
How to Get an Efficient yet Verified
Arbitrary-Precision Integer Library

Raphaël Rieu-Helft1,2,3, Claude Marché2,3, and Guillaume Melquiond2,3

1 École Normale Supérieure, F-75230 Paris
2 Inria, Université Paris-Saclay, F-91120 Palaiseau

3 LRI (CNRS & Univ. Paris-Sud), Université Paris-Saclay, F-91405 Orsay

Abstract. The GNU Multi-Precision library is a widely used, safety-
critical, library for arbitrary-precision arithmetic. Its source code is writ-
ten in C and assembly, and includes intricate state-of-the-art algorithms
for the sake of high performance. Formally verifying the functional be-
havior of such highly optimized code, not designed with verification in
mind, is challenging. We present a fully verified library designed using
the Why3 program verifier. The use of a dedicated memory model makes
it possible to have the Why3 code be very similar to the original GMP
code. This library is extracted to C and is compatible and performance-
competitive with GMP.

Keywords: arbitrary-precision arithmetic, deductive program verification, C
language, Why3 program verifier

1 Introduction

The GNU Multi-Precision library,4 GMP for short, is a widely used library for
arithmetic on integers and rational numbers of arbitrary size. Its applications
range from academic research (e.g. research on computational algebra) to con-
crete applications of our daily life (e.g. security of Internet applications). Some of
these applications make GMP safety-critical. In this paper, we focus on the mpn

component of GMP, which is dedicated to non-negative integers and is used as a
basis in all others components. For maximal performance, GMP uses numerous
state-of-the-art algorithms for basic operations like addition, multiplication, and
division; these algorithms are selected depending on size of the numbers involved.
Moreover, the implementation is written in low-level C code, and depending on
the target computer architecture, some parts are even rewritten in assembly.

Being highly optimized for run-time efficiency, the code of GMP is intricate
and thus error-prone. It is extensively tested but it is hard to reach a satisfactory
coverage in practice: the number of possible inputs is very large, the different
branches of the algorithms are numerous, and some of them are taken with a
very low probability (some branches are taken with probability 2−64 or less).

4 http://gmplib.org/

http://gmplib.org/

Bugs in the division, occurring with very low probability, were discovered in
the past.5 Verifying the code for all inputs using static program verification is
thus desirable. Such a verification, however, is difficult, not only because of the
intrinsic complexity of the algorithms, but also because the code is written in a
low-level language with performance in mind, but not verification. In this paper
we present an approach to address this latter challenge.

The main idea of our approach is to first write the code in some higher-
level language, namely the programming language WhyML supported by the
Why3 verification environment. This language is designed for static verification
with respect to some functional behavior specified using an expressive formal
specification language. The main issue is then to convert such a high-level code
into an efficient executable code. Our approach is to first design a dedicated
memory model in Why3, on top of which we then implement our functions.
This memory model is designed to permit a direct compilation from WhyML
to C. As a result, we obtain the first fully verified library, compatible with
GMP (function signatures are the same), and almost as efficient as GMP on
medium-sized integers (up to around 20 words of 64 bits). The full development is
available from http://toccata.lri.fr/gallery/multiprecision.en.html.

The paper is organized as follows. In Section 2, we present the design of our
dedicated memory model and explain how it is suitable for compilation to C.
In Section 3, we present the specifications and the algorithms we implemented
for arithmetic operations. In Section 4, we present an extensive evaluation of
the efficiency of the generated code, comparing it with GMP. We discuss related
work in Section 5 and we conclude in Section 6.

2 From WhyML to C

Why3 is an environment for deductive program verification, providing a rich
language for specification and programming, called WhyML. WhyML is used as
an intermediate language for verification of C, Java, and Ada programs [12,18],
and is also intended to be comfortable as a primary programming language [13].
WhyML function definitions are annotated with pre- and postconditions both
for normal and exceptional termination, and loops are annotated with invariants.

The specification component of WhyML [5,9], used to write program an-
notations and background theories, is an extension of first-order logic. It fea-
tures ML-style polymorphic types (prenex polymorphism), algebraic data types,
inductive and co-inductive predicates, and recursive definitions over algebraic
types. Constructions like pattern matching, let-binding, and conditionals, can be
used directly inside formulas and terms. Why3 comes with a rich standard library
providing general-purpose theories useful for specifying programs, including in-
teger and real arithmetic. From programs annotated with specifications, Why3
generates proof obligations and dispatches them to multiple provers, including
SMT solvers Alt-Ergo, CVC4, Z3, TPTP first-order provers E, SPASS, Vampire,

5 Look for ‘division’ at https://gmplib.org/gmp5.0.html.

http://toccata.lri.fr/gallery/multiprecision.en.html
https://gmplib.org/gmp5.0.html

type int32

val function to_int (n:int32) : int

meta coercion function to_int

predicate in_bounds (n:int) = - 0x8000_0000 ≤ n ≤ 0x7fff_ffff

axiom to_int_in_bounds: forall n:int32. in_bounds (to_int n)

val mul (x y:int32) : int32

requires { in_bounds (to_int x * to_int y) }

ensures { to_int result = to_int x * to_int y }

Fig. 1: Excerpt from the specification of 32-bit machine words in Why3.

and interactive theorem provers Coq, Isabelle, and PVS. As most of the provers
do not support some of the language features, typically pattern matching, poly-
morphic types, or recursion, Why3 applies a series of encoding transformations
to eliminate unsupported constructions before dispatching a proof obligation.

The programming part of WhyML is a dialect of ML with a number of re-
strictions to make automated proving easier. The major restriction concerns
the potential aliasing of mutable data structures. The language and its typing
system are designed so that all aliases are statically known. Technically, the
typing system computes read and write effects on singleton regions for each
sub-expression [10]. These effects allow the design of a weakest precondition cal-
culus that is as simple as for the while languages usually considered in classical
Hoare logic. Verification of complex code with Why3 and automatic provers typ-
ically expects user guidance through addition of intermediate assertions [19] and
verification-only code (ghost code) [11]. See Why3’s Web site6 for an extensive
tutorial and a large collection of examples [6].

The extraction mechanism of Why3 amounts to compiling WhyML code into
a regular programming language while forgetting verification-only annotations.
Why3 natively supports extraction to OCaml. For our work we had to implement
extraction to C code. To obtain C code that includes low-level memory access
through pointers, it was mandatory to start by designing a Why3 model of the
C memory heap and pointers, where potential pointer aliasing is controlled in a
way that accommodates WhyML typing system. The description of this memory
model and the extraction to C is the purpose of the rest of this section.

2.1 Machine words and arithmetic primitives

In WhyML, only the type int of unbounded mathematical integers is a built-in
data type. Machine integers are defined instead in Why3’s standard library, spec-
ified either in terms of intervals of mathematical integers or with bitvectors [15].
We use the first option here, which is roughly described in Fig. 1 for signed
32-bits words. The type int32 is abstract, equipped with a projection to int

mapping words to their mathematical value. Predicate in_bounds together with

6 http://why3.lri.fr/

http://why3.lri.fr/

let constant max = 0xffff_ffff_ffff_ffff

val mul_mod (x y:uint64) : uint64

ensures { to_int result = mod (x * y) (max+1) }

val mul_double (x y:uint64) : (uint64,uint64)

returns { (l,h) → l + (max+1) * h = x * y }

Fig. 2: Multiplication operations on uint64.

axiom to_int_in_bounds specify their possible range. Arithmetic operators like
multiplication are then specified in terms of a pre-condition preventing overflows,
and a post-condition giving the expected value of the result. Notice the special
meta declaration which is a recent addition in Why3. It indicates that int32

words should be implicitly cast to their integer values in specifications. For ex-
ample, in the contract of function mul, we could omit all occurrences of to_int,
which we do in the rest of the paper.

To implement arbitrary-precision arithmetic, we have added primitive oper-
ations that allow overflows. This is shown in Fig. 2 for unsigned 64-bit words.
The function mul_mod has a wrap-around semantics (result is taken modulo 264),
while the function mul_double returns the full product as a pair of words. Sim-
ilarly, addition and subtraction come in different flavors (defensive against over-
flow, 2-complement, with carry in/out). Logical shifts also have both a defensive
version and a version with a two-word output. Finally, there is only one division
primitive, which takes a two-word numerator and a one-word denominator, and
computes a quotient and a remainder.

Regarding extraction, all these data types for machine words are translated
into their relevant C types (e.g. uint64 t). The axiomatized operations are re-
placed by their equivalent native C functions when possible. For example, both
operations mul and mul_mod are extracted to C multiplication, since C opera-
tors on unsigned integer types are guaranteed to have the expected semantics
for overflows. The mul double operation, however, does not map to any C op-
erator, so we import the corresponding operation from GMP’s longlong.h file.
Reusing GMP’s primitives does not only make our library portable to numerous
architectures, but it also makes for fairer benchmarks, allowing us to compare
the efficiency of big integer algorithms independently of the primitives.

2.2 A simple model for C pointers and heap memory

Arbitrary-precision integers are represented in C as buffers of unsigned machine
words. The functions manipulate pointers, make use of aliasing, and sometimes
operate in place. To implement these functions in WhyML, we design a model
where the needed pointer operations are axiomatized, as shown in Fig. 3. At
extraction, these operations are then directly replaced by their C equivalents,
indicated as comments in Fig. 3. Our model only specifies the C features we
need. For pointer arithmetic, we only model incrementation of a pointer by an

1 type ptr ’a = { mutable data : array ’a ; offset : int }

2

3 function plength (p:ptr ’a) : int = p.data.length

4

5 function pelts (p:ptr ’a) : (int → ’a) = p.data.elts

6

7 val malloc (sz:uint32) : ptr ’a (* malloc(sz * sizeof(’a)) *)

8 requires { sz > 0 }

9 ensures { plength result = sz ∨ plength result = 0 }

10 ensures { result.offset = 0 }

11

12 val free (p:ptr ’a) : unit (* free(p) *)

13 requires { p.offset = 0 }

14 writes { p.data }

15 ensures { plength p = 0 }

16

17 predicate valid (p:ptr ’a) (sz:int) =

18 0 ≤ sz ∧ 0 ≤ p.offset ∧ p.offset + sz ≤ plength p

19

20 val get (p:ptr ’a) : ’a (* *p *)

21 requires { 0 ≤ p.offset < plength p }

22 ensures { result = p.data[p.offset] }

23

24 val set (p:ptr ’a) (v:’a) : unit (* *p = v *)

25 requires { 0 ≤ p.offset < plength p }

26 writes { p.data.elts }

27 ensures { pelts p = Map.set (pelts (old p)) p.offset v }

28

29 val incr (p:ptr ’a) (ofs:int32) : ptr ’a (* p+ofs *)

30 requires { p.offset + ofs ≤ plength p }

31 alias { p.data ~ result.data }

32 ensures { result.offset = p.offset + ofs }

33 ensures { result.data = p.data }

34

35 val get_ofs (p:ptr ’a) (ofs:int32) : ’a (* *(p+ofs) *)

36 requires { 0 ≤ p.offset + ofs < plength p }

37 ensures { result = p.data[p.offset + ofs] }

Fig. 3: A Why3 memory model for C pointers and heap memory.

integer, as we have no use for pointer comparisons or subtractions. We do not
need pointer cast either, nor do we need the C address-of operator &. Generally
speaking, we do not use a model that would cover all features of C, because
we want to benefit from the non-aliasing properties provided by Why3’s static
typing system. The benefit is that both the specifications and the proofs are
simpler. With a general model of C heap memory, we would need to state a lot
of non-aliasing hypotheses among the pointers, these properties would generate

extra VCs to be established by back-end provers, moreover the other VCs will
be more difficult to discharge.

The C heap memory is seen as a set of memory blocks called objects in
the C99 standard. The WhyML polymorphic type ptr ’a (Fig. 3, line 1) repre-
sents pointers to blocks storing data of type ’a. The field data of a pointer is an
array containing the block content, while the field offset indicates which array
cell it points to. This construction supports pointer aliasing: several pointers may
reference the same array (and thus point inside the same memory block). Thanks
to WhyML’s region-based type system, an assignment through one pointer is
propagated to other pointers.

Pointers are allocated by the malloc function. In case of failure it returns an
invalid pointer, represented by a block of length 0. As such, we forbid passing 0
to malloc. The free function invalidates its parameter by setting the length of
its block to 0. A pointer is considered valid for a size s (Fig. 3, line 17) if its
offset plus s does not exceed the size of its block. The function get (line 20) rep-
resents pointer dereferencing for reading. The function set represents memory
assignment; the writes clause specifies the expected write effect on the block.

The incr function (line 29) returns the sum of a pointer and an integer. Just
as in the C standard [16, Section 6.5.6, “Additive Operators”], one may only
compute a pointer that points inside a valid block or to the element just past it.
The Why3 keyword alias in the signature of incr declares the aliasing of the
returned pointer with the pointer parameter. Behind the scenes, it unifies the
regions of p.data and result.data [10]. This aliasing is correct not only with
respect to setting the contents of the pointed block, but also with respect to
free. This makes it possible to write a particularly short specification for free:
the writes effect on p.data induces a so-called reset on it [10], meaning that
the region formerly pointed by p can no longer be accessed by any of its aliases,
which are invalidated.

2.3 Extracting to idiomatic C code

The main objective of our extraction is to produce code that is correct and as
efficient as possible for our arbitrary-precision library. Some WhyML language
features, such as algebraic types and higher-order functions, are hard to translate
into C because they would require introducing complex constructions like clo-
sures and automatic memory allocation and deallocation. Therefore, we decided
to support only a small fragment of the WhyML language in our extraction.
The goal is not so much to extract arbitrary WhyML code to C as to extract
imperative, almost C-like WhyML code to a simple and efficient C program.
The supported features of WhyML are those that can be translated straightfor-
wardly to C, such as loops or references. What we gain by giving up on so many
language features is that the extraction process is extremely straightforward,
and the extracted code resembles the WhyML code line-to-line, with very little
added complexity. This makes it easier to obtain efficient C code, as the WhyML
programmer can have a good idea of what the extracted code will be like. The

let f (a:int32) : (int32,int32) =

let b = a+a in

(a,b)

let g () : int32 =

let x = Int32.of_int 42 in

let (y,z) = f x in

z - y

void f(int32_t * result,

int32_t * result1,

int32_t a) {

int32_t b;

b = (a + a);

(*result) = a;

(*result1) = b;

return;

}

int32_t g() {

int32_t y, z;

f(&y, &z, 42);

return (z - y);

}

Fig. 4: WhyML function returning a tuple (on the left) and its C extraction.

straightforwardness of the extraction also gives a measure of additional trust in
the extracted code and in the extraction process, which is not formally verified.

We now present in more details a few language features that we need to
design our library, for which the translation to C is not direct.

Compilation of exceptions into break or return statements. WhyML
does not support certain standard imperative constructs natively. For example,
it provides neither break nor return, which are used by some GMP algorithms,
e.g. big integer comparison (Section 3.2). So, we encode these constructs using
WhyML’s exception mechanism. Our extraction recognizes when exceptions can
be turned into break or return statements. For break, we essentially detect the
following pattern and extract all instances of raise B in the body of the loop
(but not inside potential inner nested loops) as break.

try while ... do ... raise B ... done with B → () end

For return, we similarly detect the following pattern of function definitions and
extract all instances of raise (R e) as return e.

let f (args) = ... ; try ... raise (R e) ... with R v → v end

Note that the try with construct must be in tail position of the function body.
Our extraction recognizes these patterns independently of the names of the ex-
ceptions being used. Any try with or raise construct that does not fit in any
of these patterns causes the program to be rejected by our extraction.

Multiple return values. Many of our WhyML functions, particularly arith-
metic primitives, return multiple values in a tuple, as can be seen with the
mul double primitive (Fig. 2). This has no native equivalent in C. We choose to

extract each function returning a tuple as a C function returning void, taking
as extra parameters a pointer per component of the tuple. We detect the call
pattern

let (x1, x2, ...) = f(args) in ...

and extract it as

f(&x1, &x2, ..., args); ...

Fig. 4 shows the C program extracted from a WhyML code that defines and
calls a function that returns a tuple.

3 Computing with arbitrary-precision integers

3.1 Algorithm specifications

Just as in GMP, we represent natural integers as buffers of unsigned integers
called limbs. We set a radix β (generally β = 232 or 264, but the proofs only
require it to be a power of 2). Any natural number N has a unique radix-β

decomposition
∑n−1

k=0 akβ
k, which is represented as the buffer a0a1 . . . an−1 (with

the least significant limb first).
For efficiency, there is no memory management in the low-level functions, so

the caller code has to keep track of number sizes. Operands are specified by a
pointer to their least significant limb and a limb count of type int32.

type limb = uint64

type t = ptr limb

If a pointer a is valid over a size n, we denote:

value(a, n) = a0 . . . an−1 =

n−1∑
k=0

akβ
k.

In our Why3 development, value is defined recursively

let rec ghost function value_sub (x:map int limb) (n:int) (m:int) : int

variant {m - n}

= if n < m then x[n] + radix * value_sub x (n+1) m else 0

function value (x:t) (sz:int) : int =

value_sub (pelts x) x.offset (x.offset + sz)

While the functions of our library use only machine types (pointers, limbs,
etc), their specifications are expressed in terms of mathematical integers through
extensive use of the function value. As an example, Fig. 5 shows the specifica-
tion of the addition function. Note that the region-based type system forbids
aliasing r with x or y. Notice also that the specification is well-typed because
the conversion functions from int32 and limb to int are coercions: otherwise
many applications of to int would be required.

(** [wmpn_add r x sx y sy] adds [(x, sx)] to [(y,sy)] and writes the

result in [(r, sx)]. [sx] must be greater than or equal to [sy].

Returns carry, either 0 or 1. Corresponds to [mpn_add]. *)

let wmpn_add (r:t) (x:t) (sx:int32) (y:t) (sy:int32) : limb

requires { 0 ≤ sy ≤ sx }

requires { valid x sx }

requires { valid y sy }

requires { valid r sx }

writes { r.data.elts }

ensures { 0 ≤ result ≤ 1 }

returns { carry → value r sx + (power radix sx) * carry

= value x sx + value y sy }

Fig. 5: Specification of wmpn add.

3.2 Example of proved algorithm: comparison

Let us look at the Why3 implementation of GMP’s mpn cmp function, shown in
Fig. 6. Just like GMP, this is the only comparison function on natural integers
provided by our library. The mpn cmp function takes two pointers to the integers
as arguments, as well as the size of the pointed buffers. It returns −1, 0, 1,
depending on the way the numbers are ordered. Our implementation has the
same interface and the same behavior. The algorithm is very straightforward:
it simply iterates both operands until it finds a difference, starting at the most
significant limb. Once a difference is found, we can conclude immediately. If no
difference is found, then the integers are equal.

The most important part of the proof is the loop invariant at line 10: both
source operands are identical from offsets i+1 to n. The following lemma is used
to prove the postcondition. It simply states that two big integers have the same
value if their limbs are equal.

Lemma 1 (value sub frame). Let a0, . . . , an−1, b0, . . . , bn−1 such that for all i,
ai = bi. Then a0 . . . an−1 = b0 . . . bn−1.

The proof is a straightforward induction, which translates well into a Why3
lemma function where the recursive call provides the induction hypothesis.

let rec lemma value_sub_frame (x y:map int limb) (n m:int)

requires { MapEq.map_eq_sub x y n m }

variant { m - n }

ensures { value_sub x n m = value_sub y n m }

= if n < m then value_sub_frame x y (n+1) m else ()

This lemma makes it possible to conclude that the numbers are equal if no
difference was found by the end of the loop. Notice that the loop body raises an
exception as soon as a difference is found. This emulates the return-inside-a-loop
pattern found in imperative languages. At extraction, this pattern is detected
and the extracted code simply has a return inside the main loop (Section 2.3).
Fig. 7 shows the extracted code for the wmpn_cmp function.

1 let wmpn_cmp (x y:t) (sz:int32) : int32

2 requires { valid x sz }

3 requires { valid y sz }

4 ensures { result = compare_int (value x sz) (value y sz) }

5 = let i = ref sz in

6 try

7 while Int32.(≥) !i (Int32.of_int 1) do

8 variant { to_int !i }

9 invariant { 0 ≤ !i ≤ sz }

10 invariant { forall j. !i ≤ j < sz →
11 (pelts x)[x.offset+j] = (pelts y)[y.offset+j] }

12 i := Int32.(-) !i (Int32.of_int 1);

13 let lx = get_ofs x !i in let ly = get_ofs y !i in

14 if (Limb.ne lx ly) then

15 if Limb.(>) lx ly

16 then raise (Return32 (Int32.of_int 1))

17 else raise (Return32 (Int32.of_int (-1)))

18 end

19 done;

20 Int32.of_int 0

21 with Return32 r → r

22 end

Fig. 6: Why3 implementation of mpn cmp.

int32_t wmpn_cmp(uint64_t * x, uint64_t * y, int32_t sz) {

int32_t i, o;

uint64_t lx, ly;

i = (sz);

while (i >= 1) {

o = (i - 1); i = o;

lx = (*(x+(i)));

ly = (*(y+(i)));

if (lx != ly) {

if (lx > ly) return (1);

else return (-(1));

}

}

return (0);

}

Fig. 7: Extracted C code for wmpn cmp.

3.3 Trickier example: long division

Let us now showcase one of the many algorithmic tricks from GMP that we
ported in our implementation. Long division consists in computing the quotient q

Algorithm 1 General case long division (abridged).

1: function divmod gen(q, a, d,m, n)
2: Initialize
3: while i > 0 do
4: i← i− 1
5: if x = dn−1 and an+i−1 = dn−2 then
6: Unlikely special case
7: else
8: (q̂, x, l)← div 3by2(x, an+i−1, an+i−2, dn−1, dn−2, v)
9: b← submul limb(a+ i, d, n− 2, q̂)

10: b1 ← (l < b) . Last two steps of the subtraction are inlined
11: an+i−2 ← (l − b mod β)
12: b2 ← (x < b1)
13: x← (x− b1 mod β) . Finish subtraction
14: Adjust

15: qi ← q̂

16: Finish and return

and remainder of the division of a big integer a of size m by a big integer d of
size n. It is a significantly more complex problem than long addition or multipli-
cation. Algorithm 1 is an excerpt of the general case algorithm for long division
in GMP (file mpn/generic/sbpi1_div_qr.c).

The algorithm consists in computing the limbs of the quotient one by one,
starting with the most significant one. The numerator a is overwritten at each
step to contain the partial remainder. At each iteration of the loop (with i
decreasing from m − n), we compute a quotient limb q̂ by dividing the three
most significant limbs of the current remainder a (of size n+ i) by the two most
significant limbs from the denominator d. We then subtract from the high part
of the current remainder the product of that quotient limb by the denominator.
Note that the most significant limb of the current remainder is never stored back
to an+i. It is kept in the local variable x as an optimization.

Let us take a closer look at lines 9 to 13 in Algorithm 1, which expose
another optimization of GMP meant to shave a few more processor cycles. The
candidate quotient limb q̂ is computed at line 8, and we need to subtract the
product of this quotient limb and the denominator from the current remainder.
This could be done with only the function call at line 9 by passing n instead of
n− 2 (or rather n− 1 and inlining the last step on x), but we can do better and
optimize the last two steps by making use of the remainder that was computed at
line 8. Indeed, we can show that the last two steps simply consist in propagating
the borrow from the previous subtraction, as the result of the 3 most significant
limbs of subtraction is known to be `x0 = `+βx in the absence of borrow-in (the
postcondition of the division is exactly that an+i−2an+i−1x = q̂×dn−2dn−1+`x).
Therefore, all that is left to do is propagate the borrow on `x0. Hence, lines 11
to 15 are equivalent to computing the subtraction

ai . . . an+i−1x− q̂ × d0 . . . dn−1

let a’ = C.incr a !i in

let a’’ = C.incr a’ (Int32.(-) n two) in

label L in

let qu,l,h = div3by2_inv !x (C.get_ofs a’’ one) (C.get a’’) dh dl v in

let b = submul_limb a’ y qu (Int32.(-) n two) in

let b1 = if (Limb.(<) l b) then uone else uzero in

C.set a’’ (sub_mod l b);

let b2 = if (Limb.(<) h b1) then uone else uzero in

x := sub_mod h b1;

assert { value a’ (n - 1) + power beta (n - 1) * !x

- power beta n * b2

= value (a’ at L) n + power beta n * (!x at L)

- qu * (value d n) };

Fig. 8: Transcription (modified for readability) of Algorithm 1, lines 8 to 13.

returning b2 as borrow and writing the result in ai . . . an+i−2x (one limb fewer).
This is exactly the last assertion of Fig. 8, which shows an abridged version of
our proof for this part of the algorithm.

All in all, this algorithmic trick saves several arithmetic operations: two mul-
tiplications, as the two most significant limbs of d are not multiplied by q̂, and
two subtractions, as in the last two steps, only a carry is propagated instead of
doing a subtraction and then propagating a carry. This is far from irrelevant: this
loop is the performance-critical one for long integer division, and almost all the
cost of the loop is in the submul limb call (it is the only operation with a cost
that scales with the size of the input that is run with non-negligible probability).
This trick, which makes the cost of the loop similar to what it would be if the
denominator was two limbs shorter, illustrates the kind of GMP implementation
details that we have to preserve in order to keep up in terms of performance.

3.4 Statistics on the proof effort

We have implemented and verified functions for performing addition, subtrac-
tion, multiplication, division, comparison, and logical shifts on arbitrary-precision
integers. In many cases, we also provide lower-level functions for the cases when
one of the inputs is a single limb or when the two inputs have the same length
(equivalent to the functions suffixed by 1 and n in GMP7).

This totals 6000 lines of Why3, which break down into 1350 lines of code
and 4650 lines of specifications and proofs, most of which are assertions. The
theorem provers Alt-Ergo, CVC3, CVC4, Eprover, and Z3 are used. All of these
provers are necessary for at least some subgoals. It is hard to precisely charac-
terize which subgoals are discharged by each prover, but we can provide some
heuristics. Typically, CVC3 is the best of these provers at discharging non-linear

7 http://gmplib.org/manual/Low_002dlevel-Functions.html

http://gmplib.org/manual/Low_002dlevel-Functions.html

n
m

5 7 10 13 15 20

5 0% 7% 8% 6% 8% 12%

7 — 5% 7% 8% 9% 14%

10 — — 9% 7% 7% 13%

13 — — — 9% 7% 14%

15 — — — — 6% 15%

20 — — — — — 13%

(a) multiplication

n
m

5 7 10 13 15 20

5 130% 8% 25% 18% 17% 16%

7 — 67% 3% 14% 19% 14%

10 — — 61% 2% 4% 12%

13 — — — 33% 7% 3%

15 — — — — 54% 5%

20 — — — — — 40%

(b) division

Fig. 9: Overhead for m-by-n operations.

arithmetic subgoals, with Z3 second. Z3 is also good at proving upper bounds
and absence of overflows. CVC4 tends to be the best at proving preconditions
such as pointer validity. The E prover is the best at instantiating hypotheses
modulo associativity and commutativity. Finally, Alt-Ergo is the best at in-
stantiating complex lemmas and tends to require fewer cut indications. The
total proof time is around 20 minutes. For a more detailed breakdown, refer to
http://toccata.lri.fr/gallery/multiprecision.en.html. The proof effort
is about 5 person-months, most of it being for the division, for a neophyte in
computer arithmetic and automated program verification.

4 Benchmarks

We have compared the execution time of our extracted code against GMP on
randomly generated medium-sized integers, up to 1280 bits. For bigger inputs,
the comparison becomes increasingly meaningless since GMP switches to divide-
and-conquer algorithms which have a better asymptotic complexity. To prevent
GMP from using too many architecture-specific optimizations, we have config-
ured GMP with the --disable-assembly flag, so that GMP uses only generic C
code. This is true both for the arithmetic primitives (which we share with GMP
to focus the benchmarks on the algorithms rather than the primitives) but also
for the operations on big numbers. Indeed, on many architectures, GMP uses
handwritten assembly functions for most of the performance-critical big number
algorithms, with performances out of reach of even very efficient C code.

We compare the execution times of GMP (without assembly) and our library
on three different functions: addition, multiplication, and division. We do sepa-
rate measures for all valid combinations of lengths of the input operands between
1 and 20. For each of these, we generate a few thousand random inputs and call
each function a hundred times on each input, and record the total time.

For multiplication, our library is between 5 and 10% slower than GMP across
all sizes (Fig. 9a). One possible cause for the discrepancy is the use of a different
basic block for addition: while we use a primitive that adds two one-limb integers

http://toccata.lri.fr/gallery/multiprecision.en.html

and a carry, GMP uses a primitive that adds two two-limb integers. We intend
to switch to GMP’s primitive in the near future.

For division, the difference in execution times is much more dependent on the
length of the inputs, particularly in the difference in length between numerator
and denominator (Fig. 9b). When the length of the denominator is less than half
the length of the numerator, our algorithm is quite similar to GMP’s and runs
in about 20% more time.

The situation changes when the length n of the denominator is more than
half the length m of the numerator, that is, more than the length of the quotient.
Indeed, GMP no longer applies Algorithm 1 directly on the operands. Instead,
the algorithm is called on the 2q most significant limbs of the numerator and q
most significant limbs of the denominator, where q is the length of the quotient.
This gives an estimated quotient, and a rather involved adjustment step follows.
This alternative algorithm is not yet implemented in our library, which simply
applies the general algorithm in all cases.

Note that GMP’s adjustment step is somewhat expensive in that it requires
the allocation of a long integer. Thus, for the small sizes we are considering,
the adjustment step seems to dominate the complexity in such a way that the
algorithm switch is only worth it when the denominator is almost as long as the
numerator. Thus, for m/2 ≤ n < m−1, the overhead of our library is below 10%.
It then increases drastically when the sizes of the numerator and denominator
get very close: for n = m − 1, our library is around 25% slower than GMP; for
n = m, our library is sometimes twice as slow.

We also compared our library with mini-gmp, a minimalistic implementation
of the GMP interface in a single C file that can be found in the main GMP
repository. The mini-gmp division does not implement the alternative algorithm
either, which makes our division 10 to 20% slower than it across the board.

5 Related Work

In this work, we have obtained our library in three steps: we first write some
WhyML code and specification, we then verify that the code satisfies the specifi-
cation, finally we extract the C code from the WhyML code. There are numerous
other approaches to obtain some verified C code; let us mention three examples.
In the case of the B method, an abstract specification is progressively refined
until it is detailed enough so that some C code can be extracted from it [1]. In the
case of the Frama-C environment, the C code is written by hand and it is spec-
ified using the behavioral specification language ACSL; the verification is then
directly performed at the level of the C code [8]. Finally, in the case of the seL4
microkernel, the C code is again written by hand, but so is some Haskell code
that models it; the verification process then consists of formally proving that
this Haskell code both models the C code and satisfies a specification written in
Isabelle/HOL [17].

Let us focus a bit more on the topic of verifying an arbitrary-precision integer
library. Bertot et al. verified the GMP’s divide-and-conquer algorithm for square

root [4]. It was performed using the Correctness tool which translates a program
and its specification into verification conditions for Coq. In that work, the mem-
ory is seen as a large array of machine integers, so function specifications have
to tell which zones of memory are left unchanged. Other than that, the way the
authors implement and specify their algorithm is quite close to the way we do
ours; thus, had they wished to, they could easily have extracted it to C.

Myreen and Curello verified a library with a scope similar to the one pre-
sented in this paper, although their division algorithm is simpler than GMP’s [21].
The implementation, specification, and verification were done using HOL4. An
interesting aspect of this work is that the implementation language is some
kind of x86-64 pseudo-assembly, so as to effectively produce a low-level verified
library. Another interesting point is that it is not the assembly code that is ver-
ified but the Hoare triples obtained by decompiling the corresponding machine
code. These triples are formally proved to be compatible with the specification of
correct algorithms. The memory model is based on separation logic, and the com-
piler and decompiler are specifically instrumented to preserve the corresponding
assertions about integer separation in the generated triples. The library also
supports signed integers but their encoding does not match GMP’s.

Affeldt verified a binary GCD algorithm and the functions it depends on [2].
Neither multiplications nor divisions are present. The implementation, specifi-
cation, and verification were done using Coq. This time, the implementation
language is a variant of MIPS assembly. An interesting aspect of this work is
that, even if the verified algorithm is not GMP’s binary GCD, the numbers are
encoded using GMP’s layout for signed integers, which incurs a pointer indi-
rection. To account for this complexity, the memory model is again based on
separation logic.

Further away from GMP, Berghofer verified an Ada library for performing
modular exponentiation [3]. It was written and specified using the SPARK subset
of Ada and the verification conditions were then proved using Isabelle/HOL. The
use of Montgomery multiplication makes it slightly more complicated than the
binary GCD example from an algorithmic point of view. There is no need for
a memory model, since arbitrary-precision integers are represented using plain
Ada arrays and SPARK prevents them from being aliased.

Fischer designed a modular exponentiation library developed for C and ver-
ified using Isabelle/HOL [14]. Multiplication and division algorithms are naive
and use arbitrary-precision integers represented using garbage-collected doubly-
linked lists of machine integers. Thus, this library is certainly not meant to be
efficient. Aliasing issues are solved by using both a Bornat-like memory model [7],
so as to automatically distinguish integer words from pointer words, and frame
predicates in specifications, so as to declare which heap positions are possibly
modified by a function.

Finally, there have also been various efforts to verify specific cryptography
primitives and their underlying arithmetic. Zinzindohoué et al. verified an elliptic
curve library written in F∗ and meant to be extracted to C [22]. A peculiarity is
that integers are no longer of arbitrary precision; they are represented by fixed-

size arrays. Moreover, only part of a machine word is used to store a limb; for
instance, a 448-bit integer is stored using 8 limbs of 56 bits (out of 64). As a
consequence, arithmetic operations on limbs do not have to be modular (which
makes them simpler for SMT solvers to reason about) and carry bits do not
have to be propagated. Regarding the memory model, function specifications
explicitly tell which parts of the heap are modified.

6 Conclusions

Our work aims at devising a formally verified C library that provides the same
arbitrary-precision arithmetic primitives as GMP. At the time of this paper, we
have implemented and verified the following algorithms from GMP: comparison,
addition, subtraction, multiplication, and division. For multiplication and divi-
sion, those are only the algorithms meant to be used with integers of size less
than 20 limbs, that is, the so-called schoolbook algorithms. Moreover, in the case
of the division, we are lacking an optimized algorithm when the final quotient
is short, which means that the version for computing long quotients is always
being called (unless the divisor is one or two limbs long).

Thanks to our memory model and the notion of pointer it provides, we were
able to write the functions the same way GMP developers did. It also made it
easy to implement an extraction mechanism to C for Why3. Moreover, since this
memory model piggybacks on the region mechanism of Why3, we did not have
to bother with pointer aliasing, so the specification of the functions is just about
their arithmetic properties, contrarily to most of the other verified libraries.

Despite the terminology, the algorithms we have considered are far more in-
tricate than the algorithms one finds in a schoolbook and are still the topic of
active research [20]. For instance, the division operator is designed to correctly
compute the remainder after a single pass with probability almost 1, and thus
does not incur a correction step. Our code implements all the algorithmic tricks
that can be found in the corresponding functions of GMP, which makes our
library competitive with GMP’s non-assembly implementation. In fact, the ex-
tracted C code is so close to GMP’s own code that the formal verification of our
library increases the confidence in the correctness of GMP as a by-product.

As it stands, the proof effort for getting a verified GMP-like library is way
too costly. Indeed, while the algorithms are highly intricate, the effort required is
compounded by the nonlinear nature of the integer properties submitted to the
automated solvers. SMT solvers are especially unhelpful there, so the user has to
split proofs at a deeper level of detail than what an interactive theorem prover
with support for algebraic reasoning would require. Thus, before tackling the
implementation and verification of other GMP functions, we intend to work on
designing decision procedures dedicated to verifying these arithmetic properties.
While the class of nonlinear integer problems is undecidable, the properties that
occur when verifying a GMP-like library are sufficiently specific that we have
good hope for success.

Once the issue of proof automation has been tackled, we intend to implement
and verify divide-and-conquer algorithms for multiplication (e.g. Toom-Cook
algorithms) and division, so as to stay competitive with GMP even for larger
integers. We also intend to provide the same high-level interface as GMP for
abstract signed arbitrary-precision integers. This comes as a new challenge for
the memory model, since most mpz functions allow for aliasing between their
arguments. For instance, one can pass the same arbitrary-precision integer as
both input and output, so operators have to properly resolve any aliasing issue
(e.g. by allocating temporary buffers) before calling into the mpn functions.

Another future work is to extract not only the Why3 code to C, but also the
specifications. The C code could then be verified using an existing C verification
framework, e.g. Frama-C, so that our code extractor no longer needs to be part
of the trusted code base. It would be quite costly, however, to translate all the
annotations to the ACSL specification language of Frama-C and to perform once
again the whole verification, especially since ACSL is not as expressive as Why3.
The goal is rather to improve the interaction between Frama-C and Why3 (which
Frama-C already uses as a back-end), so as to minimize the proof effort when
verifying a C function whose algorithm has already been proved using Why3.

Acknowledgments. We gratefully thank Pascal Cuoq, Jean-Christophe Filliâtre
and Mário Pereira for their comments on preliminary versions of this article.

References

1. Abrial, J.R.: The B-Book, assigning programs to meaning. Cambridge University
Press (1996)

2. Affeldt, R.: On construction of a library of formally verified low-level arithmetic
functions. Innovations in Systems and Software Engineering 9(2), 59–77 (2013)

3. Berghofer, S.: Verification of dependable software using SPARK and Isabelle. In:
Brauer, J., Roveri, M., Tews, H. (eds.) 6th International Workshop on Systems
Software Verification. OpenAccess Series in Informatics (OASIcs), vol. 24, pp. 15–
31. Dagstuhl, Germany (2012)

4. Bertot, Y., Magaud, N., Zimmermann, P.: A proof of GMP square root. Journal
of Automated Reasoning 29(3-4), 225–252 (2002)

5. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: Shepherd your herd of
provers. In: Boogie 2011: First International Workshop on Intermediate Verification
Languages. pp. 53–64. Wroc law, Poland (August 2011), https://hal.inria.fr/
hal-00790310

6. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Let’s verify this with Why3.
International Journal on Software Tools for Technology Transfer (STTT) 17(6),
709–727 (2015), see also http://toccata.lri.fr/gallery/fm2012comp.en.html

7. Bornat, R.: Proving pointer programs in Hoare logic. In: Mathematics of Program
Construction. pp. 102–126 (2000)

8. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-C: A software analysis perspective. In: Proceedings of the 10th International
Conference on Software Engineering and Formal Methods. pp. 233–247. No. 7504
in Lecture Notes in Computer Science, Springer (2012)

https://hal.inria.fr/hal-00790310
https://hal.inria.fr/hal-00790310
http://toccata.lri.fr/gallery/fm2012comp.en.html

9. Filliâtre, J.C.: One logic to use them all. In: 24th International Conference on
Automated Deduction (CADE-24). Lecture Notes in Artificial Intelligence, vol.
7898, pp. 1–20. Springer, Lake Placid, USA (June 2013)

10. Filliâtre, J.C., Gondelman, L., Paskevich, A.: A pragmatic type system for de-
ductive verification. Research report, Université Paris Sud (2016), https://hal.
archives-ouvertes.fr/hal-01256434v3

11. Filliâtre, J.C., Gondelman, L., Paskevich, A.: The spirit of ghost code. Formal
Methods in System Design 48(3), 152–174 (2016)

12. Filliâtre, J.C., Marché, C.: The Why/Krakatoa/Caduceus platform for deductive
program verification. In: Damm, W., Hermanns, H. (eds.) 19th International Con-
ference on Computer Aided Verification. Lecture Notes in Computer Science, vol.
4590, pp. 173–177. Springer, Berlin, Germany (Jul 2007)

13. Filliâtre, J.C., Paskevich, A.: Why3 — where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) Proceedings of the 22nd European Symposium on Program-
ming. Lecture Notes in Computer Science, vol. 7792, pp. 125–128. Springer (Mar
2013)

14. Fischer, S.: Formal verification of a big integer library. In: DATE Work-
shop on Dependable Software Systems (2008), http://www-wjp.cs.uni-sb.de/

publikationen/Fi08DATE.pdf

15. Fumex, C., Dross, C., Gerlach, J., Marché, C.: Specification and proof of high-level
functional properties of bit-level programs. In: Rayadurgam, S., Tkachuk, O. (eds.)
8th NASA Formal Methods Symposium. Lecture Notes in Computer Science, vol.
9690, pp. 291–306. Springer, Minneapolis, MN, USA (Jun 2016)

16. International Organization for Standardization: ISO/IEC 9899:1999: Programming
Languages – C (2000)

17. Klein, G., Andronick, J., Elphinstone, K., Heiser, G., Cock, D., Derrin, P., Elka-
duwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Win-
wood, S.: seL4: Formal verification of an OS kernel. Communications of the ACM
53(6), 107–115 (Jun 2010)

18. Kosmatov, N., Marché, C., Moy, Y., Signoles, J.: Static versus dynamic verifica-
tion in Why3, Frama-C and SPARK 2014. In: Margaria, T., Steffen, B. (eds.) 7th
International Symposium on Leveraging Applications of Formal Methods, Verifi-
cation and Validation (ISoLA). Lecture Notes in Computer Science, vol. 9952, pp.
461–478. Springer, Corfu, Greece (Oct 2016)

19. Leino, K.R.M., Moskal, M.: Usable auto-active verification. In: Usable Verification
Workshop. Redmond, WA, USA (Nov 2010), http://fm.csl.sri.com/UV10/

20. Moller, N., Granlund, T.: Improved division by invariant integers. IEEE Transac-
tions on Computers 60(2), 165–175 (2011)

21. Myreen, M.O., Curello, G.: Proof pearl: A verified bignum implementation in x86-
64 machine code. In: Gonthier, G., Norrish, M. (eds.) 3rd International Conference
on Certified Programs and Proofs (CPP). Lecture Notes in Computer Science, vol.
8307, pp. 66–81. Springer, Melbourne, Australia (Dec 2013)

22. Zinzindohoué, J.K., Bartzia, E.I., Bhargavan, K.: A verified extensible library of
elliptic curves. In: Hicks, M., Köpf, B. (eds.) 29th IEEE Computer Security Foun-
dations Symposium (CSF). pp. 296–309. Lisbon, Portugal (Jun 2016)

https://hal.archives-ouvertes.fr/hal-01256434v3
https://hal.archives-ouvertes.fr/hal-01256434v3
http://www-wjp.cs.uni-sb.de/publikationen/Fi08DATE.pdf
http://www-wjp.cs.uni-sb.de/publikationen/Fi08DATE.pdf
http://fm.csl.sri.com/UV10/

	How to Get an Efficient yet Verified Arbitrary-Precision Integer Library

