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What is a Correct Arithmetic Function?

Criteria

Safety, e.g., access out of bounds, division by zero.

Arithmetic safety, e.g., round-off errors, unstable branching.

Functional correctness, e.g., method error, correct rounding.

Approaches

Validation, e.g., random sampling, code coverage,
stochastic arithmetic.

Verification, e.g., abstract interpretation, model checking,
deductive verification, formal proof.
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Tools: Coq, Flocq, and Gappa

The Coq proof assistant

A higher-order specification language to state theorems.

A tactic language to interactively build proofs of theorems.

A kernel to check that proofs are well-formed.

Flocq: a formalization for Coq

Radix 2, 10, other.

Fixed- and floating-point arithmetic.

Gappa: decision procedure for computer arithmetic

Analysis of ranges and round-off errors.

Generation of formal proofs for Coq.
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Formats

The most generic formats

Formats are just subsets of real numbers, F ⊆ R,
with a few properties that ensure rounding can be defined.

Radix and canonical exponents

A format is characterized by a radix β and a function ϕ ∈ Z→ Z:

x ∈ Fϕ ⇔ ∃m ∈ Z, x = m · βϕ(ex )

with ex such that |x | ∈ [βex−1;βex ].

Some classical formats

Fixed-point: ϕFIX(e) = emin.

Float with gradual underflow: ϕFLT(e) = max(e − p, emin).
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Axiomatic Rounding

Rounding as relations

The rounding in F of x ∈ R toward −∞ is f ∈ R iff

(f ∈ F) ∧ (f ≤ x) ∧ (∀g ∈ R, g ∈ F⇒ g ≤ x ⇒ g ≤ f ).

Rounding as functions

Rounding of x toward −∞:

5(x) = bx · β−ϕ(ex )c · βϕ(ex ).

Some simple properties

x 6∈ Fϕ ⇒4(x) = 5(x) + ulp(x) with ulp(x) = βϕ(ex ).

|◦τ (x)− x | ≤ 1
2 ulp(◦τ (x)).
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A few Theorems of Flocq

Sterbenz’ lemma.

Error-free transformations for +, ×, ÷,
√
·, e.g.,

x ∈ F⇒ x − (◦τ (
√
x))2 ∈ F for F without underflow.

Innocuous double rounding, even in presence of underflow:

x , y ∈ Fp ⇒ ◦τ1
p (◦τ2

p′(x/y)) = ◦τ1
p (x/y) with 2p ≤ p′.
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Effective Computations

Effective algorithms for division and square root.

Signed zeroes, infinities, Not-a-Numbers. (CompCert)

Native binary64 numbers in proofs. (CoqInterval)
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Formulas and Predicates

Input formulas for Gappa

∀x1, . . . , xk ∈ R, e1 ∈ I1 ∧ . . . ∧ en ∈ In ⇒ e ∈ ?O

with e1, . . . , en, e arithmetic expressions with rounding functions,
and I1, . . . , In intervals with numerical bounds.

Supported predicates

BND(x , I ) , x ∈ I ,

FIX(x , n) , ∃m ∈ Z, x = m · 2n,
FLT(x , n) , ∃m, e ∈ Z, x = m · 2e ∧ |m| < 2n,

REL(x̃ , x , I ) , ∃ε ∈ R, x̃ = x · (1 + ε) ∧ ε ∈ I

' BND((x̃ − x)/x , I ).
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Database of Theorems

Gappa’s process

Saturate the set of arithmetic facts using theorems,
until a fixed point is reached or a contradiction is found.

Some theorems known by Gappa

Real arithmetic: BND(u) ∧ BND(v)⇒ BND(u � v).

Rounding functions:
FIX(◦(u)), FLT(◦(u)), BND(◦(u)− u), REL(◦(u), u).

Error propagation: REL(u, v) ∧ REL(v ,w)⇒ REL(u,w);
REL(ũ, u)∧REL(ṽ , v)∧BND(u/(u+v))⇒ REL(ũ+ ṽ , u+v).
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REL(ũ, u)∧REL(ṽ , v)∧BND(u/(u+v))⇒ REL(ũ+ ṽ , u+v).
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User Hints

Newton iteration for yn → a−1

δn ← ◦(1− a · yn),

yn+1 ← ◦(yn + yn · δn).

Helping Gappa

1 Define ȳn+1 = yn + yn · (1− a · yn) and εn = (yn − a−1)/a−1.

2 State (ȳn+1 − a−1)/a−1 = −ε2
n.
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Some Formal Tools

Flocq: formalization for computer arithmetic.

Gappa: decision procedure for computer arithmetic.

Coquelicot: formalization of real analysis.

CoqInterval: decision procedure for real analysis.
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Applications

Order-2 discriminant; area of a
triangle; correctly-rounded average.

FastTwoSum, TwoSum;
error of an FMA.

Some elementary functions.

CompCert C compiler.

3-point numerical scheme
for the 1D wave equation.
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