n→∞

(
lim
t→x

fn(t)
)
.

4.3.2. Derivative and iterate derivatives. The predicate is derive(f, x, `) states that f is dif-
ferentiable at point x and its derivative at that point is `. It is proved equivalent to the predicate
derivable pt lim from the standard library. The total function for the derivative is defined as
the limit of Newton’s quotient:

Derive (f, x):= Lim

(
h 7→ f(x+ h)− f(x)

h
, 0

)
This function allows to easily define iterate derivatives:

Derive n (f, 0, x) := f(x)

Derive n (f, n+ 1, x) := Derive (Derive n (f, n) , x) .

Using this function, iterate differentiability is derive n(f, n, x, `) is defined by

match n with
| 0 ⇒ f(x) = `

| n+ 1 ⇒ is_derive (Derive n (f, n) , x, `)

end.

Notice that this definition of n-th differentiability does not imply n−1-th differentiability. In practice
however, this does not matter. For instance, the n-th differentiability between a and b is stated as

∀x ∈ R, a < x < b, ∀k ≤ n, ex derive n (f, k, x) .

4.4. Riemann Integral
The total function for Riemann integral is

RInt (f, a, b):= Lim seq

(
b− a
n+ 1

n∑
k=0

f

(
xk+1 + xk

2

))
n∈N

where xi = a+ i
n+1 (b− a). As before, we also define two predicates: is RInt (f, a, b, If) states

that the real number If is the integral of f between a and b, while ex RInt (f, a, b) states the
Riemann integrability. We have also proved the equivalence with the standard library definitions.

4.5. Basic Properties
In addition to defining those predicates and functions, we have proved numerous lemmas about
them. In particular, we have proved the compatibility of these notions with the basic operations:
composition, multiplication by a constant, opposite, and addition for function limits, derivatives
and integrals; multiplication and multiplicative inverse for limits and derivatives. For limits, these
theorems handle limits both at finite and infinite points, and both finite and infinite limit values. (See
Section 5.3.)

The way we have defined our total function for limits of sequences allows us to prove rewriting
rules that do not require hypotheses:

Lemma Lim_seq_scal_l : ∀ (u : nat → R) (a : R),
Lim_seq (fun n ⇒ a × u n) = a × Lim_seq u.

Coquelicot: A User-Friendly Library of Real Analysis for Coq 13

As a consequence, for all the total functions built upon it, opposite and scalar multiplication
rewritings can be performed without any constraint. There are some other rewriting rules that do not
require any hypothesis: linear composition for Riemann integral

∫ a
b
f(ux+ v) dx =

∫ ua+v
ub+v

f(x) dx,
and multiplication by a variable for power series xk

∑
anx

n =
∑
an−kx

n.
Regarding power series, we have also proved that they are differentiable and integrable, and

that their convergence radius is left unchanged by these operations. For arithmetic operations, we
have proved that the convergence radius of the resulting power series is no smaller.

5. Some Extensions of the Library
Section 4 has shown the low-level definitions provided by the library and the theorems available
to the user. The scope of these definitions and theorems roughly covers what the standard library
provides. Our library does not stop there though. We also provide some features such as partial
derivatives, parametric integrals, limits that uniformly apply to finite and infinite points, asymptotic
behaviors of functions, and a few powerful tactics.

5.1. Partial Derivatives
A use case for our library is the study of some systems of partial differential equations. This entails
the need for multivariate functions and the ability to manipulate partial derivatives. Given a higher-
order language, they can easily be defined from the standard one-dimensional derivative; the partial
derivative of f with respect to the k-th argument at point (x1, . . . , xn) is simply Derive((u 7→
f(x1, . . . , u, . . . , xn)), xk). As such, the library does not even provide a definition. It does provide
various theorems about partial derivatives though.

Note that the notion of partial derivative is weaker than the Fréchet derivative (which can be
found in HOL Light and Isabelle/HOL). Indeed, the existence of the Fréchet derivative implies the
existence of the partial derivatives, but the converse does not hold. So we have proved the traditional
relations between them. In particular, we have proved that, for bivariate functions, if at least one of
the partial derivatives is continuous, then the Fréchet derivative exists.

Things get hairier when higher derivatives are needed. An example is Schwarz’ theorem, which
states that mixed second partial derivatives are equal (that is, the Hessian matrix is symmetric) under
some continuity hypotheses. Our formalism makes it easy to state, while it would have been nearly
impossible with the standard library. Indeed, proof terms would creep every time the Derive total
function appears in the statement below, and they would be especially intricate since the derivatives
only need to exist in a neighborhood of (x, y) and not on the whole R2 space.

Lemma Schwarz : ∀ f x y,
locally_2d (fun u v ⇒

ex_derive (fun z ⇒ f z v) u ∧
ex_derive (fun z ⇒ f u z) v ∧
ex_derive (fun z ⇒ Derive (fun t ⇒ f z t) v) u ∧
ex_derive (fun z ⇒ Derive (fun t ⇒ f t z) u) v) x y →

continuity_2d_pt (fun u v ⇒ Derive (fun z ⇒
Derive (fun t ⇒ f z t) v) u) x y →

continuity_2d_pt (fun u v ⇒ Derive (fun z ⇒
Derive (fun t ⇒ f t z) u) v) x y →

Derive (fun z ⇒ Derive (fun t ⇒ f z t) y) x =
Derive (fun z ⇒ Derive (fun t ⇒ f t z) x) y.

14 S. Boldo, C. Lelay and G. Melquiond

We have not restricted ourselves to second partial derivatives; we have also proved theorems
about higher ones. An instance of such theorems is the Taylor-Lagrange approximation. It states that
the following equality holds under some hypotheses on the bivariate function f :

f(x′, y′) = DL pol(f, n, x, y, x′ − x, y′ − y) +O(‖(x′, y′)− (x, y)‖n+1)

with

DL pol(f, n, x, y, u, v) =

n∑
p=0

1

p!

(
p∑

m=0

(
p

m

)
· ∂pf

∂xm∂yp−m
(x, y) · um · vp−m

)
.

Again stating such a theorem would have been impossible if not for the availability of total
functions for defining partial derivatives. It would also have been cumbersome with Fréchet’s higher
derivative, since the n-th such derivative at a given point is a multilinear map from R2n to R.

5.2. Parametric Integrals
Once one starts to manipulate analysis formulas mixing integrals and derivatives, there quickly
comes a time when one has to compute the derivative of an integral (or the integral of a deriva-
tive). The fundamental theorem of calculus is sufficient to take care of the simpler case:(

x 7→
∫ x

a

f(t)dt

)′
(x) = f(x).

Unfortunately, integrals are hardly that simple and one might well have to compute the deriva-
tive of the following expression:

x 7→
∫ b(x)

a(x)

f(x, t)dt.

Not only do the bounds depend on the derivation variable x, but the integrated expression does
too. In that case, the ability to commute derivative and integral becomes crucial. Fortunately, our
formalization provides the necessary tools. For instance, it proves that, under sufficient hypotheses,
the derivative of the expression above is equal to∫ b(x)

a(x)

∂f

∂x
(x, t)dt− f(x, a(x)) · a′(x) + f(x, b(x)) · b′(x).

An example that heavily manipulates derivatives and integrals is the proof of the relation be-
tween the elliptic integral of the first and second kinds and the arithmetic-geometric mean [2]. This
was proved in Coq thanks to some theorems from Coquelicot.

5.3. Generalized Limits
Since R is equipped with a linear order, people want to compute limits of functions not only at finite
points, but also at +∞ and −∞. This kind of limits is unfortunately missing from the standard
library of Coq. So we added some support for them in Coquelicot, in a way similar to what can
be found for other proof assistants. Yet this was not entirely satisfactory, as mathematicians are
accustomed to writing the following kind of equalities:

lim
t→x

(f(t) + g(t)) = lim
t→x

f(t) + lim
t→x

g(t)

whether x is finite or not, and whether the actual limits are finite or not.
Nets and filters make short work of the various cases for x, but they do not really help for

the limit values themselves. There are indeed 7 cases to consider (cases +∞ −∞ and −∞ +∞
being forbidden), which thus flood the user with theorems. Even accounting for commutativity and
sign symmetries, there still remain 3 cases, and they come at the expense of user-friendliness since
they require preparatory work from the user. Therefore, we wanted to devise a system that would
encompass all these cases.

Coquelicot: A User-Friendly Library of Real Analysis for Coq 15

We have done so by defining limits as having values in the set R = R ∪ {−∞,+∞}. We
also extended the addition to a function of type R2 → R and proved that it was continuous over
R2 \ {(+∞,−∞), (−∞,+∞)}. As a consequence, the above equality about the sum of limits can
now be written. Moreover, its proof is an immediate corollary of the continuity of addition. The other
usual arithmetic operators are handled the same way by the library.

The intermediate value theorem is another example where its generalization to R is definitely
useful. Given an open interval (a, b), a function f : R → R continuous over (a, b), and a real y,
this theorem provides a real x such that f(x) = y when limt→a f(t) < y < limt→b f(t). Note
that this theorem holds whether the bounds a and b, and the two limits of f , are finite or not. It is
thus important that the user be given only one single theorem rather than 16 variants. Moreover,
the theorem proved in the Coquelicot library is stated as a function rather than with an existential
quantifier, so that it can be used to invert any continuous function.

5.4. Asymptotic Behaviors
The library also provides some definitions for expressing when functions are asymptotically equiva-
lent or when a function asymptotically dominates another. These properties are defined for functions
from an arbitrary space T to R, and filter F describes the limit point of T at which to compare the
functions:

Definition is_domin (F : (T → Prop) → Prop) (f g : T → R) :=
∀ eps : posreal, F (fun x ⇒ Rabs (g x) ≤ eps * Rabs (f x)).

Definition is_equiv (F : (T → Prop) → Prop) (f g : T → R) :=
is_domin F g (fun x ⇒ g x - f x).

Relation is domin is proved to be a strict partial order, while is equiv is an equivalence.
The usual correspondences between them are also provided by the library. Moreover, given a func-
tion f , the set of functions is domin (F, f) is a vector space of functions, while the equivalence
class of f is the affine space f + is domin (F, f). These properties take care of addition and
multiplication by a constant; the library also provides theorems for multiplication and division.

Finally, the whole point of knowing that functions are asymptotically equivalent is for proving
limits. If two functions f and g are equivalent with respect to F and l is the limit (possibly infinite)
of f , then l is also the limit of g:

Lemma filterlim_equiv : ∀ (f g : T → R) (l : Rbar),
is_equiv F f g → filterlim f F (Rbar_locally l) →
filterlim g F (Rbar_locally l).

5.5. Tactics for Automating Reasoning about Differentiability
When it comes to real analysis, some reasonings are mechanical, guided only by the structure of
expressions, e.g. differentiability. It is thus important not only to provide tools that ease writing
mathematics, but also tools that automate reasoning whenever possible.

For that purpose, the library provides the auto derive tactic. It is meant to help proving
statements of the form is derive (f, x, l), that is, f has a derivative at point x and it is equal
to l. Variants of this tactic take care of equivalent statements from the standard library, or statements
where l is implicit. The tactic first reifies expression f , then performs symbolic differentiation on it,
and finally compares the obtained derivative with l [6].

Along the differentiation computations, the tactic keeps track of all the side conditions needed
for the final result to actually be a derivative of the original expression. These properties are left for
the user to prove. For example, consider the following goal; it contains an uninterpreted function
symbol f : R→ R, two real variables x and l, and a parametric integral:

Goal is_derive (fun t ⇒ f t + RInt (fun u ⇒ cos (t + u)) 0 1) x l.

16 S. Boldo, C. Lelay and G. Melquiond

Given this goal, the tactic requires the user to prove that f is differentiable at x, that the integral∫ 1

0
cos(x′+u)du exists for any x′ in some neighborhood of x, that the function (x′, u) 7→ sin(x′+u)

is continuous at any point of {x} × [0, 1], and that the following equality holds:

f ′(x) +

∫ 1

0

− sin(x+ u)du = l.

If cos had been an unknown symbol, the left-hand side would not have contained− sin(x+u)
but instead Derive(cos, x+u). Moreover, the user would have had to prove that cos is differentiable
on a suitable domain. In fact, the core of the tactic does not even know about functions such as cos
and sin, it only knows about the basic arithmetic operators and about integrals. A mechanism of
type class instances makes it possible to indicate the derivatives of some function symbols. It is used
for supporting all the elementary functions of Coq’s standard library. The user can use the same
mechanism to register more functions, if needed. Then, at the time of reification, whenever the tactic
encounters a function symbol, it looks if it is registered as being differentiable. If so, it tells the core
tactic about its derivative, so that the core tactic does not use the Derive operator.

Coq’s standard library provides a reg tactic that can be used for a similar purpose. It suffers
from a few shortcomings though. First, it does not support integrals; it is not extensible to more
functions either. Second, it is only suitable for proving differentiability, not for computing deriva-
tives. Indeed, it tries to compute derivatives only for expressions of the form derive pt, that is,
expressions that contain a proof term. This means that the user already had to manually prove the
property beforehand, which kind of defeats the point. The reg tactic has some other uses outside
differentiability though, as it is also able to prove continuity properties.

Several comparable tactics are also available in the C-CoRN library. The first ones are Contin
and Deriv and consist in considering the application of a list of lemmas (the elementary rules)
according to the form of the goal. Advanced tactics were developed: New Contin and New Deriv
aim at solving goals that state continuity and differentiability. They abstract the goal and keep track
of differentiability and continuity domains during computations.

6. Applications
Our definitions and lemmas cover a broad part of real analysis and we moreover claim they are user-
friendly. To convince the reader, we now show three very different applications that demonstrate
various features of our library.8

6.1. Baccalaureate
The first example is the most basic of the three applications. Most 18-year old French students pass
an exam called Baccalaureate which ends the high school and is required for attending the university.
The idea was to try Coquelicot on the 2013 mathematics test of the scientific Baccalaureate. Is a Coq
user able to prove in a short time what is expected from scientifically-inclined French students at 18?

6.1.1. The experiment. We tested several exams from the previous years, but we also wanted to
experiment in real-life test conditions. Therefore, one of the authors went to the “Parc de Vilgénis”
high school in Massy, France and took the 2013 test at the same time as the students. There was
therefore no possible cheating: the library was already developed and it was tested as is during the
four hours of the test. The first exercise was about probabilities and the third one about geometry;
thus they are out of the scope of the library. Let us focus on the two other exercises from the test [1].

8These applications are available in the examples directory of the Coquelicot distribution.

Coquelicot: A User-Friendly Library of Real Analysis for Coq 17

6.1.2. Exercise 2. The second exercise was pure real analysis. Some function was defined:

f(x) =
a+ b ln(x)

x

and it had to be thoroughly studied: derivative, variation, intermediate value, several limits, and
integral (between e−1 and 1).

Most of the demonstrations were done in a little more than 2 hours. They required about 300
lines of Coq and showed the adequacy of the library for derivatives and integrals. The limited time
was quite a challenge, yet we succeeded in formally proving the expected answers. Some questions
would not have been feasible using the standard library. Indeed, the students were to give the limits
of f when x goes to zero and when x goes to infinity, neither of which can be stated using the
standard Coq library. Note that the proofs were done using only the most basic tactics of Coq, for
the sake of the experiment.

An unexpected difficulty (that did not arise in the previous tests we trained on) was the use that
year of right and left limits which were not formalized in Coquelicot at that time. Proving the limit
of f when x goes to 0 requires x to be positive. The trick used during the test was to give the limit of
f(|x|) when x goes to zero, as f(|x|) is defined for all nonzero reals. Therefore, the correct answer
was formally proved, even if a twist had to be used.

6.1.3. Exercise 4. The fourth and last exercise was about a sequence (un)n∈N defined by

u0 = 2 and un+1 =
2

3
un +

1

3
n+ 1.

The questions were its variation, several inequalities, other equivalent formulas of the same
sequence, its limit when n goes to infinity and a small study (value, limit) of

Tn =
1

n2

n∑
k=0

uk.

All the demonstrations were rather easy and done in one hour. They required about 140 lines
of Coq. Our definitions and lemmas about generalized limits were the only features used. They
shortened the proofs, but most of them could have been done using the standard library.

6.1.4. Conclusion. After the test, a meeting was organized with some teachers and the produced
proofs and results were presented. They seemed interested and found the total functions for the limit
and the derivative quite an asset. They also agreed that a use in class is still unrealistic due to the use
of tactics and the very low granularity of the proofs for algebraic manipulations.

Nevertheless, this experiment shows that Coquelicot is able to cope with basic real analysis: it
has the necessary definitions and lemmas, and its usability and efficiency have been demonstrated in
a test with limited time. The generalized limits (towards infinities) were entirely required, while our
lack of left and right limits (at that time) could be bypassed. The final Coq file is about 500-line long
for 19 lemmas (exactly corresponding to the test questions). The only questions left were the three
following ones:
• Using the given graph of the function, the students had to visually evaluate f(1) and f ′(1).
• An imperative algorithm was given and the students were supposed to run it by hand. Even

if it would have been possible to formalize and prove it in Coq, it was both uninteresting,
time-consuming and not related to real analysis, so we left out this question.
• The values of u1, u2, u3, u4 had to be computed with a 10−2 accuracy. This kind of com-

putation is out of the scope of our library, but could have been done using for example the
interval tactic [26].
Therefore very few questions are out of the scope of Coquelicot, showing also that its breadth

is at least comparable to that of the most scientifically-inclined 18-year old French students.

18 S. Boldo, C. Lelay and G. Melquiond

6.2. Bessel Functions
The second example illustrates the use of power series. We have defined Bessel functions as follows.

Jn(x) =
(x

2

)n +∞∑
p=0

(−1)p

p!(n+ p)!

(x
2

)2p
.

This is a well-known power series with numerous recurrence relations and it will show how
easily one can manipulate power series with Coquelicot. The first question regarding a power series
is its convergence radius. Here, it is the simplest case as it is infinite. We therefore state using our
extended reals:

Lemma CV_Bessel1 : ∀ n : nat, CV_radius (Bessel1_seq n) = p_infty.

Using d’Alembert criterion, this is easy and requires less than 40 lines.
We can now formally prove various relations and properties of Bessel functions [22]:

∀x ∈ R, Jn+1(x) + Jn−1(x) = 2n
x Jn(x),

∀x ∈ R, Jn+1(x) = nJn(x)
x − J ′n(x),

∀x ∈ R, Jn+1(x)− Jn−1(x) = −2J ′n(x).

The first one only requires arithmetic operations on power series, but the other ones require Bessel
functions to be differentiable. Of course, we have also proved that our function is solution of the
Bessel equation:

∀x ∈ R, x2 · J ′′n(x) + x · J ′n(x) +
(
x2 − n2

)
Jn(x) = 0.

What is interesting here is the statement of this last theorem: in mathematics, we directly write J ′n
and J ′′n . Using Coq’s standard library, it would have been very complicated, as we have to give the
differentiability proofs both for Jn and for J ′n, which would have given an ugly and unreadable
expression. In Coquelicot, we get the following statement:

Lemma Bessel1_correct : ∀ (n : nat) (x : R),
xˆ2 * Derive_n (Bessel1 n) 2 x + x * Derive (Bessel1 n) x

+ (xˆ2 - (INR n)ˆ2) * Bessel1 n x = 0.

where Derive n is the n-th derivative of the function at a given point. Except for INR (which
transforms a natural number into a real number), this is quite readable and close to the mathematical
expression.

To formally prove the values of J ′n(x) and J ′′n(x), we first proved the existence of a derivative,
which is easy as both are power series with an infinite convergence radius. Then, we called the
auto derive tactic and proved the correspondence between two algebraic expressions.

At the end, we have a 300-line long file that defines and gives several properties of the Bessel
function. The brevity of the file shows that power series are practical to use and that the library is
user-friendly.

6.3. D’Alembert’s Formula
This last application is part of a project aiming at proving numerical analysis programs. The case
study was a C program that implements a numerical scheme for the resolution of the one-dimensional
acoustic wave equation. This corresponds to the oscillation of an attached rope where c is the con-
stant propagation velocity, which depends on the section and density of the string. More precisely,
we consider the following initial-boundary value problem: we have the initial values u0 and u1, a
source term s and we want to compute an approximation of the exact solution u of

∂2u

∂t2
(x, t)− c2 ∂

2u

∂x2
(x, t) = f(x, t).

with some initial conditions for u(x, 0) and ∂u
∂t (x, 0).

Coquelicot: A User-Friendly Library of Real Analysis for Coq 19

To actually compute an approximation of the solution u, we choose the second order centered
finite difference scheme, also known as three-point scheme. The size of the grid is (∆x,∆t) and the
value ukj ≈ u(j∆x, k∆t) is given by

ukj − 2uk−1j + uk−2j

∆t2
− c2

uk−1j+1 − 2uk−1j + uk−1j−1

∆x2
= sk−1j

and some similar formulas that depend on u0 and u1 for the initializations u0j and u1j .
The full C program was verified for a finite rope [5], including both the rounding error and

the method error. The proofs of that development were relying on two axioms: the existence of a
solution to the partial differential equation and its regularity. Thanks to the Coquelicot library, we
are now able to prove those assumptions.

For the existence, the mathematical proof is simpler than one could expect, as this equation has
an analytical solution. More precisely, d’Alembert’s formula

u(x, t) =
1

2
(u0(x+ ct) + u0(x− ct))︸ ︷︷ ︸

α(x,t)

+
1

2c

∫ x+ct

x−ct
u1(ξ) dξ︸ ︷︷ ︸

β(x,t)

+
1

2c

∫ t

0

∫ x+c(t−τ)

x−c(t−τ)
f(ξ, τ) dξ dτ︸ ︷︷ ︸

γ(x,t)

defines a function that is solution to the previous partial differential equation. We define α, β, and
γ, as parts of this formula and we just have to derive them and check several equalities. This called
for automation, and led to a reflexive Coq tactic for proving differentiability [23]. The tactic was
limited: it could handle expressions with one variable only. As a consequence, human intervention
was needed for differentiating under the integral sign of γ. However, we wanted to prove not only
the existence but also the regularity, which means manipulating tens of partial derivatives of γ. This
makes it out of reach of a non-automated proof. Now that we have got rid of proof terms in values,
the auto derive tactic is able to differentiate below the integral sign and can thus be used for this
application.

The regularity of the solution u is the base of the convergence of the chosen numerical scheme.
In the scheme statement, since the grid sizes are small, we can recognize discrete derivatives:

ukj − u
k−1
j

∆t
≈ ∂u

∂t
(j∆x, k∆t)

ukj − 2uk−1j + uk−2j

∆t2
≈ ∂2u

∂t2
(j∆x, k∆t)

and similarly for space derivatives. The discrete equation is the exact discrete analog of the con-
tinuous wave equation. For the main iteration, we need to guarantee that the difference between the
function and its order-4 Taylor polynomial is proportional to (

√
∆x2 + ∆t2)4. For the initializations,

we also need this property at order 3. Both were proved using the Taylor-Lagrange approximation
theorem described in Section 5.1.

This application was the initial reason for the Coquelicot library: this property is not provable
using the standard library. Therefore, we decided to build the necessary tools to tackle this problem:
easy statements for derivatives and integrals, and automated tools. Consider for example the second
partial derivative with respect to the first variable of γ, that is

∂2γ

∂x2
(x, t) =

1

2c

∫ t

0

∂f

∂x
(x+ c(t− τ), τ)− ∂f

∂x
(x− c(t− τ), τ) dτ.

It is a complex mix of integrals and derivatives that would have been very tedious to write
using the standard library. Using Coquelicot, the property is quite readable:

20 S. Boldo, C. Lelay and G. Melquiond

Definition gamma20 x t := 1/(2*c) * RInt
(fun tau ⇒ Derive (fun u ⇒ f u tau) (x + c * (t - tau)) -

Derive (fun u ⇒ f u tau) (x - c * (t - tau)))
0 t.

Lemma gamma20_lim :
∀ x t, is_derive_n (fun u ⇒ gamma u t) 2 x (gamma20 x t).

Another fact is that this application requires definitions and lemmas that are not provided by
the standard library: functions of two variables (continuity and so on) and parametric integrals.

This application is rather specific, and its success indicates that automation and user-friendly
statements are fulfilled requirements, as proofs are quite short and as theorems are easy to read. With
the other applications, the breadth of the library appears, from university level to power series and
parametric integrals.

7. Conclusion
The Coquelicot library provides an extension of Coq’s standard library for real analysis. It contains
nearly 200 definitions, more than 1,000 lemmas, and about 20,000 lines of Coq proofs. Coquelicot
provides homogeneous definitions and lemmas for limits, derivatives, integrals, series, and power
series. Whenever different, these definitions are proved equivalent to those of the standard library,
so that user developments can easily mix both libraries. Moreover, no new axioms were introduced.

For all of those notions of real analysis, total functions are available. These functions return
the expected value in case of convergence and an arbitrary (extended) real number otherwise. By
avoiding dependent types throughout the library, theorem statements become much easier to write
than with the standard library. Indeed, hypotheses of convergence, differentiability, and so on, can
now be split from the actual values. Without such a feature, it would be next to impossible to state
theorems such as those about d’Alembert’s formula. It also simplifies the proof process, as it makes
rewriting rules usable in practice. This approach based on total functions is similar to what other
proof assistants achieve thanks to Hilbert’s ε operator, but without having to assume the existence of
such an operator in Coq.

These total functions are implemented by combining the limited principle of omniscience with
the completeness axiom of the real numbers. For topological properties, the library relies on the per-
vasive use of filters. Arithmetic and order on extended real numbers allow to easily express theorems
about limits and power series without having to separate finite and infinite cases. In addition to those
basic features, we have also developed several extensions: differentiability of bivariate functions,
parametric integrals, asymptotic behaviors, and a tactic for automating proofs of differentiability.
Finally, great care has been taken when naming and stating theorems, so as to avoid some of the
most unnerving issues of the standard library.

In this paper, we have also presented a few applications that either motivated the library or
were used to exercise it. Indeed, we consider important, when formalizing a library for mathematics,
to keep applications in mind, so as to ensure it will actually be usable in practice.

To conclude, Coquelicot is a notable improvement over Coq’s standard library and it is suitable
for our current applications. Note that a new version of Coquelicot is on the tracks to extend it
further: to handle easily sets other than reals, such as complex and matrices, we have developed
an algebraic hierarchy to take advantage of our previous work while preventing the duplication of
theorems. This can be found in the downloadable 2.0 version of the Coquelicot library. Still, we wish
to extend it further. First, a natural perspective is to build upon the complex numbers to define new
elementary functions and prove their properties. It would be feasible in a real-only setting, but it

REFERENCES 21

would be much more straightforward using complex numbers. Second, automated methods could be
improved further, so as to handle predicates such as integrability and multivariate continuity. Finally,
while a comprehensive support for parametric integrals is a non-negligible feature, integration is still
lacking, especially when it comes to surface or path integration. For instance, proving a theorem such
as Kelvin-Stokes’ is currently unpractical.

Acknowledgements
The authors are grateful to Pierre Michalak and Évelyne Roudneff for allowing us to take the Bac-
calaureate exam in real-life conditions in a high school in Massy, and for organizing the meeting
with interested teachers.

References
[1] Baccalauréat général, Série S, Mathématiques, Session 2013, June 2013. http://

eduscol.education.fr/prep-exam/sujets/13MASCOMLR1.pdf.
[2] Yves Bertot. Proving the convergence of a sequence based on algebraic-geometric means to π,

2013. http://www-sop.inria.fr/members/Yves.Bertot/proofs.html.
[3] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development.

Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science.
Springer, 2004.

[4] Frédéric Besson. Fast reflexive arithmetic tactics: the linear case and beyond. In Proceedings
of the International Workshop on Types for proofs and programs (TYPES’06), volume 4502 of
Lecture Notes in Computer Science, pages 48–62, Nottingham, UK, 2006.

[5] Sylvie Boldo, François Clément, Jean-Christophe Filliâtre, Micaela Mayero, Guillaume
Melquiond, and Pierre Weis. Wave equation numerical resolution: a comprehensive mecha-
nized proof of a C program. Journal of Automated Reasoning, 50(4):423–456, April 2013.

[6] Sylvie Boldo, Catherine Lelay, and Guillaume Melquiond. Improving real analysis in Coq:
a user-friendly approach to integrals and derivatives. In Chris Hawblitzel and Dale Miller,
editors, Proceedings of the 2nd International Conference on Certified Programs and Proofs
(CPP), volume 7679 of Lecture Notes in Computer Science, pages 289–304, Kyoto, Japan,
2012.

[7] Sylvie Boldo, Catherine Lelay, and Guillaume Melquiond. Formalization of real analysis: A
survey of proof assistants and libraries. 2014. To be published in Mathematical Structures in
Computer Science. http://hal.inria.fr/hal-00806920.

[8] Cyril Cohen. Reasoning about big enough numbers in Coq. In Proceedings of the 4th Coq
Workshop, Princeton, NJ, USA, 2012.

[9] Luis Cruz-Filipe, Herman Geuvers, and Freek Wiedijk. C-CoRN: the constructive Coq repos-
itory at Nijmegen. In Andrea Asperti, Grzegorz Bancerek, and Andrzej Trybulec, editors,
Proceedings of the 3rd International Conference of Mathematical Knowledge Management
(MKM), volume 3119 of Lecture Notes in Computer Science, pages 88–103, 2004.

[10] Luı́s Cruz-Filipe. A constructive formalization of the fundamental theorem of calculus. In Her-
man Geuvers and Freek Wiedijk, editors, Proceedings of the International Workshop on Types
for Proofs and Programs (TYPES’02), volume 2646 of Lecture Notes in Computer Science,
pages 108–126. Springer, 2003.

[11] Marc Daumas, David Lester, and César Muñoz. Verified real number calculations: A library
for interval arithmetic. IEEE Transactions on Computers, 58(2):226–237, 2009.

[12] Bruno Dutertre. Elements of mathematical analysis in PVS. In Joakim von Wright, Jim Grundy,
and John Harrison, editors, Proceedings of the 9th International Conference Theorem Proving
in Higher Order Logics (TPHOLs), volume 1125 of Lecture Notes in Computer Science, pages
141–156, 1996.

22 REFERENCES

[13] Jacques Fleuriot. On the mechanization of real analysis in Isabelle/HOL. In Mark Aagaard and
John Harrison, editors, Proceeding of the 13th International Conference of Theorem Proving
in Higher Order Logics (TPHOLs), volume 1869 of Lecture Notes in Computer Science, pages
145–161, 2000.

[14] Ruben Gamboa and Matt Kaufmann. Nonstandard analysis in ACL2. Journal of Automated
Reasoning, 27(4):323–351, November 2001.

[15] Herman Geuvers and Milad Niqui. Constructive reals in Coq: Axioms and categoricity. In
Paul Callaghan, Zhaohui Luo, James McKinna, and Robert Pollack, editors, Proceedings of
the International Workshop on Types for Proofs and Programs (TYPES’00), volume 2277 of
Lecture Notes in Computer Science, pages 79–95, 2002.

[16] John Harrison. Constructing the real numbers in HOL. Formal Methods in System Design,
5(1–2):35–59, July 1994.

[17] John Harrison. HOL Light: An overview. In Stefan Berghofer, Tobias Nipkow, Christian Ur-
ban, and Makarius Wenzel, editors, Proceedings of the 22nd International Conference on The-
orem Proving in Higher Order Logics (TPHOLs), volume 5674 of Lecture Notes in Computer
Science, pages 60–66, Munich, Germany, 2009.

[18] John Harrison. The HOL Light theory of Euclidean space. Journal of Automated Reasoning,
50:173–190, 2013.

[19] Johannes Hölzl, Fabian Immler, and Brian Huffman. Type classes and filters for mathematical
analysis in Isabelle/HOL. In Sandrine Blazy, Christine Paulin-Mohring, and David Pichardie,
editors, Proceedings of the 4th International Conference on Interactive Theorem Proving (ITP),
volume 7998 of Lecture Notes in Computer Science, pages 279–294, Rennes, France, 2013.

[20] Cezary Kaliszyk and Russell O’Connor. Computing with classical real numbers. Journal of
Formalized Reasoning, 2(1):27–39, 2009.

[21] Robbert Krebbers and Bas Spitters. Type classes for efficient exact real arithmetic in Coq.
Logical Methods in Computer Science, 9(1:1):1–27, 2013.

[22] Catherine Lelay. A new formalization of power series in Coq. In 5th Coq Workshop, pages 1–2,
Rennes, France, July 2013. http://coq.inria.fr/coq-workshop/2013#Lelay.

[23] Catherine Lelay and Guillaume Melquiond. Différentiabilité et intégrabilité en Coq. Applica-
tion à la formule de d’Alembert. In 23èmes Journées Francophones des Langages Applicatifs,
pages 119–133, Carnac, France, 2012.

[24] Micaela Mayero. Formalisation et automatisation de preuves en analyses réelle et numérique.
PhD thesis, Université Paris VI, décembre 2001.

[25] Sean McLaughlin and John Harrison. A proof-producing decision procedure for real arith-
metic. In Robert Nieuwenhuis, editor, Proceedings of the 20th International Conference on
Automated Deduction (CADE-20), volume 3632 of Lecture Notes in Computer Science, pages
295–314, Tallinn, Estonia, 2005.

[26] Guillaume Melquiond. Proving bounds on real-valued functions with computations. In
Alessandro Armando, Peter Baumgartner, and Gilles Dowek, editors, Proceedings of the 4th
International Joint Conference on Automated Reasoning (IJCAR), volume 5195 of Lecture
Notes in Artificial Intelligence, pages 2–17, Sydney, Australia, 2008.

[27] César Muñoz and Anthony Narkawicz. Formalization of a Bernstein polynomials and applica-
tions to global optimization. Journal of Automated Reasoning, 51(2):151–196, 2013.

[28] Adam Naumowicz and Artur Korniłowicz. A brief overview of Mizar. In Stefan Berghofer,
Tobias Nipkow, Christian Urban, and Makarius Wenzel, editors, Proceedings of the 22th Inter-
national Conference on Theorem Proving in Higher Order Logics (TPHOLs), volume 5674 of
Lecture Notes in Computer Science, pages 67–72, 2009.

REFERENCES 23

[29] Sam Owre, John Rushby, and Natarajan Shankar. PVS: A prototype verification system. In
Deepak Kapur, editor, Proceedings of the 11th International Conference on Automated Deduc-
tion (CADE), volume 607 of Lecture Notes in Artificial Intelligence, pages 748–752, Saratoga,
NY, jun 1992.

[30] Russell O’Connor. A monadic, functional implementation of real numbers. Mathematical
Structures in Computer Science, 17:129–159, 1 2007.

[31] Russell O’Connor and Bas Spitters. A computer-verified monadic functional implementation
of the integral. Theoretical Computer Science, 411(37):3386–3402, 2010.

[32] Loı̈c Pottier. Connecting Gröbner bases programs with Coq to do proofs in algebra, geom-
etry and arithmetics. In Geoff Sutcliffe, Piotr Rudnicki, Renate A. Schmidt, Boris Konev,
and Stephan Schulz, editors, Knowledge Exchange: Automated Provers and Proof Assistants,
CEUR Workshop Proceedings, pages 67–76, Doha, Qatar, 2008.

[33] John Rushby, Sam Owre, and Natarajan Shankar. Subtypes for specifications: Predicate sub-
typing in PVS. IEEE Transactions on Software Engineering, 24(9):709–720, sep 1998.

[34] Andrzej Trybulec. Some features of the Mizar language. In Proceedings of the ESPRIT Work-
shop, Torino, Italy, 1993.

[35] Andrzej Trybulec. Non negative real numbers. Part I. Journal of Formalized Mathematics,
Addenda, 1998.

Sylvie Boldo
Inria Saclay - Île-de-France
PCRI - Bâtiment 650
Université Paris-Sud
91405 Orsay cedex, France
e-mail: sylvie.boldo@inria.fr

Catherine Lelay
Inria Saclay - Île-de-France
PCRI - Bâtiment 650
Université Paris-Sud
91405 Orsay cedex, France
e-mail: catherine.lelay@inria.fr

Guillaume Melquiond
Inria Saclay - Île-de-France
PCRI - Bâtiment 650
Université Paris-Sud
91405 Orsay cedex, France
e-mail: guillaume.melquiond@inria.fr

