
Introduction Quadrature BigNum Conclusion

Formal Verification for Numerical Computations,
and the Other Way Around

Guillaume Melquiond

2019-04-01

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 1 / 35

Introduction Quadrature BigNum Conclusion Motivation 1 Motivation 2 Tools

A Bit of Vocabulary

Computer arithmetic
Art of representing numbers and performing computations on them
in a mechanized fashion:

integer arithmetic,
fixed- and floating-point arithmetic.

Formal verification
Art of proving the correctness of a system with respect
to a formal specification, using mathematical methods.

Formal proof: well-formed formulas related by inference rules.

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 2 / 35

Introduction Quadrature BigNum Conclusion Motivation 1 Motivation 2 Tools

A Bit of Vocabulary

Computer arithmetic
Art of representing numbers and performing computations on them
in a mechanized fashion:

integer arithmetic,
fixed- and floating-point arithmetic.

Formal verification
Art of proving the correctness of a system with respect
to a formal specification, using mathematical methods.

Formal proof: well-formed formulas related by inference rules.

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 2 / 35

Introduction Quadrature BigNum Conclusion Motivation 1 Motivation 2 Tools

Orientation Detection

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 3 / 35

Position of p1 with respect to (p2p3)

x

y
p1

x1

y1

p2

x2

y2

p3

x3

y3

sign
(

(x2 − x1) · (y3 − y1)
− (y2 − y1) · (x3 − x1)

)

Introduction Quadrature BigNum Conclusion Motivation 1 Motivation 2 Tools

Orientation Detection

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 3 / 35

Position of p1 with respect to (p2p3)

x

y
p1

x1

y1

p2

x2

y2

p3

x3

y3

sign
(

(x2 − x1) · (y3 − y1)
− (y2 − y1) · (x3 − x1)

)

Introduction Quadrature BigNum Conclusion Motivation 1 Motivation 2 Tools

Orientation Detection

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 3 / 35

Position of p1 with respect to (p2p3)

x

y
p1

x1

y1

p2

x2

y2

p3

x3

y3

sign
(

◦(◦(x2 − x1) · ◦(y3 − y1))
− ◦(◦(y2 − y1) · ◦(x3 − x1))

)
with ◦(r) ∈ F the closest floating-point
number to r ∈ R.

Introduction Quadrature BigNum Conclusion Motivation 1 Motivation 2 Tools

Orientation Detection

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 3 / 35

Position of p1 with respect to (p2p3)

x

y
p1

x1

y1

p2

x2

y2

p3

x3

y3

sign
(

◦(◦(x2 − x1) · ◦(y3 − y1))
− ◦(◦(y2 − y1) · ◦(x3 − x1))

)
with ◦(r) ∈ F the closest floating-point
number to r ∈ R.

Introduction Quadrature BigNum Conclusion Motivation 1 Motivation 2 Tools

Formal Verification for Numerical Computations

Situation
Number representations cause subtle behaviors,
if not counter-intuitive ones.
Algorithms are more and more intricate,
due to speed and space concerns.

How much can formal verification help?

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 4 / 35

Introduction Quadrature BigNum Conclusion Motivation 1 Motivation 2 Tools

Numerical Integrals in Modern Math Proofs

Double bubbles minimize (Hass, Schlafly, 2000)

“The proof parameterizes the space of possible solu-
tions by a two-dimensional rectangle [...]. This rectan-
gle is subdivided into 15,016 smaller rectangles which
are investigated by calculations involving a total of
51,256 numerical integrals.”

Major arcs for Goldbach’s problem (Helfgott, 2013)
(Every odd number ≥ 7 is the sum of three prime numbers.)∫ ∞

−∞

(0.5 · log(τ2 + 2.25) + 4.1396 + log π)2

0.25 + τ2 dτ

“We compute the last integral numerically (from −105 to 105).”

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 5 / 35

Introduction Quadrature BigNum Conclusion Motivation 1 Motivation 2 Tools

Numerical Integrals in Modern Math Proofs

Double bubbles minimize (Hass, Schlafly, 2000)

“The proof parameterizes the space of possible solu-
tions by a two-dimensional rectangle [...]. This rectan-
gle is subdivided into 15,016 smaller rectangles which
are investigated by calculations involving a total of
51,256 numerical integrals.”

Major arcs for Goldbach’s problem (Helfgott, 2013)
(Every odd number ≥ 7 is the sum of three prime numbers.)∫ ∞

−∞

(0.5 · log(τ2 + 2.25) + 4.1396 + log π)2

0.25 + τ2 dτ

“We compute the last integral numerically (from −105 to 105).”

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 5 / 35

Introduction Quadrature BigNum Conclusion Motivation 1 Motivation 2 Tools

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 6 / 35

Introduction Quadrature BigNum Conclusion Motivation 1 Motivation 2 Tools

Numerical Computations for Formal Verification

Modern mathematical proofs rely more and more
on computers, by sheer necessity.
There is a lingering doubt:
what if one of the computations went wrong?

Can proofs that rely on numerical computations be redeemed?

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 7 / 35

Introduction Quadrature BigNum Conclusion Motivation 1 Motivation 2 Tools

Outline

1 Introduction

2 Numerical computations for formal verification:
Guaranteed quadrature using Coq

3 Formal verification for numerical computations:
Getting a verified GMP using Why3

4 Conclusion

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 8 / 35

Introduction Quadrature BigNum Conclusion Motivation 1 Motivation 2 Tools

Some Relevant Tools

Coq

formal system,
rich and expressive,
but proofs are tediousGappa

Why3

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 9 / 35

Introduction Quadrature BigNum Conclusion Motivation 1 Motivation 2 Tools

Some Relevant Tools

Coq

Gappa

automatic prover
for floating-point
properties

Why3

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 9 / 35

Introduction Quadrature BigNum Conclusion Motivation 1 Motivation 2 Tools

Some Relevant Tools

Coq

Gappa

Why3

Coq can ask Gappa
for a formal proof

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 9 / 35

Introduction Quadrature BigNum Conclusion Motivation 1 Motivation 2 Tools

Some Relevant Tools

Coq

Gappa

Why3

platform for deductive
program verification,
depends on external
provers

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 9 / 35

Introduction Quadrature BigNum Conclusion Motivation 1 Motivation 2 Tools

Some Relevant Tools

Coq

Gappa

Why3

Gappa is one of the
many automated solvers
supported by Why3

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 9 / 35

Introduction Quadrature BigNum Conclusion Motivation 1 Motivation 2 Tools

Some Relevant Tools

Coq

Gappa

Why3

Why3’s standard library
is verified with Coq;
users can use Coq as a
last resort

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 9 / 35

Introduction Quadrature BigNum Conclusion Coq libraries Example Interval Example 2

Outline

1 Introduction

2 Numerical computations for formal verification:
Guaranteed quadrature using Coq

Some relevant Coq libraries
Example: a proper definite integral
Interval arithmetic
Helfgott’s integrals using CoqInterval

3 Formal verification for numerical computations:
Getting a verified GMP using Why3

4 Conclusion

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 10 / 35

Introduction Quadrature BigNum Conclusion Coq libraries Example Interval Example 2

Numerical Computations for Formal Verification

Objective
Can we produce a convincing proof of∫ ∞

−∞

(0.5 · log(τ2 + 2.25) + 4.1396 + log π)2

0.25 + τ2 dτ ≤ 226.844 ?

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 11 / 35

Introduction Quadrature BigNum Conclusion Coq libraries Example Interval Example 2

Some Relevant Coq Libraries

Reals

Flocq

Gappa Why3 CompCert CoqInterval

Coquelicot

Coq’s standard library
(Mayero, Desmettre)

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 12 / 35

Introduction Quadrature BigNum Conclusion Coq libraries Example Interval Example 2

Some Relevant Coq Libraries

Reals

Flocq

Gappa Why3 CompCert CoqInterval

Coquelicot

formalization of
floating-point arith-
metic (Boldo, M.)

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 12 / 35

Introduction Quadrature BigNum Conclusion Coq libraries Example Interval Example 2

Some Relevant Coq Libraries

Reals

Flocq

Gappa Why3 CompCert CoqInterval

Coquelicot

helper libraries and real-
izations to interface the
tools with Coq (M.)

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 12 / 35

Introduction Quadrature BigNum Conclusion Coq libraries Example Interval Example 2

Some Relevant Coq Libraries

Reals

Flocq

Gappa Why3 CompCert CoqInterval

Coquelicot

IEEE-754 semantics
preservation for a
C compiler (Boldo,
Jourdan, Leroy, M.)

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 12 / 35

Introduction Quadrature BigNum Conclusion Coq libraries Example Interval Example 2

Some Relevant Coq Libraries

Reals

Flocq

Gappa Why3 CompCert CoqInterval

Coquelicot

user-friendly formal-
ization of real analysis
(Boldo, Lelay, M.)

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 12 / 35

Introduction Quadrature BigNum Conclusion Coq libraries Example Interval Example 2

Some Relevant Coq Libraries

Reals

Flocq

Gappa Why3 CompCert CoqInterval

Coquelicot

interval-based tactics for formally ver-
ifying bounds (M., Martin-Dorel, Mayero,
Pasca, Rideau, Théry, Mahboubi, Sibut-Pinote)

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 12 / 35

Introduction Quadrature BigNum Conclusion Coq libraries Example Interval Example 2

Some Relevant Coq Libraries

Reals

Flocq

Gappa Why3 CompCert CoqInterval

Coquelicot

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 12 / 35

Introduction Quadrature BigNum Conclusion Coq libraries Example Interval Example 2

Example: a Proper Definite Integral

Example (Mathematics and Coq script)∫ 1

0
tan t2dt ≤ 2

5 .

Goal RInt (fun t => tan (t*t)) 0 1 <= 2/5.
Proof. interval. Qed.

Formal proof is instant!

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 13 / 35

Introduction Quadrature BigNum Conclusion Coq libraries Example Interval Example 2

Example: a Proper Definite Integral

Example (Mathematics and Coq script)∫ 1

0
tan t2dt ≤ 2

5 .

Goal RInt (fun t => tan (t*t)) 0 1 <= 2/5.
Proof. interval. Qed.

Formal proof is instant!

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 13 / 35

Introduction Quadrature BigNum Conclusion Coq libraries Example Interval Example 2

Example: a Proper Definite Integral

Example (Mathematics and Coq script)∫ 1

0
tan t2dt ≤ 2

5 .

Goal RInt (fun t => tan (t*t)) 0 1 <= 2/5.
Proof. interval. Qed.

integral from Coquelicot

tactic from CoqInterval

Formal proof is instant!

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 13 / 35

Introduction Quadrature BigNum Conclusion Coq libraries Example Interval Example 2

Interval Arithmetic

Definition (Intervals)
Connected closed subsets of R, e.g., x = [x ; x] or [x ; +∞).

Definition (Interval extension)
f : In → I is an interval extension of f : Rn → R if
∀x1, . . . , xn ∈ I, ∀x1, . . . , xn ∈ R,

x1 ∈ x1 ∧ . . . ∧ xn ∈ xn ⇒ f (x1, . . . , xn) ∈ f(x1, . . . , xn).

Lemma (Naive quadrature)∫ v

u
f (t) dt ∈ (v − u) · f(hull(u, v)).

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 14 / 35

Introduction Quadrature BigNum Conclusion Coq libraries Example Interval Example 2

Interval Arithmetic

Definition (Intervals)
Connected closed subsets of R, e.g., x = [x ; x] or [x ; +∞).

Definition (Interval extension)
f : In → I is an interval extension of f : Rn → R if
∀x1, . . . , xn ∈ I, ∀x1, . . . , xn ∈ R,

x1 ∈ x1 ∧ . . . ∧ xn ∈ xn ⇒ f (x1, . . . , xn) ∈ f(x1, . . . , xn).

Lemma (Naive quadrature)∫ v

u
f (t) dt ∈ (v − u) · f(hull(u, v)).

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 14 / 35

Introduction Quadrature BigNum Conclusion Coq libraries Example Interval Example 2

Interval Arithmetic

Definition (Intervals)
Connected closed subsets of R, e.g., x = [x ; x] or [x ; +∞).

Definition (Interval extension)
f : In → I is an interval extension of f : Rn → R if
∀x1, . . . , xn ∈ I, ∀x1, . . . , xn ∈ R,

x1 ∈ x1 ∧ . . . ∧ xn ∈ xn ⇒ f (x1, . . . , xn) ∈ f(x1, . . . , xn).

Lemma (Naive quadrature)∫ v

u
f (t) dt ∈ (v − u) · f(hull(u, v)).

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 14 / 35

Introduction Quadrature BigNum Conclusion Coq libraries Example Interval Example 2

Effective Interval Extensions

Definition (Floating-point numbers and directed rounding)

F = {m · βe ∈ R | m, e ∈ Z ∧ |m| < β%}.

∀u, v ∈ F, 5(u � v) ≤ u � v ≤ 4(u � v).

Interval extensions of +, −, ×
If u ∈ u = [u; u] and v ∈ v = [v ; v], then (by monotony)

u + v ∈ [5(u + v);4(u + v)] def
= u + v,

u − v ∈ [5(u − v);4(u − v)] def
= u − v,

u · v ∈ [min(5(u · v),5(u · v),5(u · v),5(u · v));
max(4(u · v),4(u · v),4(u · v),4(u · v))].

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 15 / 35

Introduction Quadrature BigNum Conclusion Coq libraries Example Interval Example 2

Effective Interval Extensions

Definition (Floating-point numbers and directed rounding)

F = {m · βe ∈ R | m, e ∈ Z ∧ |m| < β%}.

∀u, v ∈ F, 5(u � v) ≤ u � v ≤ 4(u � v).

Interval extensions of +, −, ×
If u ∈ u = [u; u] and v ∈ v = [v ; v], then (by monotony)

u + v ∈ [5(u + v);4(u + v)] def
= u + v,

u − v ∈ [5(u − v);4(u − v)] def
= u − v,

u · v ∈ [min(5(u · v),5(u · v),5(u · v),5(u · v));
max(4(u · v),4(u · v),4(u · v),4(u · v))].

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 15 / 35

Introduction Quadrature BigNum Conclusion Coq libraries Example Interval Example 2

Quadrature

y

t0 1

1

tan(t2)

∫ 1

0
tan t2 dt ≤ 1.557

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 16 / 35

Introduction Quadrature BigNum Conclusion Coq libraries Example Interval Example 2

Quadrature

y

t0 1

1

tan(t2)

∫ 1

0
tan t2 dt ≤ 0.482

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 16 / 35

Introduction Quadrature BigNum Conclusion Coq libraries Example Interval Example 2

Formally Reliable Computations

What is needed?
1 Formalize floating-point rounding

and verify basic arithmetic operators.

[ARITH’11]
2 Verify basic interval operators and automatic differentiation.

[IJCAR’08]

3 Formalize real analysis: power series, integrals, etc.

[CPP’12, MCS’15]

4 Verify interval extensions of elementary functions.

[RNC’08, I&C’12]

5 Support rigorous polynomial approximations
based on Taylor models.

[JAR’16]

6 Verify quadrature algorithms
for proper and improper integrals.

[ITP’16, JAR’18]

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 17 / 35

Introduction Quadrature BigNum Conclusion Coq libraries Example Interval Example 2

Formally Reliable Computations

What is needed?
1 Formalize floating-point rounding

and verify basic arithmetic operators.

[ARITH’11]

2 Verify basic interval operators and automatic differentiation.

[IJCAR’08]
3 Formalize real analysis: power series, integrals, etc.

[CPP’12, MCS’15]

4 Verify interval extensions of elementary functions.

[RNC’08, I&C’12]

5 Support rigorous polynomial approximations
based on Taylor models.

[JAR’16]

6 Verify quadrature algorithms
for proper and improper integrals.

[ITP’16, JAR’18]

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 17 / 35

Introduction Quadrature BigNum Conclusion Coq libraries Example Interval Example 2

Formally Reliable Computations

What is needed?
1 Formalize floating-point rounding

and verify basic arithmetic operators.

[ARITH’11]

2 Verify basic interval operators and automatic differentiation.

[IJCAR’08]

3 Formalize real analysis: power series, integrals, etc.

[CPP’12, MCS’15]
4 Verify interval extensions of elementary functions.

[RNC’08, I&C’12]

5 Support rigorous polynomial approximations
based on Taylor models.

[JAR’16]

6 Verify quadrature algorithms
for proper and improper integrals.

[ITP’16, JAR’18]

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 17 / 35

Introduction Quadrature BigNum Conclusion Coq libraries Example Interval Example 2

Formally Reliable Computations

What is needed?
1 Formalize floating-point rounding

and verify basic arithmetic operators.

[ARITH’11]

2 Verify basic interval operators and automatic differentiation.

[IJCAR’08]

3 Formalize real analysis: power series, integrals, etc.

[CPP’12, MCS’15]

4 Verify interval extensions of elementary functions.

[RNC’08, I&C’12]
5 Support rigorous polynomial approximations

based on Taylor models.

[JAR’16]

6 Verify quadrature algorithms
for proper and improper integrals.

[ITP’16, JAR’18]

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 17 / 35

Introduction Quadrature BigNum Conclusion Coq libraries Example Interval Example 2

Formally Reliable Computations

What is needed?
1 Formalize floating-point rounding

and verify basic arithmetic operators.

[ARITH’11]

2 Verify basic interval operators and automatic differentiation.

[IJCAR’08]

3 Formalize real analysis: power series, integrals, etc.

[CPP’12, MCS’15]

4 Verify interval extensions of elementary functions.

[RNC’08, I&C’12]

5 Support rigorous polynomial approximations
based on Taylor models.

[JAR’16]
6 Verify quadrature algorithms

for proper and improper integrals.

[ITP’16, JAR’18]

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 17 / 35

Introduction Quadrature BigNum Conclusion Coq libraries Example Interval Example 2

Formally Reliable Computations

What is needed?
1 Formalize floating-point rounding

and verify basic arithmetic operators.

[ARITH’11]

2 Verify basic interval operators and automatic differentiation.

[IJCAR’08]

3 Formalize real analysis: power series, integrals, etc.

[CPP’12, MCS’15]

4 Verify interval extensions of elementary functions.

[RNC’08, I&C’12]

5 Support rigorous polynomial approximations
based on Taylor models.

[JAR’16]

6 Verify quadrature algorithms
for proper and improper integrals.

[ITP’16, JAR’18]

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 17 / 35

Introduction Quadrature BigNum Conclusion Coq libraries Example Interval Example 2

Formally Reliable Computations

What is needed?
1 Formalize floating-point rounding

and verify basic arithmetic operators. [ARITH’11]
2 Verify basic interval operators and automatic differentiation.

[IJCAR’08]
3 Formalize real analysis: power series, integrals, etc.

[CPP’12, MCS’15]
4 Verify interval extensions of elementary functions.

[RNC’08, I&C’12]
5 Support rigorous polynomial approximations

based on Taylor models. [JAR’16]
6 Verify quadrature algorithms

for proper and improper integrals. [ITP’16, JAR’18]

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 17 / 35

Introduction Quadrature BigNum Conclusion Coq libraries Example Interval Example 2

Details: Improving Enclosures

Definition (Polynomial enclosure)
(~p,∆) ∈ In+1 × I encloses f over x 3 x0, if ∃p ∈ R[X],

(∀i < n, pi ∈ pi) ∧ ∀x ∈ x, f (x)− p(x − x0) ∈ ∆.

Lemma (Improved quadrature)
If (p,∆) encloses f over [u; v], and if P is a primitive of p, then∫ v

u
f ∈ P(v)− P(u) + (v − u) ·∆.

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 18 / 35

Introduction Quadrature BigNum Conclusion Coq libraries Example Interval Example 2

Details: Improving Enclosures

Definition (Polynomial enclosure)
(~p,∆) ∈ In+1 × I encloses f over x 3 x0, if ∃p ∈ R[X],

(∀i < n, pi ∈ pi) ∧ ∀x ∈ x, f (x)− p(x − x0) ∈ ∆.

Lemma (Improved quadrature)
If (p,∆) encloses f over [u; v], and if P is a primitive of p, then∫ v

u
f ∈ P(v)− P(u) + (v − u) ·∆.

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 18 / 35

Introduction Quadrature BigNum Conclusion Coq libraries Example Interval Example 2

Quadrature with a Degree-3 Polynomial

y

t0 1

1

tan(t2)

p(t) + ∆

p(t) + ∆

∫ 1

0
tan t2 dt ≤ 0.681

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 19 / 35

Introduction Quadrature BigNum Conclusion Coq libraries Example Interval Example 2

Helfgott’s Integrals

Proper integral, in the MathOverflow post∫ 1

0

∣∣(x4 + 10x3 + 19x2 − 6x − 6
)

ex ∣∣ dx ' 11.14731055.

INTLAB got this integral wrong.
VNODE/LP cannot compute it.

Improper integral, in the proof∫ +∞

−∞

(0.5 · log(τ2 + 2.25) + 4.1396 + log π)2

0.25 + τ2 dτ

∈ [226.849; 226.850].
Helfgott was using ≤ 226.844.

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 20 / 35

Introduction Quadrature BigNum Conclusion Coq libraries Example Interval Example 2

Helfgott’s Integrals

Proper integral, in the MathOverflow post∫ 1

0

∣∣(x4 + 10x3 + 19x2 − 6x − 6
)

ex ∣∣ dx ' 11.14731055.
INTLAB got this integral wrong.
VNODE/LP cannot compute it.

Improper integral, in the proof∫ +∞

−∞

(0.5 · log(τ2 + 2.25) + 4.1396 + log π)2

0.25 + τ2 dτ

∈ [226.849; 226.850].
Helfgott was using ≤ 226.844.

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 20 / 35

Introduction Quadrature BigNum Conclusion Coq libraries Example Interval Example 2

Helfgott’s Integrals

Proper integral, in the MathOverflow post∫ 1

0

∣∣(x4 + 10x3 + 19x2 − 6x − 6
)

ex ∣∣ dx ' 11.14731055.
INTLAB got this integral wrong.
VNODE/LP cannot compute it.

Improper integral, in the proof∫ +∞

−∞

(0.5 · log(τ2 + 2.25) + 4.1396 + log π)2

0.25 + τ2 dτ

∈ [226.849; 226.850].

Helfgott was using ≤ 226.844.

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 20 / 35

Introduction Quadrature BigNum Conclusion Coq libraries Example Interval Example 2

Helfgott’s Integrals

Proper integral, in the MathOverflow post∫ 1

0

∣∣(x4 + 10x3 + 19x2 − 6x − 6
)

ex ∣∣ dx ' 11.14731055.
INTLAB got this integral wrong.
VNODE/LP cannot compute it.

Improper integral, in the proof∫ +∞

−∞

(0.5 · log(τ2 + 2.25) + 4.1396 + log π)2

0.25 + τ2 dτ

∈ [226.849; 226.850].
Helfgott was using ≤ 226.844.

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 20 / 35

Introduction Quadrature BigNum Conclusion Why3 Example Fixed-point Gappa

Outline

1 Introduction

2 Numerical computations for formal verification:
Guaranteed quadrature using Coq

3 Formal verification for numerical computations:
Getting a verified GMP using Why3

Using Why3
Example: decrementing a long integer
Square root and fixed-point arithmetic
Error analysis using Gappa

4 Conclusion

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 21 / 35

Introduction Quadrature BigNum Conclusion Why3 Example Fixed-point Gappa

Arbitrary-Precision Integer Arithmetic

The GNU Multiple Precision arithmetic library (GMP)
Free software, widely used.
State-of-the-art algorithms, unmatched performances.

Highly intricate algorithms written in low-level C and ASM.
Ill-suited for random testing.
GMP 5.0.4: “Two bugs in multiplication […] with extremely low
probability […]. Two bugs in the gcd code […] For uniformly distributed
random operands, the likelihood is infinitesimally small.”

Objectives
Produce a verified library compatible with GMP.
Attain performances comparable to a no-assembly GMP.
Focus on the low-level mpn layer.

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 22 / 35

Introduction Quadrature BigNum Conclusion Why3 Example Fixed-point Gappa

Arbitrary-Precision Integer Arithmetic

The GNU Multiple Precision arithmetic library (GMP)
Free software, widely used.
State-of-the-art algorithms, unmatched performances.

Highly intricate algorithms written in low-level C and ASM.
Ill-suited for random testing.
GMP 5.0.4: “Two bugs in multiplication […] with extremely low
probability […]. Two bugs in the gcd code […] For uniformly distributed
random operands, the likelihood is infinitesimally small.”

Objectives
Produce a verified library compatible with GMP.
Attain performances comparable to a no-assembly GMP.
Focus on the low-level mpn layer.

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 22 / 35

Introduction Quadrature BigNum Conclusion Why3 Example Fixed-point Gappa

Arbitrary-Precision Integer Arithmetic

The GNU Multiple Precision arithmetic library (GMP)
Free software, widely used.
State-of-the-art algorithms, unmatched performances.

Highly intricate algorithms written in low-level C and ASM.
Ill-suited for random testing.
GMP 5.0.4: “Two bugs in multiplication […] with extremely low
probability […]. Two bugs in the gcd code […] For uniformly distributed
random operands, the likelihood is infinitesimally small.”

Objectives
Produce a verified library compatible with GMP.
Attain performances comparable to a no-assembly GMP.
Focus on the low-level mpn layer.

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 22 / 35

Introduction Quadrature BigNum Conclusion Why3 Example Fixed-point Gappa

The Why3 Workflow

WhyML
library

GMP library Specification

C memory
model

Why3

Verification
conditions

Verified
C library

SMT solvers

Coq Gappa

Reflected
properties

Decision
procedures

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 23 / 35

Introduction Quadrature BigNum Conclusion Why3 Example Fixed-point Gappa

The Why3 Workflow

WhyML
library

GMP library Specification

C memory
model

Why3

Verification
conditions

Verified
C library

SMT solvers

Coq Gappa

Reflected
properties

Decision
procedures

Rieu-Helft

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 23 / 35

Introduction Quadrature BigNum Conclusion Why3 Example Fixed-point Gappa

The Why3 Workflow

WhyML
library

GMP library Specification

C memory
model

Why3

Verification
conditions

Verified
C library

SMT solvers

Coq Gappa

Reflected
properties

Decision
procedures

Marché, M., Rieu-Helft

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 23 / 35

Introduction Quadrature BigNum Conclusion Why3 Example Fixed-point Gappa

The Why3 Workflow

WhyML
library

GMP library Specification

C memory
model

Why3

Verification
conditions

Verified
C library

SMT solvers

Coq Gappa

Reflected
properties

Decision
procedures

Filliâtre, Marché, M.,
Paskevich, and many
others

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 23 / 35

Introduction Quadrature BigNum Conclusion Why3 Example Fixed-point Gappa

The Why3 Workflow

WhyML
library

GMP library Specification

C memory
model

Why3

Verification
conditions

Verified
C library

SMT solvers

Coq Gappa

Reflected
properties

Decision
procedures

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 23 / 35

Introduction Quadrature BigNum Conclusion Why3 Example Fixed-point Gappa

The Why3 Workflow

WhyML
library

GMP library Specification

C memory
model

Why3

Verification
conditions

Verified
C library

SMT solvers

Coq Gappa

Reflected
properties

Decision
procedures

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 23 / 35

Introduction Quadrature BigNum Conclusion Why3 Example Fixed-point Gappa

The Why3 Workflow

WhyML
library

GMP library Specification

C memory
model

Why3

Verification
conditions

Verified
C library

SMT solvers

Coq Gappa

Reflected
properties

Decision
procedures

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 23 / 35

Introduction Quadrature BigNum Conclusion Why3 Example Fixed-point Gappa

The Why3 Workflow

WhyML
library

GMP library Specification

C memory
model

Why3

Verification
conditions

Verified
C library

SMT solvers

Coq Gappa

Reflected
properties

Decision
procedures

M., Rieu-Helft

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 23 / 35

Introduction Quadrature BigNum Conclusion Why3 Example Fixed-point Gappa

The Why3 Workflow

WhyML
library

GMP library Specification

C memory
model

Why3

Verification
conditions

Verified
C library

SMT solvers

Coq Gappa

Reflected
properties

Decision
procedures

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 23 / 35

Introduction Quadrature BigNum Conclusion Why3 Example Fixed-point Gappa

Example: Subtracting 1 to a Long Integer

Original macro (simplified from 18-line mpn_decr_u)

#define mpn_decr_1(p) \
mp_ptr __p = (p); \
while ((*(__p++))-- == 0) ;

Extraction to C

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 24 / 35

Introduction Quadrature BigNum Conclusion Why3 Example Fixed-point Gappa

Example: Subtracting 1 to a Long Integer

Original macro (simplified from 18-line mpn_decr_u)

#define mpn_decr_1(p) \
mp_ptr __p = (p); \
while ((*(__p++))-- == 0) ;

Conversion to WhyML

let wmpn_decr_1 (p: ptr uint64) : unit
=

let ref lp = 0 in
let ref i = 0 in
while lp = 0 do

lp <- get_ofs p i;
set_ofs p i (sub_mod lp 1);
i <- i + 1;

done

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 24 / 35

Introduction Quadrature BigNum Conclusion Why3 Example Fixed-point Gappa

Example: Subtracting 1 to a Long Integer

Original macro (simplified from 18-line mpn_decr_u)

#define mpn_decr_1(p) \
mp_ptr __p = (p); \
while ((*(__p++))-- == 0) ;

Conversion to WhyML

let wmpn_decr_1 (p: ptr uint64) : unit
ensures { value p = value (old p) - 1 }

=
let ref lp = 0 in
let ref i = 0 in
while lp = 0 do

lp <- get_ofs p i;
set_ofs p i (sub_mod lp 1);
i <- i + 1;

done

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 24 / 35

Introduction Quadrature BigNum Conclusion Why3 Example Fixed-point Gappa

Example: Subtracting 1 to a Long Integer

Original macro (simplified from 18-line mpn_decr_u)

#define mpn_decr_1(p) \
mp_ptr __p = (p); \
while ((*(__p++))-- == 0) ;

Conversion to WhyML

let wmpn_decr_1 (p: ptr uint64) (ghost sz: int32) : unit
ensures { value p sz = value (old p) sz - 1 }

=
let ref lp = 0 in
let ref i = 0 in
while lp = 0 do

lp <- get_ofs p i;
set_ofs p i (sub_mod lp 1);
i <- i + 1;

done

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 24 / 35

Introduction Quadrature BigNum Conclusion Why3 Example Fixed-point Gappa

Example: Subtracting 1 to a Long Integer

Original macro (simplified from 18-line mpn_decr_u)

#define mpn_decr_1(p) \
mp_ptr __p = (p); \
while ((*(__p++))-- == 0) ;

Conversion to WhyML

let wmpn_decr_1 (p: ptr uint64) (ghost sz: int32) : unit
requires { valid p sz }
requires { 1 <= value p sz }
ensures { value p sz = value (old p) sz - 1 }

=
let ref lp = 0 in
let ref i = 0 in
while lp = 0 do
...

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 24 / 35

Introduction Quadrature BigNum Conclusion Why3 Example Fixed-point Gappa

Example: Subtracting 1 to a Long Integer

Original macro (simplified from 18-line mpn_decr_u)

#define mpn_decr_1(p) \
mp_ptr __p = (p); \
while ((*(__p++))-- == 0) ;

Extraction to C

void wmpn_decr_1(uint64_t * p) {
uint64_t lp; int32_t i;
lp = 0;
i = 0;
while (lp == 0) {

lp = p[i];
p[i] = lp - 1;
i = i + 1;

}
}

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 24 / 35

Introduction Quadrature BigNum Conclusion Why3 Example Fixed-point Gappa

Example: 64-bit Square Root

Original GMP code

mp_limb_t mpn_sqrtrem1(mp_ptr rp, mp_limb_t a0) {
mp_limb_t a1, x0, t2, t, x2;
unsigned abits = a0 >> (GMP_LIMB_BITS - 1 - 8);
x0 = 0x100 | invsqrttab[abits - 0x80];
/* x0 is now an 8 bits approximation of 1/sqrt(a0) */
a1 = a0 >> (GMP_LIMB_BITS - 1 - 32);
t = (mp_limb_signed_t) (CNST_LIMB(0x2000000000000)

- 0x30000 - a1 * x0 * x0) >> 16;
x0 = (x0<<16) + ((mp_limb_signed_t)(x0*t) >> (16+2));
/* x0 is now a 16 bits approximation of 1/sqrt(a0) */
...

Table lookup, Newton iteration toward 1/
√

a,
modified Newton iteration toward a/

√
a, correcting step.

Hand-coded fixed-point arithmetic.

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 25 / 35

Introduction Quadrature BigNum Conclusion Why3 Example Fixed-point Gappa

Example: 64-bit Square Root

Original GMP code

mp_limb_t mpn_sqrtrem1(mp_ptr rp, mp_limb_t a0) {
mp_limb_t a1, x0, t2, t, x2;
unsigned abits = a0 >> (GMP_LIMB_BITS - 1 - 8);
x0 = 0x100 | invsqrttab[abits - 0x80];
/* x0 is now an 8 bits approximation of 1/sqrt(a0) */
a1 = a0 >> (GMP_LIMB_BITS - 1 - 32);
t = (mp_limb_signed_t) (CNST_LIMB(0x2000000000000)

- 0x30000 - a1 * x0 * x0) >> 16;
x0 = (x0<<16) + ((mp_limb_signed_t)(x0*t) >> (16+2));
/* x0 is now a 16 bits approximation of 1/sqrt(a0) */
...

Table lookup, Newton iteration toward 1/
√

a,
modified Newton iteration toward a/

√
a, correcting step.

Hand-coded fixed-point arithmetic.

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 25 / 35

Introduction Quadrature BigNum Conclusion Why3 Example Fixed-point Gappa

Example: 64-bit Square Root

Original GMP code

mp_limb_t mpn_sqrtrem1(mp_ptr rp, mp_limb_t a0) {
mp_limb_t a1, x0, t2, t, x2;
unsigned abits = a0 >> (GMP_LIMB_BITS - 1 - 8);
x0 = 0x100 | invsqrttab[abits - 0x80];
/* x0 is now an 8 bits approximation of 1/sqrt(a0) */
a1 = a0 >> (GMP_LIMB_BITS - 1 - 32);
t = (mp_limb_signed_t) (CNST_LIMB(0x2000000000000)

- 0x30000 - a1 * x0 * x0) >> 16;
x0 = (x0<<16) + ((mp_limb_signed_t)(x0*t) >> (16+2));
/* x0 is now a 16 bits approximation of 1/sqrt(a0) */
...

Table lookup, Newton iteration toward 1/
√

a,
modified Newton iteration toward a/

√
a, correcting step.

Hand-coded fixed-point arithmetic.

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 25 / 35

Introduction Quadrature BigNum Conclusion Why3 Example Fixed-point Gappa

A Small Fixed-Point Arithmetic Theory for Why3

type fxp = { ival: uint64;
ghost rval: real; ghost iexp: int }

invariant { rval = floor_at rval iexp }
invariant { ival = mod (floor (rval *. pow2 (-iexp)))

(uint64'maxInt + 1) }

Converted WhyML code
let sqrt1 (rp: ptr uint64) (a0: uint64): uint64 =

let a = fxp_init a0 (-64) in
let x0 = rsa_estimate a in
let a1 = fxp_lsr a 31 in
let m1 = fxp_sub (fxp_init 0x2000000000000 (-49))

(fxp_init 0x30000 (-49)) in
let t1' = fxp_sub m1 (fxp_mul (fxp_mul x0 x0) a1) in
let t1 = fxp_asr t1' 16 in
let x1 = fxp_add (fxp_lsl x0 16)

(fxp_asr' (fxp_mul x0 t1) 18 1) in
...

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 26 / 35

Introduction Quadrature BigNum Conclusion Why3 Example Fixed-point Gappa

A Small Fixed-Point Arithmetic Theory for Why3

type fxp = { ival: uint64;
ghost rval: real; ghost iexp: int }

invariant { rval = floor_at rval iexp }
invariant { ival = mod (floor (rval *. pow2 (-iexp)))

(uint64'maxInt + 1) }

Converted WhyML code
let sqrt1 (rp: ptr uint64) (a0: uint64): uint64 =

let a = fxp_init a0 (-64) in
let x0 = rsa_estimate a in
let a1 = fxp_lsr a 31 in
let m1 = fxp_sub (fxp_init 0x2000000000000 (-49))

(fxp_init 0x30000 (-49)) in
let t1' = fxp_sub m1 (fxp_mul (fxp_mul x0 x0) a1) in
let t1 = fxp_asr t1' 16 in
let x1 = fxp_add (fxp_lsl x0 16)

(fxp_asr' (fxp_mul x0 t1) 18 1) in
...

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 26 / 35

Introduction Quadrature BigNum Conclusion Why3 Example Fixed-point Gappa

Error Analysis

Newton iteration toward 1/
√

a
Recurrence: xi+1 = xi + xi · (1 − a · x2

i)/2.
Relative error: xi = a−1/2 · (1 + εi).
Quadratic convergence: |εi+1| ≤ 3

2 |εi |2.

But what the code actually computes is
x̃1 = x̃0 +5−24

(
x̃0 · 5−33

(
1 − 3 · 2−33 −5−33(a) · x̃2

0
)
/2
)
,

with 5k(r) = br · 2−kc · 2k .

What to do about…

Rounding errors? That is what Gappa is designed to handle.
Magical constants? Critical for soundness; hinted to Gappa.

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 27 / 35

Introduction Quadrature BigNum Conclusion Why3 Example Fixed-point Gappa

Error Analysis

Newton iteration toward 1/
√

a
Recurrence: xi+1 = xi + xi · (1 − a · x2

i)/2.
Relative error: xi = a−1/2 · (1 + εi).
Quadratic convergence: |εi+1| ≤ 3

2 |εi |2.

But what the code actually computes is
x̃1 = x̃0 +5−24

(
x̃0 · 5−33

(
1 − 3 · 2−33 −5−33(a) · x̃2

0
)
/2
)
,

with 5k(r) = br · 2−kc · 2k .

What to do about…

Rounding errors? That is what Gappa is designed to handle.
Magical constants? Critical for soundness; hinted to Gappa.

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 27 / 35

Introduction Quadrature BigNum Conclusion Why3 Example Fixed-point Gappa

Error Analysis

Newton iteration toward 1/
√

a
Recurrence: xi+1 = xi + xi · (1 − a · x2

i)/2.
Relative error: xi = a−1/2 · (1 + εi).
Quadratic convergence: |εi+1| ≤ 3

2 |εi |2.

But what the code actually computes is
x̃1 = x̃0 +5−24

(
x̃0 · 5−33

(
1 − 3 · 2−33 −5−33(a) · x̃2

0
)
/2
)
,

with 5k(r) = br · 2−kc · 2k .

What to do about…
Rounding errors? That is what Gappa is designed to handle.

Magical constants? Critical for soundness; hinted to Gappa.

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 27 / 35

Introduction Quadrature BigNum Conclusion Why3 Example Fixed-point Gappa

Error Analysis

Newton iteration toward 1/
√

a
Recurrence: xi+1 = xi + xi · (1 − a · x2

i)/2.
Relative error: xi = a−1/2 · (1 + εi).
Quadratic convergence: |εi+1| ≤ 3

2 |εi |2.

But what the code actually computes is
x̃1 = x̃0 +5−24

(
x̃0 · 5−33

(
1 − 3 · 2−33 −5−33(a) · x̃2

0
)
/2
)
,

with 5k(r) = br · 2−kc · 2k .

What to do about…
Rounding errors? That is what Gappa is designed to handle.
Magical constants? Critical for soundness; hinted to Gappa.

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 27 / 35

Introduction Quadrature BigNum Conclusion Why3 Example Fixed-point Gappa

Gappa, in a Nutshell

Proof search by saturating over ∼ 200 theorems
Interval arithmetic: ∀u, v ∈ R, ∀u, v,w ∈ I,
u ∈ u ∧ v ∈ v ∧ u + v ⊆ w ⇒ u + v ∈ w;

Rounding properties: ∀x ∈ R, ∀k ∈ Z, ∀e ∈ I,
[−2k ; 0] ⊆ e ⇒ 5k(x)− x ∈ e;

Error analysis: ∀u, v , ũ, ṽ ∈ R,
ũ · ṽ − u · v = (ũ − u) · v + u · (ṽ − v) + (ũ − u) · (ṽ − v).

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 28 / 35

Introduction Quadrature BigNum Conclusion Why3 Example Fixed-point Gappa

Gappa, in a Nutshell

Proof search by saturating over ∼ 200 theorems
Interval arithmetic: ∀u, v ∈ R, ∀u, v,w ∈ I,
u ∈ u ∧ v ∈ v ∧ u + v ⊆ w ⇒ u + v ∈ w;

Rounding properties: ∀x ∈ R, ∀k ∈ Z, ∀e ∈ I,
[−2k ; 0] ⊆ e ⇒ 5k(x)− x ∈ e;

Error analysis: ∀u, v , ũ, ṽ ∈ R,
ũ · ṽ − u · v = (ũ − u) · v + u · (ṽ − v) + (ũ − u) · (ṽ − v).

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 28 / 35

Introduction Quadrature BigNum Conclusion Why3 Example Fixed-point Gappa

Gappa, in a Nutshell

Proof search by saturating over ∼ 200 theorems
Interval arithmetic: ∀u, v ∈ R, ∀u, v,w ∈ I,
u ∈ u ∧ v ∈ v ∧ u + v ⊆ w ⇒ u + v ∈ w;

Rounding properties: ∀x ∈ R, ∀k ∈ Z, ∀e ∈ I,
[−2k ; 0] ⊆ e ⇒ 5k(x)− x ∈ e;

Error analysis: ∀u, v , ũ, ṽ ∈ R,
ũ · ṽ − u · v = (ũ − u) · v + u · (ṽ − v) + (ũ − u) · (ṽ − v).

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 28 / 35

Introduction Quadrature BigNum Conclusion Why3 Example Fixed-point Gappa

What if Gappa Fails?

Help it by providing equalities

let sqrt1 (rp: ptr uint64) (a0: uint64): uint64
ensures {result*result <= a0 < (result+1)*(result+1)}

=
...
let ghost rsa = pure { 1. /. sqrt a } in
let ghost e0 = pure { (x0 -. rsa) /. rsa } in
let ghost ea1 = pure { (a1 -. a) /. a } in
let ghost mx1 = pure { x0 +. x0 *. t1' *. 0.5 } in
assert { (mx1 -. rsa) /. rsa =

-0.5 *. (e0*.e0 *. (3.+.e0) +. (1.+.e0) *.
(1. -. m1 +. (1.+.e0)*.(1.+.e0) *. ea1)) };

...

Four equalities are needed by Gappa:
they hardly mention rounding errors;
all of them are proved with straightforward Coq scripts.

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 29 / 35

Introduction Quadrature BigNum Conclusion Why3 Example Fixed-point Gappa

What if Gappa Fails?

Help it by providing equalities

let sqrt1 (rp: ptr uint64) (a0: uint64): uint64
ensures {result*result <= a0 < (result+1)*(result+1)}

=
...
let ghost rsa = pure { 1. /. sqrt a } in
let ghost e0 = pure { (x0 -. rsa) /. rsa } in
let ghost ea1 = pure { (a1 -. a) /. a } in
let ghost mx1 = pure { x0 +. x0 *. t1' *. 0.5 } in
assert { (mx1 -. rsa) /. rsa =

-0.5 *. (e0*.e0 *. (3.+.e0) +. (1.+.e0) *.
(1. -. m1 +. (1.+.e0)*.(1.+.e0) *. ea1)) };

...

Four equalities are needed by Gappa:
they hardly mention rounding errors;
all of them are proved with straightforward Coq scripts.

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 29 / 35

Introduction Quadrature BigNum Conclusion Why3 Example Fixed-point Gappa

A Verified Library

Supported operations
Addition, subtraction, comparison.
Multiplication: quadratic, and Toom-Cook 2 and 2.5.
Division: “schoolbook”.
Square root: divide-and-conquer.

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 30 / 35

Introduction Quadrature BigNum Conclusion

Outline

1 Introduction

2 Numerical computations for formal verification:
Guaranteed quadrature using Coq

3 Formal verification for numerical computations:
Getting a verified GMP using Why3

4 Conclusion

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 31 / 35

Introduction Quadrature BigNum Conclusion

Contributions

Floating-point arithmetic
Formalization of high-level properties:
rounding to odd, FMA, successor, etc.

Formalization of IEEE-754 standard,
used to implement a C compiler and verify its correctness.
A procedure for Alt-Ergo and a theory for Why3.

Miscellaneous

Formalization of real analysis, with a focus on usability.
Verification of a 3-point scheme for the wave equation.
Safety invariant computation for hybrid systems.
Procedure for linear integer arithmetic.
Disproval of Masser-Gramain’s conjecture:

∑
k 1/(πr2

k) = . . .

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 32 / 35

Introduction Quadrature BigNum Conclusion

Contributions

Floating-point arithmetic
Formalization of high-level properties:
rounding to odd, FMA, successor, etc.
Formalization of IEEE-754 standard,
used to implement a C compiler and verify its correctness.

A procedure for Alt-Ergo and a theory for Why3.

Miscellaneous

Formalization of real analysis, with a focus on usability.
Verification of a 3-point scheme for the wave equation.
Safety invariant computation for hybrid systems.
Procedure for linear integer arithmetic.
Disproval of Masser-Gramain’s conjecture:

∑
k 1/(πr2

k) = . . .

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 32 / 35

Introduction Quadrature BigNum Conclusion

Contributions

Floating-point arithmetic
Formalization of high-level properties:
rounding to odd, FMA, successor, etc.
Formalization of IEEE-754 standard,
used to implement a C compiler and verify its correctness.
A procedure for Alt-Ergo and a theory for Why3.

Miscellaneous

Formalization of real analysis, with a focus on usability.
Verification of a 3-point scheme for the wave equation.
Safety invariant computation for hybrid systems.
Procedure for linear integer arithmetic.
Disproval of Masser-Gramain’s conjecture:

∑
k 1/(πr2

k) = . . .

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 32 / 35

Introduction Quadrature BigNum Conclusion

Contributions

Floating-point arithmetic
Formalization of high-level properties:
rounding to odd, FMA, successor, etc.
Formalization of IEEE-754 standard,
used to implement a C compiler and verify its correctness.
A procedure for Alt-Ergo and a theory for Why3.

Miscellaneous
Formalization of real analysis, with a focus on usability.

Verification of a 3-point scheme for the wave equation.
Safety invariant computation for hybrid systems.
Procedure for linear integer arithmetic.
Disproval of Masser-Gramain’s conjecture:

∑
k 1/(πr2

k) = . . .

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 32 / 35

Introduction Quadrature BigNum Conclusion

Contributions

Floating-point arithmetic
Formalization of high-level properties:
rounding to odd, FMA, successor, etc.
Formalization of IEEE-754 standard,
used to implement a C compiler and verify its correctness.
A procedure for Alt-Ergo and a theory for Why3.

Miscellaneous
Formalization of real analysis, with a focus on usability.
Verification of a 3-point scheme for the wave equation.

Safety invariant computation for hybrid systems.
Procedure for linear integer arithmetic.
Disproval of Masser-Gramain’s conjecture:

∑
k 1/(πr2

k) = . . .

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 32 / 35

Introduction Quadrature BigNum Conclusion

Contributions

Floating-point arithmetic
Formalization of high-level properties:
rounding to odd, FMA, successor, etc.
Formalization of IEEE-754 standard,
used to implement a C compiler and verify its correctness.
A procedure for Alt-Ergo and a theory for Why3.

Miscellaneous
Formalization of real analysis, with a focus on usability.
Verification of a 3-point scheme for the wave equation.
Safety invariant computation for hybrid systems.

Procedure for linear integer arithmetic.
Disproval of Masser-Gramain’s conjecture:

∑
k 1/(πr2

k) = . . .

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 32 / 35

Introduction Quadrature BigNum Conclusion

Contributions

Floating-point arithmetic
Formalization of high-level properties:
rounding to odd, FMA, successor, etc.
Formalization of IEEE-754 standard,
used to implement a C compiler and verify its correctness.
A procedure for Alt-Ergo and a theory for Why3.

Miscellaneous
Formalization of real analysis, with a focus on usability.
Verification of a 3-point scheme for the wave equation.
Safety invariant computation for hybrid systems.
Procedure for linear integer arithmetic.

Disproval of Masser-Gramain’s conjecture:
∑

k 1/(πr2
k) = . . .

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 32 / 35

Introduction Quadrature BigNum Conclusion

Contributions

Floating-point arithmetic
Formalization of high-level properties:
rounding to odd, FMA, successor, etc.
Formalization of IEEE-754 standard,
used to implement a C compiler and verify its correctness.
A procedure for Alt-Ergo and a theory for Why3.

Miscellaneous
Formalization of real analysis, with a focus on usability.
Verification of a 3-point scheme for the wave equation.
Safety invariant computation for hybrid systems.
Procedure for linear integer arithmetic.
Disproval of Masser-Gramain’s conjecture:

∑
k 1/(πr2

k) = . . .

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 32 / 35

Introduction Quadrature BigNum Conclusion

Advertisement

Handbook of Floating-Point Arithmetic,
Muller et al., 2010, 2018.

Computer Arithmetic and Formal Proofs,
Boldo, M., 2017.

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 33 / 35

Introduction Quadrature BigNum Conclusion

What is Next?

Proof assistants and mathematics
Make the Coq environment as friendly to use
as computer algebra systems.

Deductive program verification for the masses
Make Why3 and related tools a natural choice
to verify algorithms and libraries,
especially when it comes to floating-point code.

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 34 / 35

Introduction Quadrature BigNum Conclusion

What is Next?

Proof assistants and mathematics
Make the Coq environment as friendly to use
as computer algebra systems.

Deductive program verification for the masses
Make Why3 and related tools a natural choice
to verify algorithms and libraries,
especially when it comes to floating-point code.

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 34 / 35

Introduction Quadrature BigNum Conclusion

Question Time

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 35 / 35

Details: Computing tan

Approximation of tan x for x ∈ [−1
2 ;

1
2]

1 Formally prove tan x =
sin x√

1 − sin2 x
,

2 and 0 ≤ (−1)n

(
sin x

x −
n−1∑
k=0

(−1)k x2k

(2k + 1)!

)
≤ x2n

(2n + 1)! .

3 Implement tan : F → I using extensions of +, −, ×, ÷,
√
•.

4 For x 6∈ [−1
2 ;

1
2], prove and implement an argument reduction.

Interval extension of tan

∀x ∈ [x ; x] ⊂ (−π
2 ;

π
2), tan x ∈ hull(tan x , tan x).

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 1 / 4

Details: Computing tan

Polynomial approximation of tan (also known as Taylor model)
1 Formally prove ∀x ∈ x, ∃ξ ∈ x,

tan x =
n∑

k=0

tan(k) x0
k! (x − x0)

k +
tan(n+1) ξ

(n + 1)! (x − x0)
n+1,

2 and tan(k) u
k! = qk(tan u) with qi+1 = 1

i+1(q
′
i + X2q′

i) ∈ R[X].
3 Implement the enclosure (~p,∆) of tan over x

as ~p = (q0(tan x0), . . . ,qn(tan x0)) and ∆ = qn+1(tan x) · . . .
using the interval extensions of qi and tan.

Remark
Computing a Taylor model is a lot more efficient when the function
has a linear differential equation, e.g., exp, sin, etc.

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 2 / 4

Automating the Error Analysis

Objective
Formally prove that,
if X0 = x̃0 · 2−8 approximates rsa = 1/

√
a with 8 bits of accuracy,

then X1 = x̃1 · 2−64 approximates rsa with 16 bits of accuracy.

Gappa script

X1 = X0 + fixed<-24,dn>((X0 + fixed<-33,dn>(
1 - 3b-33 - fixed<-33,dn>(a) * (X0 * X0))) * 0.5);

rsa = 1 / sqrt(a);
{ a in [0.25,1] /\ |(X0 - rsa) / X0| <= 1b-8 ->

(X1 - rsa) / X1 in ? }

Implicit quantification on free variables: ∀a,X0 ∈ R.
Arithmetic operators on real numbers.
Rounding operators: fixed<k,dn>(x) = bx · 2−kc · 2k .

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 3 / 4

Reflection for Why3, in a Nutshell

When everything else has failed…
If the current verification condition is Q(y),
and if one has already verified the following WhyML function

let prove (x: t): bool
requires { P x }
ensures { result = True -> Q x }

= ...

then one just needs to prove that P(y) holds
and to check that (prove y) evaluates to True.

Remarks
prove can make use of effects: mutability, exceptions, etc.
If the current VC is not of the form Q(y),
Why3 uses reification to guess a suitable value for x .

Guillaume Melquiond Formal Verification for Numerical Computations, and the Other Way Around 4 / 4

	Introduction
	Motivation 1
	Motivation 2
	Tools

	Numerical computations for formal verification: Guaranteed quadrature using Coq
	Some relevant Coq libraries
	Example: a proper definite integral
	Interval arithmetic
	Helfgott's integrals using CoqInterval

	Formal verification for numerical computations: Getting a verified GMP using Why3
	Using Why3
	Example: decrementing a long integer
	Square root and fixed-point arithmetic
	Error analysis using Gappa

	Conclusion
	Appendix

