
Introduction Interval+Error Advanced Gappa

Automated Methods for Verifying
Floating-point Algorithms

Guillaume Melquiond

Inria Saclay–̂Ile-de-France

LRI, Université Paris Sud, CNRS

2014-02-06

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Verification Flocq Gappa

Why Floating-point Arithmetic?

The real world is much more continuous than one could hope,
so real numbers tend to creep in all the applications.

How to compute with them?

Use a subset, e.g. rational or algebraic numbers.

Compute with arbitrary precision.

Approximate operations, e.g. floating-point numbers.

Speed of FP operations is high and deterministic,
but all bets are off with respect to the quality of FP results:
precision is known, but accuracy is not.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Verification Flocq Gappa

Why Floating-point Arithmetic?

The real world is much more continuous than one could hope,
so real numbers tend to creep in all the applications.

How to compute with them?

Use a subset, e.g. rational or algebraic numbers.

Compute with arbitrary precision.

Approximate operations, e.g. floating-point numbers.

Speed of FP operations is high and deterministic,
but all bets are off with respect to the quality of FP results:
precision is known, but accuracy is not.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Verification Flocq Gappa

Why Floating-point Arithmetic?

The real world is much more continuous than one could hope,
so real numbers tend to creep in all the applications.

How to compute with them?

Use a subset, e.g. rational or algebraic numbers.

Compute with arbitrary precision.

Approximate operations, e.g. floating-point numbers.

Speed of FP operations is high and deterministic,
but all bets are off with respect to the quality of FP results:
precision is known, but accuracy is not.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Verification Flocq Gappa

Why Floating-point Arithmetic?

The real world is much more continuous than one could hope,
so real numbers tend to creep in all the applications.

How to compute with them?

Use a subset, e.g. rational or algebraic numbers.

Compute with arbitrary precision.

Approximate operations, e.g. floating-point numbers.

Speed of FP operations is high and deterministic,
but all bets are off with respect to the quality of FP results:
precision is known, but accuracy is not.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Verification Flocq Gappa

Why Floating-point Arithmetic?

The real world is much more continuous than one could hope,
so real numbers tend to creep in all the applications.

How to compute with them?

Use a subset, e.g. rational or algebraic numbers.

Compute with arbitrary precision.

Approximate operations, e.g. floating-point numbers.

Speed of FP operations is high and deterministic,
but all bets are off with respect to the quality of FP results:
precision is known, but accuracy is not.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Verification Flocq Gappa

Verifying Floating-point Algorithms

People tend to verify FP algorithms in two steps:

1 Prove correctness assuming that all operators are
infinitely-precise.

2 Check that limited precision does not have much impact:

preconditions of functions are still satisfied;
control-flow changes are innocuous;
accuracy of the computed values is good enough.

There exist numerous automated tools for this job.
But what if your algorithm is intricate or you need a formal proof?

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Verification Flocq Gappa

Verifying Floating-point Algorithms

People tend to verify FP algorithms in two steps:

1 Prove correctness assuming that all operators are
infinitely-precise.

2 Check that limited precision does not have much impact:

preconditions of functions are still satisfied;
control-flow changes are innocuous;
accuracy of the computed values is good enough.

There exist numerous automated tools for this job.
But what if your algorithm is intricate or you need a formal proof?

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Verification Flocq Gappa

Verifying Floating-point Algorithms

People tend to verify FP algorithms in two steps:

1 Prove correctness assuming that all operators are
infinitely-precise.

2 Check that limited precision does not have much impact:

preconditions of functions are still satisfied;

control-flow changes are innocuous;
accuracy of the computed values is good enough.

There exist numerous automated tools for this job.
But what if your algorithm is intricate or you need a formal proof?

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Verification Flocq Gappa

Verifying Floating-point Algorithms

People tend to verify FP algorithms in two steps:

1 Prove correctness assuming that all operators are
infinitely-precise.

2 Check that limited precision does not have much impact:

preconditions of functions are still satisfied;
control-flow changes are innocuous;

accuracy of the computed values is good enough.

There exist numerous automated tools for this job.
But what if your algorithm is intricate or you need a formal proof?

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Verification Flocq Gappa

Verifying Floating-point Algorithms

People tend to verify FP algorithms in two steps:

1 Prove correctness assuming that all operators are
infinitely-precise.

2 Check that limited precision does not have much impact:

preconditions of functions are still satisfied;
control-flow changes are innocuous;
accuracy of the computed values is good enough.

There exist numerous automated tools for this job.
But what if your algorithm is intricate or you need a formal proof?

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Verification Flocq Gappa

Verifying Floating-point Algorithms

People tend to verify FP algorithms in two steps:

1 Prove correctness assuming that all operators are
infinitely-precise.

2 Check that limited precision does not have much impact:

preconditions of functions are still satisfied;
control-flow changes are innocuous;
accuracy of the computed values is good enough.

There exist numerous automated tools for this job.
But what if your algorithm is intricate or you need a formal proof?

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Verification Flocq Gappa

Verifying Floating-point Algorithms

People tend to verify FP algorithms in two steps:

1 Prove correctness assuming that all operators are
infinitely-precise.

2 Check that limited precision does not have much impact:

preconditions of functions are still satisfied;
control-flow changes are innocuous;
accuracy of the computed values is good enough.

There exist numerous automated tools for this job.
But what if your algorithm is intricate or you need a formal proof?

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Verification Flocq Gappa

Scope and Constraints

Scope

real numbers and basic operators: +, ×, ÷,
√
·;

radix-2 fixed- and FP arithmetic (no multi-precision);

logical formulas (no control flow).

Features

compute range and format of expressions;

bound forward errors.

Constraints

handle complicated formulas (possibly with user help),

generate Coq proofs that fit into Flocq’s formalism.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Verification Flocq Gappa

Scope and Constraints

Scope

real numbers and basic operators: +, ×, ÷,
√
·;

radix-2 fixed- and FP arithmetic (no multi-precision);

logical formulas (no control flow).

Features

compute range and format of expressions;

bound forward errors.

Constraints

handle complicated formulas (possibly with user help),

generate Coq proofs that fit into Flocq’s formalism.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Verification Flocq Gappa

Scope and Constraints

Scope

real numbers and basic operators: +, ×, ÷,
√
·;

radix-2 fixed- and FP arithmetic (no multi-precision);

logical formulas (no control flow).

Features

compute range and format of expressions;

bound forward errors.

Constraints

handle complicated formulas (possibly with user help),

generate Coq proofs that fit into Flocq’s formalism.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Verification Flocq Gappa

Outline

1 Introduction
Verification
The Flocq library
The Gappa tool

2 Interval arithmetic and forward error analysis

3 Dealing with more intricate algorithms

4 The Gappa tool

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Verification Flocq Gappa

Why is FP Arithmetic Amenable to Formal Proof?

IEEE-754 standard for FP arithmetic

Every operation shall be performed as if it first produced
an intermediate result correct to infinite precision and
with unbounded range, and then rounded that result.

Concise specification, suitable for program verification.

It is all about real numbers.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Verification Flocq Gappa

Why is FP Arithmetic Amenable to Formal Proof?

IEEE-754 standard for FP arithmetic

Every operation shall be performed as if it first produced
an intermediate result correct to infinite precision and
with unbounded range, and then rounded that result.

Concise specification, suitable for program verification.

It is all about real numbers.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Verification Flocq Gappa

Why is FP Arithmetic Amenable to Formal Proof?

IEEE-754 standard for FP arithmetic

Every operation shall be performed as if it first produced
an intermediate result correct to infinite precision and
with unbounded range, and then rounded that result.

Concise specification, suitable for program verification.

It is all about real numbers.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Verification Flocq Gappa

Exceptional Values

Floating-point computations can lead to exceptional behaviors:

invalid operations:
√
−1,

overflow: 2× 2× · · · × 2.

When proving a FP algorithm, the very first step is to prove that

exceptional behaviors cannot arise, or

they are properly handled.

Today’s talk is not about floating-point exceptions.
Let us assume that they are proved not to occur.

(This can be achieved by computing the range of expressions.)

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Verification Flocq Gappa

Exceptional Values

Floating-point computations can lead to exceptional behaviors:

invalid operations:
√
−1,

overflow: 2× 2× · · · × 2.

When proving a FP algorithm, the very first step is to prove that

exceptional behaviors cannot arise, or

they are properly handled.

Today’s talk is not about floating-point exceptions.
Let us assume that they are proved not to occur.

(This can be achieved by computing the range of expressions.)

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Verification Flocq Gappa

Exceptional Values

Floating-point computations can lead to exceptional behaviors:

invalid operations:
√
−1,

overflow: 2× 2× · · · × 2.

When proving a FP algorithm, the very first step is to prove that

exceptional behaviors cannot arise, or

they are properly handled.

Today’s talk is not about floating-point exceptions.
Let us assume that they are proved not to occur.

(This can be achieved by computing the range of expressions.)

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Verification Flocq Gappa

FP Numbers and Real Numbers, the Flocq Way

Since there are no exceptional behaviors,
floating-point numbers can be embedded into real numbers.

Representable numbers

F = {m · βe ∈ R | m, e ∈ Z ∧ |m| < βp ∧ e ≥ emin}

with β, p, and emin depending on the format.

Rounding operators

The result of an addition a⊕ b is ◦(a + b)
with ◦ : R→ F a monotonic function that is the identity on F.
◦(·) depends on the destination format and the rounding direction.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Verification Flocq Gappa

FP Numbers and Real Numbers, the Flocq Way

Since there are no exceptional behaviors,
floating-point numbers can be embedded into real numbers.

Representable numbers

F = {m · βe ∈ R | m, e ∈ Z ∧ |m| < βp ∧ e ≥ emin}

with β, p, and emin depending on the format.

Rounding operators

The result of an addition a⊕ b is ◦(a + b)
with ◦ : R→ F a monotonic function that is the identity on F.
◦(·) depends on the destination format and the rounding direction.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Verification Flocq Gappa

FP Numbers and Real Numbers, the Flocq Way

Since there are no exceptional behaviors,
floating-point numbers can be embedded into real numbers.

Representable numbers

F = {m · βe ∈ R | m, e ∈ Z ∧ |m| < βp ∧ e ≥ emin}

with β, p, and emin depending on the format.

Rounding operators

The result of an addition a⊕ b is ◦(a + b)
with ◦ : R→ F a monotonic function that is the identity on F.
◦(·) depends on the destination format and the rounding direction.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Verification Flocq Gappa

The Gappa Tool

Gappa 1.1: 11k lines of C++, 8k lines of Coq, GPL’d.

Example (Cody-Waite argument reduction for exp)

x = float <ieee_64 ,ne >(dummyx); # x is a double

Log2h = 0xb .17217 f7d1cp -4; # 42 bits out of 53
InvLog2 = 0x1 .71547652 b82fep0;
k = int <ne >(float <ieee_64 ,ne >(x*InvLog2));
t1 float <ieee_64 ,ne >= x - k*Log2h;

prove that t1 is computed exactly
{ x in [0.7, 800] -> t1 = x - k*Log2h }

Log2h ~ 1/ InvLog2; # user hint

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Verification Flocq Gappa

The Gappa Tool

Gappa 1.1: 11k lines of C++, 8k lines of Coq, GPL’d.

Example (Cody-Waite argument reduction for exp)

x = float <ieee_64 ,ne >(dummyx); # x is a double

Log2h = 0xb .17217 f7d1cp -4; # 42 bits out of 53
InvLog2 = 0x1 .71547652 b82fep0;
k = int <ne >(float <ieee_64 ,ne >(x*InvLog2));
t1 float <ieee_64 ,ne >= x - k*Log2h;

prove that t1 is computed exactly
{ x in [0.7, 800] -> t1 = x - k*Log2h }

Log2h ~ 1/ InvLog2; # user hint

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Prelim Interval Forward Ex:Sine

Outline

1 Introduction

2 Interval arithmetic and forward error analysis
Preliminaries
Interval arithmetic
Forward error analysis
Example: fast sine

3 Dealing with more intricate algorithms

4 The Gappa tool

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Prelim Interval Forward Ex:Sine

What We Want to Prove

Bounds on program expressions:
∀x1, . . . , xm ∈ R, e1 ∈ I1 ∧ . . . ∧ en ∈ In ⇒ e ∈ J
with I1, . . . , In, J intervals with nonsymbolic bounds.

Bounds on forward errors:
∀x1, . . . , xm ∈ R, e1 ∈ I1 ∧ . . . ∧ en ∈ In ⇒ ẽ − e ∈ K
with ẽ and e two expressions with close values.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Prelim Interval Forward Ex:Sine

What We Want to Prove

Bounds on program expressions:
∀x1, . . . , xm ∈ R, e1 ∈ I1 ∧ . . . ∧ en ∈ In ⇒ e ∈ J
with I1, . . . , In, J intervals with nonsymbolic bounds.

Bounds on forward errors:
∀x1, . . . , xm ∈ R, e1 ∈ I1 ∧ . . . ∧ en ∈ In ⇒ ẽ − e ∈ K
with ẽ and e two expressions with close values.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Prelim Interval Forward Ex:Sine

A Variety of Forward Errors

Example (Addition)

Let u and v be approximated by ũ and ṽ .
What is the error between ◦(ũ + ṽ) and u + v?

Three errors are involved:

between ũ and u,

between ṽ and v ,

round-off error between ◦(ũ + ṽ) and ũ + ṽ .

Each error bound might be either

absolute: ũ − u ∈ I , or

relative: (ũ − u)/u ∈ I .

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Prelim Interval Forward Ex:Sine

A Variety of Forward Errors

Example (Addition)

Let u and v be approximated by ũ and ṽ .
What is the error between ◦(ũ + ṽ) and u + v?

Three errors are involved:

between ũ and u,

between ṽ and v ,

round-off error between ◦(ũ + ṽ) and ũ + ṽ .

Each error bound might be either

absolute: ũ − u ∈ I , or

relative: (ũ − u)/u ∈ I .

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Prelim Interval Forward Ex:Sine

A Variety of Forward Errors

Example (Addition)

Let u and v be approximated by ũ and ṽ .
What is the error between ◦(ũ + ṽ) and u + v?

Three errors are involved:

between ũ and u,

between ṽ and v ,

round-off error between ◦(ũ + ṽ) and ũ + ṽ .

Each error bound might be either

absolute: ũ − u ∈ I , or

relative: (ũ − u)/u ∈ I .

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Prelim Interval Forward Ex:Sine

A Variety of Round-off Errors

The round-off error between ◦(ũ + ṽ) and ũ + ṽ is

absolutely bounded if ũ and ṽ are bounded,

relatively bounded for FP formats with gradual underflow,

relatively bounded if ũ + ṽ is far enough from 0,

zero if ũ + ṽ is in a suitable fixed-point format,

zero if ũ/ṽ ∈ [−2,−1/2] for FP formats with gradual
underflow.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Prelim Interval Forward Ex:Sine

A Variety of Round-off Errors

The round-off error between ◦(ũ + ṽ) and ũ + ṽ is

absolutely bounded if ũ and ṽ are bounded,

relatively bounded for FP formats with gradual underflow,

relatively bounded if ũ + ṽ is far enough from 0,

zero if ũ + ṽ is in a suitable fixed-point format,

zero if ũ/ṽ ∈ [−2,−1/2] for FP formats with gradual
underflow.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Prelim Interval Forward Ex:Sine

A Variety of Round-off Errors

The round-off error between ◦(ũ + ṽ) and ũ + ṽ is

absolutely bounded if ũ and ṽ are bounded,

relatively bounded for FP formats with gradual underflow,

relatively bounded if ũ + ṽ is far enough from 0,

zero if ũ + ṽ is in a suitable fixed-point format,

zero if ũ/ṽ ∈ [−2,−1/2] for FP formats with gradual
underflow.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Prelim Interval Forward Ex:Sine

A Variety of Round-off Errors

The round-off error between ◦(ũ + ṽ) and ũ + ṽ is

absolutely bounded if ũ and ṽ are bounded,

relatively bounded for FP formats with gradual underflow,

relatively bounded if ũ + ṽ is far enough from 0,

zero if ũ + ṽ is in a suitable fixed-point format,

zero if ũ/ṽ ∈ [−2,−1/2] for FP formats with gradual
underflow.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Prelim Interval Forward Ex:Sine

A Variety of Round-off Errors

The round-off error between ◦(ũ + ṽ) and ũ + ṽ is

absolutely bounded if ũ and ṽ are bounded,

relatively bounded for FP formats with gradual underflow,

relatively bounded if ũ + ṽ is far enough from 0,

zero if ũ + ṽ is in a suitable fixed-point format,

zero if ũ/ṽ ∈ [−2,−1/2] for FP formats with gradual
underflow.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Prelim Interval Forward Ex:Sine

Interval Arithmetic

Interval arithmetic extends operations on real numbers to
operations on closed connected subsets of real numbers.

Application

Instead of proving ∀x ∈ [a, b], f (x) ∈ [c , d],
you can prove F ([a, b]) ⊆ [c , d],
assuming that F is an interval extension of f .

Evaluating F is easy; it involves operations on bounds only:

x ∈ [a, b] ∧ y ∈ [c , d]⇒ x + y ∈ [a + c , b + d].

This makes interval arithmetic suitable for automatically proving
bounds on real-valued expressions.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Prelim Interval Forward Ex:Sine

Interval Arithmetic

Interval arithmetic extends operations on real numbers to
operations on closed connected subsets of real numbers.

Application

Instead of proving ∀x ∈ [a, b], f (x) ∈ [c , d],
you can prove F ([a, b]) ⊆ [c , d],
assuming that F is an interval extension of f .

Evaluating F is easy; it involves operations on bounds only:

x ∈ [a, b] ∧ y ∈ [c , d]⇒ x + y ∈ [a + c , b + d].

This makes interval arithmetic suitable for automatically proving
bounds on real-valued expressions.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Prelim Interval Forward Ex:Sine

Interval Arithmetic and Dependencies

Independent expressions

If a ∈ [3, 5] and b ∈ [1, 2] are independent, then

a− b ∈ [3− 2, 5− 1] = [1, 4]

is the optimal enclosure.

Correlated expressions

If we have a ∈ [1, 100], interval arithmetic gives

(a + ε)− a ∈ [1 + ε, 100 + ε]− [1, 100] = [−99 + ε, 99 + ε]

while the optimal enclosure is [ε, ε].

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Prelim Interval Forward Ex:Sine

Interval Arithmetic and Dependencies

Independent expressions

If a ∈ [3, 5] and b ∈ [1, 2] are independent, then

a− b ∈ [3− 2, 5− 1] = [1, 4]

is the optimal enclosure.

Correlated expressions

If we have a ∈ [1, 100], interval arithmetic gives

(a + ε)− a ∈ [1 + ε, 100 + ε]− [1, 100] = [−99 + ε, 99 + ε]

while the optimal enclosure is [ε, ε].

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Prelim Interval Forward Ex:Sine

Interval Arithmetic and Dependencies

Various methods solve the dependency issue:

octogons,

ellipsoids,

zonotopes,

Taylor/Chebyshev models,

decision procedures, e.g. simplex or CAD.

Unfortunately they are much costlier than interval arithmetic
at execution time, and even worse at formalization time.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Prelim Interval Forward Ex:Sine

Interval Arithmetic and Dependencies

Various methods solve the dependency issue:

octogons,

ellipsoids,

zonotopes,

Taylor/Chebyshev models,

decision procedures, e.g. simplex or CAD.

Unfortunately they are much costlier than interval arithmetic
at execution time, and even worse at formalization time.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Prelim Interval Forward Ex:Sine

Leveraging Forward Error Analysis

Forward error analysis offers a simpler way to deal with dependencies.

“the absolute error of the sum is the sum of the absolute errors”

(ũ + ṽ)− (u + v) = (ũ − u) + (ṽ − v)

“the relative error of the product is the sum of the relative errors”

ũṽ

uv
− 1 = εu + εv + εuεv

with εu = ũ/u − 1 and εv = ṽ/v − 1

“the relative error of rounding operators is bounded”∣∣∣∣◦(u)

u
− 1

∣∣∣∣ ≤ 2−p if |u| ≥ . . .

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Prelim Interval Forward Ex:Sine

Leveraging Forward Error Analysis

Forward error analysis offers a simpler way to deal with dependencies.

“the absolute error of the sum is the sum of the absolute errors”

(ũ + ṽ)− (u + v) = (ũ − u) + (ṽ − v)

“the relative error of the product is the sum of the relative errors”

ũṽ

uv
− 1 = εu + εv + εuεv

with εu = ũ/u − 1 and εv = ṽ/v − 1

“the relative error of rounding operators is bounded”∣∣∣∣◦(u)

u
− 1

∣∣∣∣ ≤ 2−p if |u| ≥ . . .

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Prelim Interval Forward Ex:Sine

Leveraging Forward Error Analysis

Forward error analysis offers a simpler way to deal with dependencies.

“the absolute error of the sum is the sum of the absolute errors”

(ũ + ṽ)− (u + v) = (ũ − u) + (ṽ − v)

“the relative error of the product is the sum of the relative errors”

ũṽ

uv
− 1 = εu + εv + εuεv

with εu = ũ/u − 1 and εv = ṽ/v − 1

“the relative error of rounding operators is bounded”∣∣∣∣◦(u)

u
− 1

∣∣∣∣ ≤ 2−p if |u| ≥ . . .

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Prelim Interval Forward Ex:Sine

Leveraging Forward Error Analysis

Forward error analysis:

(ũ + ṽ)− (u + v) = (ũ − u) + (ṽ − v)

(ũṽ)/(uv)− 1 = εu + εv + εuεv

This inductive rewriting works fine as long as

errors are not correlated,

expressions have the same inductive structure with correlated
sub-expressions in the same places.

Because of the two-step verification process, the above often holds.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Prelim Interval Forward Ex:Sine

Example: Sine Around Zero

How to efficiently compute sin x for |x | ≤ 1
with a relative accuracy bounded by 103 · 2−16?

Example (Toy sine)

float toy_sin(float x) {
if (fabsf(x) < 0x1p -5f) return x;
return x * (1.0f - x * x * 0x28e9p -16f);

}

An actual implementation of sin would

use more than just 2 polynomials, and/or

perform an argument reduction.

But the proof process is the same!

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Prelim Interval Forward Ex:Sine

Example: Sine Around Zero

How to efficiently compute sin x for |x | ≤ 1
with a relative accuracy bounded by 103 · 2−16?

Example (Toy sine)

float toy_sin(float x) {
if (fabsf(x) < 0x1p -5f) return x;
return x * (1.0f - x * x * 0x28e9p -16f);

}

An actual implementation of sin would

use more than just 2 polynomials, and/or

perform an argument reduction.

But the proof process is the same!

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Prelim Interval Forward Ex:Sine

Example: Sine Around Zero

How to efficiently compute sin x for |x | ≤ 1
with a relative accuracy bounded by 103 · 2−16?

Example (Toy sine)

float toy_sin(float x) {
if (fabsf(x) < 0x1p -5f) return x;
return x * (1.0f - x * x * 0x28e9p -16f);

}

An actual implementation of sin would

use more than just 2 polynomials, and/or

perform an argument reduction.

But the proof process is the same!

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Prelim Interval Forward Ex:Sine

Approximating a Mathematical Function

How to compute an accurate FP approximation of g(x) for any x?

1 Find an approximation ĝ of g that uses only real operations
that can be approximated by your floating-point unit.

Bound the method error ĝ(x)/g(x)− 1.

2 Write g̃ that implements ĝ with floating-point operations.

Bound the round-off error g̃(x)/ĝ(x)− 1.

3 Compose both bounds to get g̃(x)/g(x)− 1.

Proving correctness is just a matter of computing tight bounds
for these expressions.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Prelim Interval Forward Ex:Sine

Approximating a Mathematical Function

How to compute an accurate FP approximation of g(x) for any x?

1 Find an approximation ĝ of g that uses only real operations
that can be approximated by your floating-point unit.

Bound the method error ĝ(x)/g(x)− 1.

2 Write g̃ that implements ĝ with floating-point operations.

Bound the round-off error g̃(x)/ĝ(x)− 1.

3 Compose both bounds to get g̃(x)/g(x)− 1.

Proving correctness is just a matter of computing tight bounds
for these expressions.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Prelim Interval Forward Ex:Sine

Approximating a Mathematical Function

How to compute an accurate FP approximation of g(x) for any x?

1 Find an approximation ĝ of g that uses only real operations
that can be approximated by your floating-point unit.

Bound the method error ĝ(x)/g(x)− 1.

2 Write g̃ that implements ĝ with floating-point operations.

Bound the round-off error g̃(x)/ĝ(x)− 1.

3 Compose both bounds to get g̃(x)/g(x)− 1.

Proving correctness is just a matter of computing tight bounds
for these expressions.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Prelim Interval Forward Ex:Sine

Approximating a Mathematical Function

How to compute an accurate FP approximation of g(x) for any x?

1 Find an approximation ĝ of g that uses only real operations
that can be approximated by your floating-point unit.

Bound the method error ĝ(x)/g(x)− 1.

2 Write g̃ that implements ĝ with floating-point operations.

Bound the round-off error g̃(x)/ĝ(x)− 1.

3 Compose both bounds to get g̃(x)/g(x)− 1.

Proving correctness is just a matter of computing tight bounds
for these expressions.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Prelim Interval Forward Ex:Sine

Approximating a Mathematical Function

How to compute an accurate FP approximation of g(x) for any x?

1 Find an approximation ĝ of g that uses only real operations
that can be approximated by your floating-point unit.

Bound the method error ĝ(x)/g(x)− 1.

2 Write g̃ that implements ĝ with floating-point operations.

Bound the round-off error g̃(x)/ĝ(x)− 1.

3 Compose both bounds to get g̃(x)/g(x)− 1.

Proving correctness is just a matter of computing tight bounds
for these expressions.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Prelim Interval Forward Ex:Sine

Method Error (Relative)

Method error: x ·(1−x2·10473·2−16)
sin x − 1.

Interval analysis knows how to bound such an expression.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Prelim Interval Forward Ex:Sine

Binary32 Round-off Error (Relative)

Round-off error: ◦(x ·◦(1−◦(◦(x2)·10473·2−16)))
x ·(1−x2·10473·2−16)

− 1.

Gappa knows how to bound such an expression.
(And how to compose method and round-off errors.)

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Prelim Interval Forward Ex:Sine

Correctness Statement in Coq

Notation fsub x y :=
(round radix2 binary32_fmt rndNE (x - y)).

Notation fmul x y :=
(round radix2 binary32_fmt rndNE (x * y)).

Definition fsin x :=
if Rle_lt_dec (pow2 (-5)) (Rabs x) then

fmul x (fsub 1 (fmul (fmul x x)
(10473 * pow2 (-16))))

else x.

Lemma sine_spec : forall x, Rabs x <= 1 ->
Rabs (fsin x - sin x) <= 103* pow2 (-16) *

Rabs (sin x).

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Prelim Interval Forward Ex:Sine

Proof Sketch in Coq

Lemma sine_spec : forall x, Rabs x <= 1 ->
Rabs (fsin x - sin x) <= 103 * pow2 (-16) *

Rabs (sin x).
Proof.
intros x Bx. unfold fsin.
case Rle_lt_dec ; intros Bx ’.
- (* |x| >= 1/32, degree -3 approx *)

assert (Rabs (x * (1 - x * x * (10473* pow2 (-16))) -
sin x) <= 102* pow2 (-16) * Rabs (sin x)).

(* bound the method error *)
interval with (i_bisect_diff x).

(* bound the round -off and total errors *)
gappa.

- (* |x| < 1/32, degree -1 approx *)
destruct (MVT_cor2 sin cos).
interval.

Qed.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Prelim Interval Forward Ex:Sine

Gappa Script, as Written by a Human

Example (Relative error for a toy sin implementation)

@rnd = float <ieee_32 ,ne >;
x = rnd(dummyx); # x is a float

floating-point implementation
y rnd= x * (1 - x*x * 0x28E9p -16);
infinitely-precise computation
My = x * (1 - x*x * 0x28E9p -16);

{ |x| in [1b-5,1] /\
relative method error
|My -/ sin_x| <= 1.55e-3 ->

relative total error
|y -/ sin_x| <= 1.551e-3 }

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Ex:Cody-Waite Ex:Division

Outline

1 Introduction

2 Interval arithmetic and forward error analysis

3 Dealing with more intricate algorithms
Example: Cody-Waite argument reduction
Example: Integer division on Itanium

4 The Gappa tool

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Ex:Cody-Waite Ex:Division

Intricate Algorithms

For some algorithms, bounding errors is not sufficient,
as they might rely on various tricks:

exact computations,

error compensations,

convergent iterations,

and so on.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Ex:Cody-Waite Ex:Division

Cody-Waite Argument Reduction

Goal: compute exp x for |x | ≤ 800.

Argument reduction: replace x by a value close to 0,
so that exp can be approximated by a small polynomial.

Idea 1: use exp x = 2k exp(x − k log 2) with k an integer.

Issue: how to compute x − k log 2 accurately?

Idea 2: use log 2 = `h + `l + ε with ε close to negligible.

exp x = 2k exp((x − k`h)− k`l) exp(−kε).

Implementation: evaluate (x − k`h)− k`l with FP arithmetic.

exp x = 2k exp(◦(. . .)) exp(δ − kε).

Issue: how much is δ?

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Ex:Cody-Waite Ex:Division

Cody-Waite Argument Reduction

Goal: compute exp x for |x | ≤ 800.

Argument reduction: replace x by a value close to 0,
so that exp can be approximated by a small polynomial.

Idea 1: use exp x = 2k exp(x − k log 2) with k an integer.

Issue: how to compute x − k log 2 accurately?

Idea 2: use log 2 = `h + `l + ε with ε close to negligible.

exp x = 2k exp((x − k`h)− k`l) exp(−kε).

Implementation: evaluate (x − k`h)− k`l with FP arithmetic.

exp x = 2k exp(◦(. . .)) exp(δ − kε).

Issue: how much is δ?

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Ex:Cody-Waite Ex:Division

Cody-Waite Argument Reduction

Goal: compute exp x for |x | ≤ 800.

Argument reduction: replace x by a value close to 0,
so that exp can be approximated by a small polynomial.

Idea 1: use exp x = 2k exp(x − k log 2) with k an integer.

Issue: how to compute x − k log 2 accurately?

Idea 2: use log 2 = `h + `l + ε with ε close to negligible.

exp x = 2k exp((x − k`h)− k`l) exp(−kε).

Implementation: evaluate (x − k`h)− k`l with FP arithmetic.

exp x = 2k exp(◦(. . .)) exp(δ − kε).

Issue: how much is δ?

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Ex:Cody-Waite Ex:Division

Cody-Waite Argument Reduction

Goal: compute exp x for |x | ≤ 800.

Argument reduction: replace x by a value close to 0,
so that exp can be approximated by a small polynomial.

Idea 1: use exp x = 2k exp(x − k log 2) with k an integer.

Issue: how to compute x − k log 2 accurately?

Idea 2: use log 2 = `h + `l + ε with ε close to negligible.

exp x = 2k exp((x − k`h)− k`l) exp(−kε).

Implementation: evaluate (x − k`h)− k`l with FP arithmetic.

exp x = 2k exp(◦(. . .)) exp(δ − kε).

Issue: how much is δ?

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Ex:Cody-Waite Ex:Division

Cody-Waite Argument Reduction

Goal: compute exp x for |x | ≤ 800.

Argument reduction: replace x by a value close to 0,
so that exp can be approximated by a small polynomial.

Idea 1: use exp x = 2k exp(x − k log 2) with k an integer.

Issue: how to compute x − k log 2 accurately?

Idea 2: use log 2 = `h + `l + ε with ε close to negligible.

exp x = 2k exp((x − k`h)− k`l) exp(−kε).

Implementation: evaluate (x − k`h)− k`l with FP arithmetic.

exp x = 2k exp(◦(. . .)) exp(δ − kε).

Issue: how much is δ?

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Ex:Cody-Waite Ex:Division

Cody-Waite Argument Reduction

Goal: compute exp x for |x | ≤ 800.

Argument reduction: replace x by a value close to 0,
so that exp can be approximated by a small polynomial.

Idea 1: use exp x = 2k exp(x − k log 2) with k an integer.

Issue: how to compute x − k log 2 accurately?

Idea 2: use log 2 = `h + `l + ε with ε close to negligible.

exp x = 2k exp((x − k`h)− k`l) exp(−kε).

Implementation: evaluate (x − k`h)− k`l with FP arithmetic.

exp x = 2k exp(◦(. . .)) exp(δ − kε).

Issue: how much is δ?

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Ex:Cody-Waite Ex:Division

Cody-Waite Argument Reduction

Example (Cody-Waite argument reduction for exp, part 1)

Log2h = 0xb .17217 f7d1cp -4; # 42 bits out of 53
Log2l = 0xf.79 abc9e3b398p -48;
InvLog2 = 0x1 .71547652 b82fep0;
k = int <ne >(rnd(x*InvLog2));
t1 rnd= x - k*Log2h;

Proof.

1 |x | ≤ 800, so |k| < 2048, so k fits on 11 bits.

2 `h fits on 42 bits, so ◦(k`h) = k`h.

3 `−1
h ≈ InvLog2, so x ≈ k`h.

4 So ◦(x − ◦(k`h)) = x − k`h by Sterbenz.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Ex:Cody-Waite Ex:Division

Cody-Waite Argument Reduction

Example (Cody-Waite argument reduction for exp, part 1)

Log2h = 0xb .17217 f7d1cp -4; # 42 bits out of 53
Log2l = 0xf.79 abc9e3b398p -48;
InvLog2 = 0x1 .71547652 b82fep0;
k = int <ne >(rnd(x*InvLog2));
t1 rnd= x - k*Log2h;

Proof.
1 |x | ≤ 800, so |k| < 2048, so k fits on 11 bits.

2 `h fits on 42 bits, so ◦(k`h) = k`h.

3 `−1
h ≈ InvLog2, so x ≈ k`h.

4 So ◦(x − ◦(k`h)) = x − k`h by Sterbenz.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Ex:Cody-Waite Ex:Division

Cody-Waite Argument Reduction

Example (Cody-Waite argument reduction for exp, part 1)

Log2h = 0xb .17217 f7d1cp -4; # 42 bits out of 53
Log2l = 0xf.79 abc9e3b398p -48;
InvLog2 = 0x1 .71547652 b82fep0;
k = int <ne >(rnd(x*InvLog2));
t1 rnd= x - k*Log2h;

Proof.
1 |x | ≤ 800, so |k| < 2048, so k fits on 11 bits.

2 `h fits on 42 bits, so ◦(k`h) = k`h.

3 `−1
h ≈ InvLog2, so x ≈ k`h.

4 So ◦(x − ◦(k`h)) = x − k`h by Sterbenz.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Ex:Cody-Waite Ex:Division

Cody-Waite Argument Reduction

Example (Cody-Waite argument reduction for exp, part 1)

Log2h = 0xb .17217 f7d1cp -4; # 42 bits out of 53
Log2l = 0xf.79 abc9e3b398p -48;
InvLog2 = 0x1 .71547652 b82fep0;
k = int <ne >(rnd(x*InvLog2));
t1 rnd= x - k*Log2h;

Proof.
1 |x | ≤ 800, so |k| < 2048, so k fits on 11 bits.

2 `h fits on 42 bits, so ◦(k`h) = k`h.

3 `−1
h ≈ InvLog2, so x ≈ k`h.

4 So ◦(x − ◦(k`h)) = x − k`h by Sterbenz.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Ex:Cody-Waite Ex:Division

Cody-Waite Argument Reduction

Example (Cody-Waite argument reduction for exp, part 1)

Log2h = 0xb .17217 f7d1cp -4; # 42 bits out of 53
Log2l = 0xf.79 abc9e3b398p -48;
InvLog2 = 0x1 .71547652 b82fep0;
k = int <ne >(rnd(x*InvLog2));
t1 rnd= x - k*Log2h;

Proof.
1 |x | ≤ 800, so |k| < 2048, so k fits on 11 bits.

2 `h fits on 42 bits, so ◦(k`h) = k`h.

3 `−1
h ≈ InvLog2, so x ≈ k`h.

4 So ◦(x − ◦(k`h)) = x − k`h by Sterbenz.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Ex:Cody-Waite Ex:Division

Exact Computations

For intricate algorithms, ranges of expressions are not enough.

You also need to know how many bits you need to represent them.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Ex:Cody-Waite Ex:Division

Cody-Waite Argument Reduction

Example (Cody-Waite argument reduction for exp)

@rnd = float <ieee_64 ,ne >;
x = rnd(dummyx); # x is a double

Cody-Waite argument reduction
Log2h = 0xb .17217 f7d1cp -4; # 42 bits out of 53
Log2l = 0xf.79 abc9e3b398p -48;
InvLog2 = 0x1 .71547652 b82fep0;
k = int <ne >(rnd(x*InvLog2));
t1 rnd= x - k*Log2h;
t2 rnd= t1 - k*Log2l;

exact values
T1 = x - k*Log2h;
T2 = T1 - k*Log2l;

{ x in [0.3, 800] ->

t1 = T1 /\
T1 in [-0.35 ,0.35] /\
t2 - T2 in ? }

Log2h ~ 1/ InvLog2;

try harder!
T1 $ x;

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Ex:Cody-Waite Ex:Division

Integer Division on Itanium

Intel Itanium processors have no hardware divisor.
How to efficiently perform a division with just add and mul?

Example (Division of 16-bit unsigned integers on Itanium)

// Inputs: dividend a in f6, divisor b in f7, 1 + 2−17 in f9
frcpa.s1 f8 ,p6=f6 ,f7 ;;

(p6) fma.s1 f6=f6 ,f8 ,f0
(p6) fnma.s1 f7=f7 ,f8 ,f9 ;;
(p6) fma.s1 f8=f7 ,f6 ,f6 ;;

fcvt.fx.trunc.s1 f8=f8
// Output: ba/bc in f8

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Ex:Cody-Waite Ex:Division

Integer Division on Itanium

Intel Itanium processors have no hardware divisor.
How to efficiently perform a division with just add and mul?

Example (Division of 16-bit unsigned integers on Itanium)

// Inputs: dividend a in f6, divisor b in f7, 1 + 2−17 in f9
frcpa.s1 f8 ,p6=f6 ,f7 ;;

(p6) fma.s1 f6=f6 ,f8 ,f0
(p6) fnma.s1 f7=f7 ,f8 ,f9 ;;
(p6) fma.s1 f8=f7 ,f6 ,f6 ;;

fcvt.fx.trunc.s1 f8=f8
// Output: ba/bc in f8

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Ex:Cody-Waite Ex:Division

Integer Division on Itanium

Example (Division of 16-bit unsigned integers on Itanium)

y0 ≈ 1/b [frcpa]

q0 = ◦(a× y0)

e0 = ◦(1 + 2−17 − b × y0)

q1 = ◦(e0 × q0 + q0)

q = bq1c

with ◦(·) rounding to nearest on the extended 82-bit format.

Correctness of the division

∀a, b ∈ [[1; 65535]], q = ba/bc.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Ex:Cody-Waite Ex:Division

Correctness Statement in Coq

Notation fma x y z :=
(round radix2 register_fmt rndNE (x * y + z)).

Axiom frcpa : R -> R.
Axiom frcpa_spec : forall x : R,

1 <= Rabs x <= 65536 ->
generic_format radix2 (FLT_exp _ 11) (frcpa x) /\
Rabs (frcpa x - 1/x) <= 4433* pow2 (-21) * Rabs (1/x).

Definition div_u16 a b :=
let y0 := frcpa b in
let q0 := fma a y0 0 in
let e0 := fnma b y0 (1 + pow2 (-17)) in
let q1 := fma e0 q0 q0 in
Zfloor q1.

Lemma div_u16_spec : forall a b,
(1 <= a <= 65535)%Z ->
(1 <= b <= 65535)%Z ->
div_u16 a b = (a / b)%Z.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Ex:Cody-Waite Ex:Division

Proof Sketch

Theorem (Exclusion zones)

Given a and b positive integers.
If 0 ≤ a× (q1/(a/b)− 1) < 1, then bq1c = ba/bc.

Notice the relative error between the FP value q1 and the real a/b.
So proving the correctness is just a matter of bounding this error.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Ex:Cody-Waite Ex:Division

Proof Sketch

Theorem (Exclusion zones)

Given a and b positive integers.
If 0 ≤ a× (q1/(a/b)− 1) < 1, then bq1c = ba/bc.

Notice the relative error between the FP value q1 and the real a/b.
So proving the correctness is just a matter of bounding this error.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Ex:Cody-Waite Ex:Division

Proof Sketch Continued

Bounding the method error q̂1 − a/b and the round-off error
q1 − q̂1 and composing them does not work at all.

What the developers knew when designing the algorithm:

If not for 2−17, the code would perform a Newton iteration:
q̂1/(a/b)− 1 = −ε2

0 with ε0 = y0/(1/b)− 1.

By taking into account 2−17,
q̂1/(a/b)− 1 = −ε2

0 + (1 + ε0) · 2−17.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Ex:Cody-Waite Ex:Division

Proof Sketch Continued

Bounding the method error q̂1 − a/b and the round-off error
q1 − q̂1 and composing them does not work at all.

What the developers knew when designing the algorithm:

If not for 2−17, the code would perform a Newton iteration:
q̂1/(a/b)− 1 = −ε2

0 with ε0 = y0/(1/b)− 1.

By taking into account 2−17,
q̂1/(a/b)− 1 = −ε2

0 + (1 + ε0) · 2−17.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Ex:Cody-Waite Ex:Division

Proof Sketch, the Coq Version

Lemma div_u16_spec : forall a b,
(1 <= a <= 65535)%Z -> (1 <= b <= 65535)%Z ->
div_u16 a b = (a / b)%Z.

Proof.
intros a b Ba Bb.
apply Zfloor_imp.
cut (0 <= b * q1 - a < 1).

lra.
set (err := (q1 - a / b) / (a / b)).
replace (b * q1 - a) with (a * err) by field.
set (y0 := frcpa b).
set (Mq0 := a * y0 + 0).
set (Me0 := 1 + pow2 (-17) - b * y0).
set (Mq1 := Me0 * Mq0 + Mq0).
set (eps0 := (y0 - 1 / b) / (1 / b)).
assert ((Mq1 - a / b) / (a / b) =

-(eps0 * eps0) + (1 + eps0) * pow2 (-17)) by field.
generalize (frcpa_spec b) (FIX_format_Z2R radix2 a)

(FIX_format_Z2R radix2 b).
gappa.
Qed.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Ex:Cody-Waite Ex:Division

Convergent Algorithms

If you know some clever property about an algorithm,
don’t expect automatic tools to infer it, just tell them about it.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Ex:Cody-Waite Ex:Division

The Gappa Script, as Written by a Human

Example (Division of 16-bit unsigned integers on Itanium)

@rnd = float <x86_80 ,ne >;

algorithm with no rounding operators
q0 = a * y0;
e0 = 1 + 1b-17 - b * y0;
q1 = q0 + e0 * q0;

notations for relative errors
eps0 = (y0 - 1 / b) / (1 / b);
err = (q1 - a / b) / (a / b);

{ # a and b are integers
@FIX(a, 0) /\ a in [1 ,65535] /\
@FIX(b, 0) /\ b in [1 ,65535] /\
specification of frcpa
@FLT(y0 , 11) /\ |eps0| <= 0.00211373 /\
Newton’s iteration, almost
err = -(eps0 * eps0) + (1 + eps0) * 1b-17 ->

the separation hypothesis is satisfied
err in [0,1] /\ a * err in [0 ,0.99999] /\
all the computations are exact
rnd(q0) = q0 /\ rnd(e0) = e0 /\ rnd(q1) = q1 }

try harder!
rnd(q1) = q1 $ 1 / b;

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Properties Process Theorems Conclusion

Outline

1 Introduction

2 Interval arithmetic and forward error analysis

3 Dealing with more intricate algorithms

4 The Gappa tool
Supported properties
Proof process
Theorem database
Conclusion

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Properties Process Theorems Conclusion

A Few Words About Gappa

Starting from a formula, Gappa saturates a set of theorems
to infer new properties until it encounters a contradiction.

Supported properties

BND(x , I) ≡ x ∈ I
ABS(x , I) ≡ |x | ∈ I
REL(x , y , I) ≡ ∃ε ∈ I , x = y · (1 + ε)
FIX(x , e) ≡ ∃m ∈ Z, x = m · 2e
FLT(x , p) ≡ ∃m, e ∈ Z, x = m · 2e ∧ |m| < 2p

NZR(x) ≡ x 6= 0
EQL(x , y) ≡ x = y

To prove div u16, Gappa tried to apply 17k theorems.
The final proof infers ∼80 properties.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Properties Process Theorems Conclusion

A Few Words About Gappa

Starting from a formula, Gappa saturates a set of theorems
to infer new properties until it encounters a contradiction.

Supported properties

BND(x , I) ≡ x ∈ I
ABS(x , I) ≡ |x | ∈ I
REL(x , y , I) ≡ ∃ε ∈ I , x = y · (1 + ε)
FIX(x , e) ≡ ∃m ∈ Z, x = m · 2e
FLT(x , p) ≡ ∃m, e ∈ Z, x = m · 2e ∧ |m| < 2p

NZR(x) ≡ x 6= 0
EQL(x , y) ≡ x = y

To prove div u16, Gappa tried to apply 17k theorems.
The final proof infers ∼80 properties.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Properties Process Theorems Conclusion

A Few Words About Gappa

Starting from a formula, Gappa saturates a set of theorems
to infer new properties until it encounters a contradiction.

Supported properties

BND(x , I) ≡ x ∈ I
ABS(x , I) ≡ |x | ∈ I
REL(x , y , I) ≡ ∃ε ∈ I , x = y · (1 + ε)
FIX(x , e) ≡ ∃m ∈ Z, x = m · 2e
FLT(x , p) ≡ ∃m, e ∈ Z, x = m · 2e ∧ |m| < 2p

NZR(x) ≡ x 6= 0
EQL(x , y) ≡ x = y

To prove div u16, Gappa tried to apply 17k theorems.
The final proof infers ∼80 properties.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Properties Process Theorems Conclusion

Proof Process

Given a logical formula about some expressions e1, . . . , en,
Gappa performs the following steps:

1 Recursively and symbolically instantiate all the theorems that
might lead to deducing a fact about some expression ei .

(backward reasoning)

2 Iteratively and numerically instantiate all these theorems.
Keep track of them when they produce a new fact.

(forward reasoning)

3 Once a full proof trace is obtained, minimize it by simplifying
or removing as many theorem instances as possible.

4 Generate a formal proof from the trace.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Properties Process Theorems Conclusion

Proof Process

Given a logical formula about some expressions e1, . . . , en,
Gappa performs the following steps:

1 Recursively and symbolically instantiate all the theorems that
might lead to deducing a fact about some expression ei .

(backward reasoning)

2 Iteratively and numerically instantiate all these theorems.
Keep track of them when they produce a new fact.

(forward reasoning)

3 Once a full proof trace is obtained, minimize it by simplifying
or removing as many theorem instances as possible.

4 Generate a formal proof from the trace.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Properties Process Theorems Conclusion

Proof Process

Given a logical formula about some expressions e1, . . . , en,
Gappa performs the following steps:

1 Recursively and symbolically instantiate all the theorems that
might lead to deducing a fact about some expression ei .

(backward reasoning)

2 Iteratively and numerically instantiate all these theorems.
Keep track of them when they produce a new fact.

(forward reasoning)

3 Once a full proof trace is obtained, minimize it by simplifying
or removing as many theorem instances as possible.

4 Generate a formal proof from the trace.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Properties Process Theorems Conclusion

Proof Process

Given a logical formula about some expressions e1, . . . , en,
Gappa performs the following steps:

1 Recursively and symbolically instantiate all the theorems that
might lead to deducing a fact about some expression ei .

(backward reasoning)

2 Iteratively and numerically instantiate all these theorems.
Keep track of them when they produce a new fact.

(forward reasoning)

3 Once a full proof trace is obtained, minimize it by simplifying
or removing as many theorem instances as possible.

4 Generate a formal proof from the trace.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Properties Process Theorems Conclusion

Proof Process

Given a logical formula about some expressions e1, . . . , en,
Gappa performs the following steps:

1 Recursively and symbolically instantiate all the theorems that
might lead to deducing a fact about some expression ei .

(backward reasoning)

2 Iteratively and numerically instantiate all these theorems.
Keep track of them when they produce a new fact.

(forward reasoning)

3 Once a full proof trace is obtained, minimize it by simplifying
or removing as many theorem instances as possible.

4 Generate a formal proof from the trace.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Properties Process Theorems Conclusion

Theorem Database

Naive interval arithmetic:
u ∈ [u, u] ∧ v ∈ [v , v]⇒ u + v ∈ [u + v , u + v].

Not so naive interval arithmetic:
|u| ∈ U ∧ |v | ∈ V ⇒ |u + v | ∈ [lower(|U−V |), upper(U + V)].

Floating- and fixed-point arithmetic properties:
u ∈ 2−1074 · Z⇒ ∃ε ∈ [−2−53, 2−53], ◦(u) = u × (1 + ε).

Forward error analysis:
ũ× ṽ −u× v = (ũ−u)× v + u× (ṽ − v) + (ũ−u)× (ṽ − v).

Precision handling:
FLT(x , p) ∧ FLT(y , q)⇒ FLT(x × y , p + q).

And so on.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Properties Process Theorems Conclusion

Theorem Database

Naive interval arithmetic:
u ∈ [u, u] ∧ v ∈ [v , v]⇒ u + v ∈ [u + v , u + v].

Not so naive interval arithmetic:
|u| ∈ U ∧ |v | ∈ V ⇒ |u + v | ∈ [lower(|U−V |), upper(U + V)].

Floating- and fixed-point arithmetic properties:
u ∈ 2−1074 · Z⇒ ∃ε ∈ [−2−53, 2−53], ◦(u) = u × (1 + ε).

Forward error analysis:
ũ× ṽ −u× v = (ũ−u)× v + u× (ṽ − v) + (ũ−u)× (ṽ − v).

Precision handling:
FLT(x , p) ∧ FLT(y , q)⇒ FLT(x × y , p + q).

And so on.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Properties Process Theorems Conclusion

Theorem Database

Naive interval arithmetic:
u ∈ [u, u] ∧ v ∈ [v , v]⇒ u + v ∈ [u + v , u + v].

Not so naive interval arithmetic:
|u| ∈ U ∧ |v | ∈ V ⇒ |u + v | ∈ [lower(|U−V |), upper(U + V)].

Floating- and fixed-point arithmetic properties:
u ∈ 2−1074 · Z⇒ ∃ε ∈ [−2−53, 2−53], ◦(u) = u × (1 + ε).

Forward error analysis:
ũ× ṽ −u× v = (ũ−u)× v + u× (ṽ − v) + (ũ−u)× (ṽ − v).

Precision handling:
FLT(x , p) ∧ FLT(y , q)⇒ FLT(x × y , p + q).

And so on.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Properties Process Theorems Conclusion

Theorem Database

Naive interval arithmetic:
u ∈ [u, u] ∧ v ∈ [v , v]⇒ u + v ∈ [u + v , u + v].

Not so naive interval arithmetic:
|u| ∈ U ∧ |v | ∈ V ⇒ |u + v | ∈ [lower(|U−V |), upper(U + V)].

Floating- and fixed-point arithmetic properties:
u ∈ 2−1074 · Z⇒ ∃ε ∈ [−2−53, 2−53], ◦(u) = u × (1 + ε).

Forward error analysis:
ũ× ṽ −u× v = (ũ−u)× v + u× (ṽ − v) + (ũ−u)× (ṽ − v).

Precision handling:
FLT(x , p) ∧ FLT(y , q)⇒ FLT(x × y , p + q).

And so on.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Properties Process Theorems Conclusion

Theorem Database

Naive interval arithmetic:
u ∈ [u, u] ∧ v ∈ [v , v]⇒ u + v ∈ [u + v , u + v].

Not so naive interval arithmetic:
|u| ∈ U ∧ |v | ∈ V ⇒ |u + v | ∈ [lower(|U−V |), upper(U + V)].

Floating- and fixed-point arithmetic properties:
u ∈ 2−1074 · Z⇒ ∃ε ∈ [−2−53, 2−53], ◦(u) = u × (1 + ε).

Forward error analysis:
ũ× ṽ −u× v = (ũ−u)× v + u× (ṽ − v) + (ũ−u)× (ṽ − v).

Precision handling:
FLT(x , p) ∧ FLT(y , q)⇒ FLT(x × y , p + q).

And so on.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Properties Process Theorems Conclusion

Theorem Database

Naive interval arithmetic:
u ∈ [u, u] ∧ v ∈ [v , v]⇒ u + v ∈ [u + v , u + v].

Not so naive interval arithmetic:
|u| ∈ U ∧ |v | ∈ V ⇒ |u + v | ∈ [lower(|U−V |), upper(U + V)].

Floating- and fixed-point arithmetic properties:
u ∈ 2−1074 · Z⇒ ∃ε ∈ [−2−53, 2−53], ◦(u) = u × (1 + ε).

Forward error analysis:
ũ× ṽ −u× v = (ũ−u)× v + u× (ṽ − v) + (ũ−u)× (ṽ − v).

Precision handling:
FLT(x , p) ∧ FLT(y , q)⇒ FLT(x × y , p + q).

And so on.

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Properties Process Theorems Conclusion

Theorem Database

Category Thm

Interval arithmetic 21
Representability 14
Relative error 15
Rewriting rules 45
FP/FXP arithmetic 25
Miscellaneous 27

Total 147

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Properties Process Theorems Conclusion

Conclusion

Gappa does not work on large programs,
only on short straight-line algorithms.

It is nowhere as powerful as the dumbest decision procedures.

But with a bit of help from the user,
it can make short work of intricate algorithms.

And it generates formal proofs!

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Properties Process Theorems Conclusion

Conclusion

Gappa does not work on large programs,
only on short straight-line algorithms.

It is nowhere as powerful as the dumbest decision procedures.

But with a bit of help from the user,
it can make short work of intricate algorithms.

And it generates formal proofs!

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Properties Process Theorems Conclusion

Conclusion

Gappa does not work on large programs,
only on short straight-line algorithms.

It is nowhere as powerful as the dumbest decision procedures.

But with a bit of help from the user,
it can make short work of intricate algorithms.

And it generates formal proofs!

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Properties Process Theorems Conclusion

Conclusion

Gappa does not work on large programs,
only on short straight-line algorithms.

It is nowhere as powerful as the dumbest decision procedures.

But with a bit of help from the user,
it can make short work of intricate algorithms.

And it generates formal proofs!

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

Introduction Interval+Error Advanced Gappa Properties Process Theorems Conclusion

Questions?

Gappa: http://gappa.gforge.inria.fr/

Guillaume Melquiond Automated Methods for Verifying Floating-point Algorithms

http://gappa.gforge.inria.fr/

	Introduction
	Verification
	The Flocq library
	The Gappa tool

	Interval arithmetic and forward error analysis
	Preliminaries
	Interval arithmetic
	Forward error analysis
	Example: fast sine

	Dealing with more intricate algorithms
	Example: Cody-Waite argument reduction
	Example: Integer division on Itanium

	The Gappa tool
	Supported properties
	Proof process
	Theorem database
	Conclusion

