Formal Verification for Numerical Computations, and the Other Way Around

Guillaume Melquiond

2019-04-01

Guillaume Melquiond

Formal Verification for Numerical Computations, and the Other Way Around

A Bit of Vocabulary

Computer arithmetic

Art of representing numbers and performing computations on them in a mechanized fashion:

- integer arithmetic,
- fixed- and floating-point arithmetic.

A Bit of Vocabulary

Computer arithmetic

Art of representing numbers and performing computations on them in a mechanized fashion:

- integer arithmetic,
- fixed- and floating-point arithmetic.

Formal verification

Art of proving the correctness of a system with respect to a formal specification, using mathematical methods.

Formal proof: well-formed formulas related by inference rules.

Guillaume Melquiond

Formal Verification for Numerical Computations, and the Other Way Around

Formal Verification for Numerical Computations

Situation

- Number representations cause subtle behaviors, if not counter-intuitive ones.
- Algorithms are more and more intricate, due to speed and space concerns.

How much can formal verification help?

Numerical Integrals in Modern Math Proofs

Double bubbles minimize (Hass, Schlafly, 2000)

"The proof parameterizes the space of possible solutions by a two-dimensional rectangle [...]. This rectangle is subdivided into 15,016 smaller rectangles which are investigated by calculations involving a total of 51,256 numerical integrals."

Numerical Integrals in Modern Math Proofs

Double bubbles minimize (Hass, Schlafly, 2000)

"The proof parameterizes the space of possible solutions by a two-dimensional rectangle [...]. This rectangle is subdivided into 15,016 smaller rectangles which are investigated by calculations involving a total of 51,256 numerical integrals."

Major arcs for Goldbach's problem (Helfgott, 2013)

(Every odd number \geq 7 is the sum of three prime numbers.)

$$\int_{-\infty}^{\infty} \frac{(0.5 \cdot \log(\tau^2 + 2.25) + 4.1396 + \log \pi)^2}{0.25 + \tau^2} d\tau$$

"We compute the last integral numerically (from -10^5 to 10^5)."

Rigorous numerical integration

(a) Use GSL (via SAGE), Maxima or Mathematica to do numerical integration. This is really a non-option, since, if I understand correctly, the "error bound" they give is not really a guarantee.

Is there a third option? Is there standard software that does (b) for me?

na.numerical-analysis

share cite improve this question

9

Numerical Computations for Formal Verification

- Modern mathematical proofs rely more and more on computers, by sheer necessity.
- There is a lingering doubt: what if one of the computations went wrong?

Can proofs that rely on numerical computations be redeemed?

Outline

Introduction

- Numerical computations for formal verification: Guaranteed quadrature using Coq
- Formal verification for numerical computations: Getting a verified GMP using Why3

4 Conclusion

Outline

Introduction

- 2 Numerical computations for formal verification: Guaranteed quadrature using Coq
 - Some relevant Coq libraries
 - Example: a proper definite integral
 - Interval arithmetic
 - Helfgott's integrals using CoqInterval
- Formal verification for numerical computations: Getting a verified GMP using Why3

Conclusion

Numerical Computations for Formal Verification

Objective Can we produce a convincing proof of $\int_{-\infty}^{\infty} \frac{(0.5 \cdot \log(\tau^2 + 2.25) + 4.1396 + \log \pi)^2}{0.25 + \tau^2} d\tau \le 226.844 ?$

Example: a Proper Definite Integral

Example (Mathematics and Coq script)

$$\int_0^1 \tan t^2 dt \leq \frac{2}{5}.$$

Guillaume Melquiond

Example: a Proper Definite Integral

Example (Mathematics and Coq script)

$$\int_0^1 \tan t^2 dt \leq \frac{2}{5}.$$

Goal RInt (fun t => tan (t*t)) 0 1 <= 2/5. Proof. interval. Qed.

Example: a Proper Definite Integral

Interval Arithmetic

Definition (Intervals)

Connected closed subsets of \mathbb{R} , e.g., $\mathbf{x} = [\underline{x}; \overline{x}]$ or $[\underline{x}; +\infty)$.

Interval Arithmetic

Definition (Intervals)

Connected closed subsets of \mathbb{R} , e.g., $\mathbf{x} = [\underline{x}; \overline{x}]$ or $[\underline{x}; +\infty)$.

Definition (Interval extension) $\mathbf{f}: \mathbb{I}^n \to \mathbb{I}$ is an interval extension of $f: \mathbb{R}^n \to \mathbb{R}$ if $\forall \mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{I}, \ \forall x_1, \dots, x_n \in \mathbb{R},$ $x_1 \in \mathbf{x}_1 \land \dots \land x_n \in \mathbf{x}_n \Rightarrow f(x_1, \dots, x_n) \in \mathbf{f}(\mathbf{x}_1, \dots, \mathbf{x}_n).$

Interval Arithmetic

Definition (Intervals)

Connected closed subsets of \mathbb{R} , e.g., $\mathbf{x} = [\underline{x}; \overline{x}]$ or $[\underline{x}; +\infty)$.

Definition (Interval extension) $\mathbf{f} : \mathbb{I}^n \to \mathbb{I}$ is an interval extension of $f : \mathbb{R}^n \to \mathbb{R}$ if $\forall \mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{I}, \ \forall x_1, \dots, x_n \in \mathbb{R},$ $x_1 \in \mathbf{x}_1 \land \dots \land x_n \in \mathbf{x}_n \Rightarrow f(x_1, \dots, x_n) \in \mathbf{f}(\mathbf{x}_1, \dots, \mathbf{x}_n).$

Lemma (Naive quadrature)

$$\int_{u}^{v} f(t) \, dt \in (\mathbf{v} - \mathbf{u}) \cdot \mathbf{f}(\mathsf{hull}(\mathbf{u}, \mathbf{v})).$$

Guillaume Melquiond

Effective Interval Extensions

Definition (Floating-point numbers and directed rounding)

$$\mathbb{F} = \{ m \cdot \beta^e \in \mathbb{R} \mid m, e \in \mathbb{Z} \land |m| < \beta^{\varrho} \}.$$

$$\forall u, v \in \mathbb{F}, \quad \bigtriangledown (u \diamond v) \le u \diamond v \le \bigtriangleup (u \diamond v).$$

Effective Interval Extensions

Definition (Floating-point numbers and directed rounding)

$$\mathbb{F} = \{ m \cdot \beta^e \in \mathbb{R} \mid m, e \in \mathbb{Z} \land |m| < \beta^e \}.$$

$$\forall u, v \in \mathbb{F}, \quad \bigtriangledown (u \diamond v) \le u \diamond v \le \bigtriangleup (u \diamond v).$$

Interval extensions of +, -, × If $u \in \mathbf{u} = [\underline{u}; \overline{u}]$ and $v \in \mathbf{v} = [\underline{v}; \overline{v}]$, then (by monotony) $u + v \in [\nabla(\underline{u} + \underline{v}); \triangle(\overline{u} + \overline{v})] \stackrel{\text{def}}{=} \mathbf{u} + \mathbf{v},$ $u - v \in [\nabla(\underline{u} - \overline{v}); \triangle(\overline{u} - \underline{v})] \stackrel{\text{def}}{=} \mathbf{u} - \mathbf{v},$

$$\begin{array}{ll} u \cdot v & \in & [\min(\bigtriangledown(\underline{u} \cdot \underline{v}), \bigtriangledown(\underline{u} \cdot \overline{v}), \bigtriangledown(\overline{u} \cdot \underline{v}), \bigtriangledown(\overline{u} \cdot \overline{v})); \\ & \max(\bigtriangleup(\underline{u} \cdot \underline{v}), \bigtriangleup(\underline{u} \cdot \overline{v}), \bigtriangleup(\overline{u} \cdot \underline{v}), \bigtriangleup(\overline{u} \cdot \overline{v}))]. \end{array}$$

ι
Quadrature

Quadrature

What is needed?

• Formalize floating-point rounding and verify basic arithmetic operators.

- Formalize floating-point rounding and verify basic arithmetic operators.
- **2** Verify basic interval operators and automatic differentiation.

- Formalize floating-point rounding and verify basic arithmetic operators.
- **2** Verify basic interval operators and automatic differentiation.
- Some series, integrals, etc.

- Formalize floating-point rounding and verify basic arithmetic operators.
- **2** Verify basic interval operators and automatic differentiation.
- So Formalize real analysis: power series, integrals, etc.
- Verify interval extensions of elementary functions.

- Formalize floating-point rounding and verify basic arithmetic operators.
- **2** Verify basic interval operators and automatic differentiation.
- Some series, integrals, etc.
- Verify interval extensions of elementary functions.
- Support rigorous polynomial approximations based on Taylor models.

- Formalize floating-point rounding and verify basic arithmetic operators.
- **2** Verify basic interval operators and automatic differentiation.
- So Formalize real analysis: power series, integrals, etc.
- Verify interval extensions of elementary functions.
- Support rigorous polynomial approximations based on Taylor models.
- Verify quadrature algorithms for proper and improper integrals.

What is needed? In Formalize floating-point rounding and verify basic arithmetic operators. [ARITH'11] Verify basic interval operators and automatic differentiation. [IJCAR'08] Sormalize real analysis: power series, integrals, etc. [CPP'12, MCS'15] Verify interval extensions of elementary functions. [RNC'08, I&C'12] Support rigorous polynomial approximations based on Taylor models. [JAR'16] O Verify quadrature algorithms [ITP'16, JAR'18] for proper and improper integrals.

Details: Improving Enclosures

Definition (Polynomial enclosure)

 $(ec{\mathbf{p}}, \mathbf{\Delta}) \in \mathbb{I}^{n+1} imes \mathbb{I}$ encloses f over $\mathbf{x}
i x_0$, if $\exists \mathbf{p} \in \mathbb{R}[X]$,

 $(\forall i < n, p_i \in \mathbf{p}_i) \land \forall x \in \mathbf{x}, f(x) - p(x - x_0) \in \mathbf{\Delta}.$

Details: Improving Enclosures

Definition (Polynomial enclosure)

 $(\vec{\mathbf{p}}, \Delta) \in \mathbb{I}^{n+1} \times \mathbb{I}$ encloses f over $\mathbf{x} \ni x_0$, if $\exists p \in \mathbb{R}[X]$, $(\forall i < n, p_i \in \mathbf{p}_i) \land \forall x \in \mathbf{x}, f(x) - p(x - x_0) \in \Delta$.

Lemma (Improved quadrature) If (p, Δ) encloses f over [u; v], and if P is a primitive of p, then $\int_{u}^{v} f \in P(v) - P(u) + (v - u) \cdot \Delta.$

Quadrature with a Degree-3 Polynomial

Proper integral, in the MathOverflow post

$$\int_0^1 \left| \left(x^4 + 10x^3 + 19x^2 - 6x - 6 \right) e^x \right| dx \simeq 11.14731055.$$

Proper integral, in the MathOverflow post

$$\int_0^1 \left| \left(x^4 + 10x^3 + 19x^2 - 6x - 6 \right) e^x \right| dx \simeq 11.14731055.$$
INTLAB got this integral wrong.
VNODE/LP cannot compute it.

Proper integral, in the MathOverflow post

$$\int_0^1 \left| \left(x^4 + 10x^3 + 19x^2 - 6x - 6 \right) e^x \right| dx \simeq 11.14731055.$$
INTLAB got this integral wrong.
VNODE/LP cannot compute it.

Improper integral, in the proof $\int_{-\infty}^{+\infty} \frac{(0.5 \cdot \log(\tau^2 + 2.25) + 4.1396 + \log \pi)^2}{0.25 + \tau^2} d\tau$ $\in [226.849; 226.850].$

Proper integral, in the MathOverflow post

$$\int_0^1 \left| \left(x^4 + 10x^3 + 19x^2 - 6x - 6 \right) e^x \right| dx \simeq 11.14731055.$$
INTLAB got this integral wrong.
VNODE/LP cannot compute it.

$\begin{array}{l} \text{Improper integral, in the proof} \\ \int_{-\infty}^{+\infty} \frac{(0.5 \cdot \log(\tau^2 + 2.25) + 4.1396 + \log \pi)^2}{0.25 + \tau^2} \, d\tau \\ & \in [226.849; 226.850]. \\ & \text{Helfgott was using} \ \leq 226.844. \end{array}$

Guillaume Melquiond

Outline

Introduction

- Numerical computations for formal verification: Guaranteed quadrature using Coq
- Formal verification for numerical computations: Getting a verified GMP using Why3
 - Using Why3
 - Example: decrementing a long integer
 - Square root and fixed-point arithmetic
 - Error analysis using Gappa

Conclusion

Arbitrary-Precision Integer Arithmetic

The GNU Multiple Precision arithmetic library (GMP)

- Free software, widely used.
- State-of-the-art algorithms, unmatched performances.

Arbitrary-Precision Integer Arithmetic

The GNU Multiple Precision arithmetic library (GMP)

- Free software, widely used.
- State-of-the-art algorithms, unmatched performances.
- Highly intricate algorithms written in low-level C and ASM.
- Ill-suited for random testing.
 GMP 5.0.4: "Two bugs in multiplication [...] with extremely low probability [...]. Two bugs in the gcd code [...] For uniformly distributed random operands, the likelihood is infinitesimally small."

Arbitrary-Precision Integer Arithmetic

The GNU Multiple Precision arithmetic library (GMP)

- Free software, widely used.
- State-of-the-art algorithms, unmatched performances.
- Highly intricate algorithms written in low-level C and ASM.
- Ill-suited for random testing.
 GMP 5.0.4: "Two bugs in multiplication [...] with extremely low probability [...]. Two bugs in the gcd code [...] For uniformly distributed random operands, the likelihood is infinitesimally small."

Objectives

- Produce a verified library compatible with GMP.
- Attain performances comparable to a no-assembly GMP.
- Focus on the low-level mpn layer.

GMP library

Guillaume Melquiond


```
Original macro (simplified from 18-line mpn decr u)
```

```
#define mpn_decr_1(p)
  mp_netr __p = (p);
while ((*(__p++))-- == 0);
```

Original macro (simplified from 18-line mpn decr u)

```
#define mpn_decr_1(p)
  mp_ptr __p = (p);
while ((*(__p++))-- == 0) ;
```

```
let wmpn_decr_1 (p: ptr uint64) : unit
=
 let ref lp = 0 in
 let ref i = 0 in
  while lp = 0 do
    lp <- get_ofs p i;</pre>
    set_ofs p i (sub_mod lp 1);
    i <- i + 1;
  done
```

Original macro (simplified from 18-line mpn decr u)

```
#define mpn_decr_1(p)
  mp_ptr __p = (p);
while ((*(__p++))-- == 0) ;
```

```
let wmpn_decr_1 (p: ptr uint64) : unit
  ensures { value p = value (old p) - 1 }
=
 let ref lp = 0 in
 let ref i = 0 in
  while lp = 0 do
    lp <- get_ofs p i;</pre>
    set_ofs p i (sub_mod lp 1);
    i <- i + 1;
  done
```

Original macro (simplified from 18-line mpn decr u)

```
#define mpn_decr_1(p)
  mp_ptr __p = (p);
while ((*(__p++))-- == 0) ;
```

```
let wmpn_decr_1 (p: ptr uint64) (ghost sz: int32) : unit
  ensures { value p sz = value (old p) sz - 1 }
=
 let ref lp = 0 in
 let ref i = 0 in
  while lp = 0 do
   lp <- get_ofs p i;</pre>
    set_ofs p i (sub_mod lp 1);
    i <- i + 1;
  done
```

Original macro (simplified from 18-line mpn decr u)

```
#define mpn_decr_1(p)
  mp_ptr __p = (p);
while ((*(__p++))-- == 0) ;
```

```
let wmpn_decr_1 (p: ptr uint64) (ghost sz: int32) : unit
  requires { valid p sz }
  requires { 1 <= value p sz }</pre>
  ensures { value p sz = value (old p) sz - 1 }
=
 let ref lp = 0 in
 let ref i = 0 in
  while lp = 0 do
  . . .
```

Original macro (simplified from 18-line mpn decr u)

```
#define mpn_decr_1(p)
  mp_ptr __p = (p);
while ((*(__p++))-- == 0) ;
```

Extraction to C

```
void wmpn_decr_1(uint64_t * p) {
  uint64_t lp; int32_t i;
 lp = 0;
 i = 0;
  while (lp == 0) {
   lp = p[i];
   p[i] = lp - 1;
   i = i + 1;
 }
}
```

Example: 64-bit Square Root

Original GMP code
Example: 64-bit Square Root

Original GMP code

• Table lookup, Newton iteration toward $1/\sqrt{a}$, modified Newton iteration toward a/\sqrt{a} , correcting step.

Example: 64-bit Square Root

Original GMP code

- Table lookup, Newton iteration toward $1/\sqrt{a}$, modified Newton iteration toward a/\sqrt{a} correcting step.
- Hand-coded fixed-point arithmetic.

A Small Fixed-Point Arithmetic Theory for Why3

```
type fxp = { ival: uint64;
            ghost rval: real; ghost iexp: int }
  invariant { rval = floor_at rval iexp }
 invariant { ival = mod (floor (rval *. pow2 (-iexp)))
                         (uint64'maxInt + 1)
```

A Small Fixed-Point Arithmetic Theory for Why3

```
type fxp = { ival: uint64;
            ghost rval: real; ghost iexp: int }
  invariant { rval = floor_at rval iexp }
 invariant { ival = mod (floor (rval *. pow2 (-iexp)))
                         (uint64'maxInt + 1)
```

Converted WhyML code

```
let sqrt1 (rp: ptr uint64) (a0: uint64): uint64 =
 let a = fxp_{init} a0 (-64) in
 let x0 = rsa_estimate a in
 let a1 = fxp_lsr a 31 in
 let m1 = fxp_sub (fxp_init 0x20000000000 (-49))
                   (fxp_init 0x30000 (-49)) in
 let t1' = fxp_sub m1 (fxp_mul (fxp_mul x0 x0) a1) in
 let t1 = fxp_asr t1' 16 in
 let x1 = fxp_add (fxp_lsl x0 16)
     (fxp_asr' (fxp_mul x0 t1) 18 1) in
  . . .
```

Newton iteration toward $1/\sqrt{a}$

- Recurrence: $x_{i+1} = x_i + x_i \cdot (1 a \cdot x_i^2)/2$.
- Relative error: $x_i = a^{-1/2} \cdot (1 + \varepsilon_i)$.
- Quadratic convergence: $|\varepsilon_{i+1}| \leq \frac{3}{2}|\varepsilon_i|^2$.

Newton iteration toward $1/\sqrt{a}$

- Recurrence: $x_{i+1} = x_i + x_i \cdot (1 a \cdot x_i^2)/2$.
- Relative error: $x_i = a^{-1/2} \cdot (1 + \varepsilon_i)$.
- Quadratic convergence: $|\varepsilon_{i+1}| \leq \frac{3}{2} |\varepsilon_i|^2$.

But what the code actually computes is

$$\begin{split} \tilde{x}_1 &= \tilde{x}_0 + \bigtriangledown_{-24} \left(\tilde{x}_0 \cdot \bigtriangledown_{-33} \left(1 - 3 \cdot 2^{-33} - \bigtriangledown_{-33}(a) \cdot \tilde{x}_0^2 \right) / 2 \right), \\ \text{with } \bigtriangledown_k(r) &= \lfloor r \cdot 2^{-k} \rfloor \cdot 2^k. \end{split}$$

Newton iteration toward $1/\sqrt{a}$

- Recurrence: $x_{i+1} = x_i + x_i \cdot (1 a \cdot x_i^2)/2$.
- Relative error: $x_i = a^{-1/2} \cdot (1 + \varepsilon_i)$.
- Quadratic convergence: $|\varepsilon_{i+1}| \leq \frac{3}{2}|\varepsilon_i|^2$.

But what the code actually computes is

$$\begin{split} \tilde{x}_1 &= \tilde{x}_0 + \bigtriangledown_{-24} \left(\tilde{x}_0 \cdot \bigtriangledown_{-33} \left(1 - 3 \cdot 2^{-33} - \bigtriangledown_{-33} (a) \cdot \tilde{x}_0^2 \right) / 2 \right), \\ \text{with } \bigtriangledown_k (r) &= \lfloor r \cdot 2^{-k} \rfloor \cdot 2^k. \end{split}$$

What to do about...

• Rounding errors? That is what Gappa is designed to handle.

Newton iteration toward $1/\sqrt{a}$

- Recurrence: $x_{i+1} = x_i + x_i \cdot (1 a \cdot x_i^2)/2$.
- Relative error: $x_i = a^{-1/2} \cdot (1 + \varepsilon_i)$.
- Quadratic convergence: $|\varepsilon_{i+1}| \leq \frac{3}{2} |\varepsilon_i|^2$.

But what the code actually computes is

$$\begin{split} \tilde{x}_1 &= \tilde{x}_0 + \bigtriangledown_{-24} \left(\tilde{x}_0 \cdot \bigtriangledown_{-33} \left(1 - 3 \cdot 2^{-33} - \bigtriangledown_{-33} (a) \cdot \tilde{x}_0^2 \right) / 2 \right), \\ \text{with } \bigtriangledown_k (r) &= \lfloor r \cdot 2^{-k} \rfloor \cdot 2^k. \end{split}$$

What to do about...

- Rounding errors? That is what Gappa is designed to handle.
- Magical constants? Critical for soundness; hinted to Gappa.

Gappa, in a Nutshell

Proof search by saturating over ~ 200 theorems

• Interval arithmetic: $\forall u, v \in \mathbb{R}, \forall u, v, w \in \mathbb{I}, u \in u \land v \in v \land u + v \subseteq w \Rightarrow u + v \in w;$

Gappa, in a Nutshell

Proof search by saturating over \sim 200 theorems

- Interval arithmetic: $\forall u, v \in \mathbb{R}, \forall u, v, w \in \mathbb{I}, u \in u \land v \in v \land u + v \subseteq w \Rightarrow u + v \in w;$
- Rounding properties: $\forall x \in \mathbb{R}, \forall k \in \mathbb{Z}, \forall \mathbf{e} \in \mathbb{I}, [-2^k; 0] \subseteq \mathbf{e} \Rightarrow \bigtriangledown_k(x) x \in \mathbf{e};$

Gappa, in a Nutshell

Proof search by saturating over \sim 200 theorems

- Interval arithmetic: $\forall u, v \in \mathbb{R}, \forall u, v, w \in \mathbb{I}, u \in u \land v \in v \land u + v \subseteq w \Rightarrow u + v \in w;$
- Rounding properties: $\forall x \in \mathbb{R}, \forall k \in \mathbb{Z}, \forall \mathbf{e} \in \mathbb{I}, [-2^k; 0] \subseteq \mathbf{e} \Rightarrow \bigtriangledown_k(x) x \in \mathbf{e};$
- Error analysis: $\forall u, v, \tilde{u}, \tilde{v} \in \mathbb{R},$ $\tilde{u} \cdot \tilde{v} - u \cdot v = (\tilde{u} - u) \cdot v + u \cdot (\tilde{v} - v) + (\tilde{u} - u) \cdot (\tilde{v} - v).$

What if Gappa Fails?

```
Help it by providing equalities
let sqrt1 (rp: ptr uint64) (a0: uint64): uint64
  ensures {result *result <= a0 < (result+1)*(result+1)}</pre>
=
  . . .
 let ghost rsa = pure { 1. /. sqrt a } in
 let ghost e0 = pure \{ (x0 - . rsa) / . rsa \} in
 let ghost eal = pure { (a1 - . a) / . a } in
 let ghost mx1 = pure { x0 +. x0 *. t1' *. 0.5 } in
  assert { (mx1 -. rsa) /. rsa =
    -0.5 *. (e0*.e0 *. (3.+.e0) +. (1.+.e0) *.
      (1. -. m1 +. (1.+.e0)*.(1.+.e0)*. ea1)) }:
  . . .
```

What if Gappa Fails?

```
Help it by providing equalities
let sqrt1 (rp: ptr uint64) (a0: uint64): uint64
  ensures {result *result <= a0 < (result+1)*(result+1)}</pre>
=
  . . .
 let ghost rsa = pure { 1. /. sqrt a } in
 let ghost e0 = pure \{ (x0 - . rsa) / . rsa \} in
 let ghost ea1 = pure { (a1 - . a) / . a } in
 let ghost mx1 = pure { x0 +. x0 *. t1' *. 0.5 } in
  assert { (mx1 -. rsa) /. rsa =
    -0.5 *. (e0*.e0 *. (3.+.e0) +. (1.+.e0) *.
      (1. -. m1 +. (1.+.e0)*.(1.+.e0) *. ea1)) };
  . . .
```

Four equalities are needed by Gappa:

- they hardly mention rounding errors;
- all of them are proved with straightforward Coq scripts.

Guillaume Melquiond

Formal Verification for Numerical Computations, and the Other Way Around

A Verified Library

Supported operations

- Addition, subtraction, comparison.
- Multiplication: quadratic, and Toom-Cook 2 and 2.5.
- Division: "schoolbook".
- Square root: divide-and-conquer.

Outline

Introduction

- Numerical computations for formal verification: Guaranteed quadrature using Coq
- Formal verification for numerical computations: Getting a verified GMP using Why3

4 Conclusion

Floating-point arithmetic

 Formalization of high-level properties: rounding to odd, FMA, successor, etc.

Floating-point arithmetic

- Formalization of high-level properties: rounding to odd, FMA, successor, etc.
- Formalization of IEEE-754 standard, used to implement a C compiler and verify its correctness.

Floating-point arithmetic

- Formalization of high-level properties: rounding to odd, FMA, successor, etc.
- Formalization of IEEE-754 standard, used to implement a C compiler and verify its correctness.
- A procedure for Alt-Ergo and a theory for Why3.

Floating-point arithmetic

- Formalization of high-level properties: rounding to odd, FMA, successor, etc.
- Formalization of IEEE-754 standard, used to implement a C compiler and verify its correctness.
- A procedure for Alt-Ergo and a theory for Why3.

Miscellaneous

• Formalization of real analysis, with a focus on usability.

Floating-point arithmetic

- Formalization of high-level properties: rounding to odd, FMA, successor, etc.
- Formalization of IEEE-754 standard, used to implement a C compiler and verify its correctness.
- A procedure for Alt-Ergo and a theory for Why3.

- Formalization of real analysis, with a focus on usability.
- Verification of a 3-point scheme for the wave equation.

Floating-point arithmetic

- Formalization of high-level properties: rounding to odd, FMA, successor, etc.
- Formalization of IEEE-754 standard, used to implement a C compiler and verify its correctness.
- A procedure for Alt-Ergo and a theory for Why3.

- Formalization of real analysis, with a focus on usability.
- Verification of a 3-point scheme for the wave equation.
- Safety invariant computation for hybrid systems.

Floating-point arithmetic

- Formalization of high-level properties: rounding to odd, FMA, successor, etc.
- Formalization of IEEE-754 standard, used to implement a C compiler and verify its correctness.
- A procedure for Alt-Ergo and a theory for Why3.

- Formalization of real analysis, with a focus on usability.
- Verification of a 3-point scheme for the wave equation.
- Safety invariant computation for hybrid systems.
- Procedure for linear integer arithmetic.

Floating-point arithmetic

- Formalization of high-level properties: rounding to odd, FMA, successor, etc.
- Formalization of IEEE-754 standard, used to implement a C compiler and verify its correctness.
- A procedure for Alt-Ergo and a theory for Why3.

- Formalization of real analysis, with a focus on usability.
- Verification of a 3-point scheme for the wave equation.
- Safety invariant computation for hybrid systems.
- Procedure for linear integer arithmetic.
- Disproval of Masser-Gramain's conjecture: $\sum_k 1/(\pi r_k^2) = \dots$

Advertisement

 Handbook of Floating-Point Arithmetic, Muller et al., 2010, 2018.

 Computer Arithmetic and Formal Proofs, Boldo, M., 2017.

What is Next?

Proof assistants and mathematics

Make the Coq environment as friendly to use as computer algebra systems.

What is Next?

Proof assistants and mathematics

Make the Coq environment as friendly to use as computer algebra systems.

Deductive program verification for the masses

Make Why3 and related tools a natural choice to verify algorithms and libraries, especially when it comes to floating-point code.

Question Time

Details: Computing tan

Approximation of $\tan x$ for $x \in \left[-\frac{1}{2}; \frac{1}{2}\right]$

Interval extension of tan

$$\forall x \in [\underline{x}; \overline{x}] \subset (-\frac{\pi}{2}; \frac{\pi}{2}), \quad \tan x \in \operatorname{hull}(\tan \underline{x}, \tan \overline{x}).$$

Details: Computing tan

Polynomial approximation of tan (also known as Taylor model) **1** Formally prove $\forall x \in \mathbf{x}, \exists \xi \in \mathbf{x$ $\tan x = \sum_{k=1}^{n} \frac{\tan^{(k)} x_0}{k!} (x - x_0)^k + \frac{\tan^{(n+1)} \xi}{(n+1)!} (x - x_0)^{n+1},$ 2 and $\frac{\tan^{(k)} u}{\mu} = q_k(\tan u)$ with $q_{i+1} = \frac{1}{i+1}(q'_i + X^2 q'_i) \in \mathbb{R}[X].$ **(3)** Implement the enclosure $(\vec{\mathbf{p}}, \Delta)$ of tan over **x** as $\vec{\mathbf{p}} = (\mathbf{q}_0(\tan x_0), \dots, \mathbf{q}_n(\tan x_0))$ and $\mathbf{\Delta} = \mathbf{q}_{n+1}(\tan \mathbf{x}) \cdot \dots$ using the interval extensions of q_i and tan.

Remark

Computing a Taylor model is a lot more efficient when the function has a linear differential equation, e.g., exp, sin, etc.

Automating the Error Analysis

Objective

Formally prove that, if $X_0 = \tilde{x}_0 \cdot 2^{-8}$ approximates $rsa = 1/\sqrt{a}$ with 8 bits of accuracy, then $X_1 = \tilde{x}_1 \cdot 2^{-64}$ approximates rsa with 16 bits of accuracy.

Gappa script

```
X1 = X0 + fixed<-24,dn>((X0 + fixed<-33,dn>(
    1 - 3b-33 - fixed<-33,dn>(a) * (X0 * X0))) * 0.5);
rsa = 1 / sqrt(a);
{ a in [0.25,1] /\ |(X0 - rsa) / X0| <= 1b-8 ->
    (X1 - rsa) / X1 in ? }
```

- Implicit quantification on free variables: $\forall a, X_0 \in \mathbb{R}$.
- Arithmetic operators on real numbers.
- Rounding operators: fixed<k,dn>(x) = $\lfloor x \cdot 2^{-k} \rfloor \cdot 2^k$.

Reflection for Why3, in a Nutshell

When everything else has failed...

```
If the current verification condition is Q(y),
and if one has already verified the following WhyML function
```

```
let prove (x: t): bool
requires { P x }
ensures { result = True -> Q x }
= ...
```

then one just needs to prove that P(y) holds and to check that (prove y) evaluates to True.

Remarks

- prove can make use of effects: mutability, exceptions, etc.
- If the current VC is not of the form Q(y),
 Why3 uses reification to guess a suitable value for x.