Some Formal Tools for Computer Arithmetic: Flocq and Gappa

Sylvie Boldo, Guillaume Melquiond

Université Paris-Saclay, CNRS, ENS Paris-Saclay, Inria Laboratoire Méthodes Formelles

June 16, 2021

Supported by the European Research Council under the Horizon 2020 research and innovation programme (Grant agreement N°810367) and by the NuSCAP project of the French national research agency (ANR-20-CE48-0014).

Sylvie Boldo, Guillaume Melquiond

Some Formal Tools for Computer Arithmetic: Flocq and Gappa

Criteria

• Safety, e.g., access out of bounds, division by zero.

Criteria

- Safety, e.g., access out of bounds, division by zero.
- Arithmetic safety, e.g., round-off errors, unstable branching.

Criteria

- Safety, e.g., access out of bounds, division by zero.
- Arithmetic safety, e.g., round-off errors, unstable branching.
- Functional correctness, e.g., method error, correct rounding.

Criteria

- Safety, e.g., access out of bounds, division by zero.
- Arithmetic safety, e.g., round-off errors, unstable branching.
- Functional correctness, e.g., method error, correct rounding.

Approaches

• Validation, e.g., random sampling, code coverage, stochastic arithmetic.

Criteria

- Safety, e.g., access out of bounds, division by zero.
- Arithmetic safety, e.g., round-off errors, unstable branching.
- Functional correctness, e.g., method error, correct rounding.

Approaches

- Validation, e.g., random sampling, code coverage, stochastic arithmetic.
- Verification, e.g., abstract interpretation, model checking, deductive verification, formal proof.

Criteria

- Safety, e.g., access out of bounds, division by zero.
- Arithmetic safety, e.g., round-off errors, unstable branching.
- Functional correctness, e.g., method error, correct rounding.

Approaches

- Validation, e.g., random sampling, code coverage, stochastic arithmetic.
- Verification, e.g., abstract interpretation, model checking, deductive verification, formal proof.

Tools: Coq, Flocq, and Gappa

The Coq proof assistant

- A higher-order specification language to state theorems.
- A tactic language to interactively build proofs of theorems.
- A kernel to check that proofs are well-formed.

3/16

Tools: Coq, Flocq, and Gappa

The Coq proof assistant

- A higher-order specification language to state theorems.
- A tactic language to interactively build proofs of theorems.
- A kernel to check that proofs are well-formed.

Flocq: a formalization for Coq

- Radix 2, 10, other.
- Fixed- and floating-point arithmetic.

Tools: Coq, Flocq, and Gappa

The Coq proof assistant

- A higher-order specification language to state theorems.
- A tactic language to interactively build proofs of theorems.
- A kernel to check that proofs are well-formed.

Flocq: a formalization for Coq

- Radix 2, 10, other.
- Fixed- and floating-point arithmetic.

Gappa: decision procedure for computer arithmetic

- Analysis of ranges and round-off errors.
- Generation of formal proofs for Coq.

Outline

Outline

2 Flocq

- Formats
- Axiomatic rounding
- Effective computations

3 Gappa

5/16

Formats

The most generic formats

Formats are just subsets of real numbers, $\mathbb{F} \subseteq \mathbb{R}$, with a few properties that ensure rounding can be defined.

Formats

The most generic formats

Formats are just subsets of real numbers, $\mathbb{F} \subseteq \mathbb{R}$, with a few properties that ensure rounding can be defined.

Radix and canonical exponents

A format is characterized by a radix β and a function $\varphi \in \mathbb{Z} \to \mathbb{Z}$: $x \in \mathbb{F}_{\varphi} \Leftrightarrow \exists m \in \mathbb{Z}, \ x = m \cdot \beta^{\varphi(e_x)}$ with e_x such that $|x| \in [\beta^{e_x-1}; \beta^{e_x}]$.

Formats

The most generic formats

Formats are just subsets of real numbers, $\mathbb{F} \subseteq \mathbb{R}$, with a few properties that ensure rounding can be defined.

Radix and canonical exponents

A format is characterized by a radix β and a function $\varphi \in \mathbb{Z} \to \mathbb{Z}$: $x \in \mathbb{F}_{\varphi} \Leftrightarrow \exists m \in \mathbb{Z}, \ x = m \cdot \beta^{\varphi(e_x)}$ with e_x such that $|x| \in [\beta^{e_x - 1}; \beta^{e_x}]$.

Some classical formats

- Fixed-point: $\varphi_{FIX}(e) = e_{\min}$.
- Float with gradual underflow: $\varphi_{\mathsf{FLT}}(e) = \max(e p, e_{\min})$.

Axiomatic Rounding

Rounding as relations

The rounding in \mathbb{F} of $x \in \mathbb{R}$ toward $-\infty$ is $f \in \mathbb{R}$ iff $(f \in \mathbb{F}) \land (f \leq x) \land (\forall g \in \mathbb{R}, g \in \mathbb{F} \Rightarrow g \leq x \Rightarrow g \leq f).$

Axiomatic Rounding

Rounding as relations

The rounding in \mathbb{F} of $x \in \mathbb{R}$ toward $-\infty$ is $f \in \mathbb{R}$ iff $(f \in \mathbb{F}) \land (f \leq x) \land (\forall g \in \mathbb{R}, g \in \mathbb{F} \Rightarrow g \leq x \Rightarrow g \leq f).$

Rounding as functions

Rounding of x toward $-\infty$:

$$\nabla(x) = \lfloor x \cdot \beta^{-\varphi(e_x)} \rfloor \cdot \beta^{\varphi(e_x)}$$

Axiomatic Rounding

Rounding as relations

The rounding in \mathbb{F} of $x \in \mathbb{R}$ toward $-\infty$ is $f \in \mathbb{R}$ iff $(f \in \mathbb{F}) \land (f \leq x) \land (\forall g \in \mathbb{R}, g \in \mathbb{F} \Rightarrow g \leq x \Rightarrow g \leq f).$

Rounding as functions

Rounding of x toward $-\infty$:

$$\nabla(x) = \lfloor x \cdot \beta^{-\varphi(e_x)} \rfloor \cdot \beta^{\varphi(e_x)}$$

Some simple properties

•
$$x \notin \mathbb{F}_{\varphi} \Rightarrow \triangle(x) = \bigtriangledown(x) + \mathsf{ulp}(x)$$
 with $\mathsf{ulp}(x) = \beta^{\varphi(\mathsf{e}_x)}$

•
$$|\circ^{\tau}(x) - x| \leq \frac{1}{2} \operatorname{ulp}(\circ^{\tau}(x)).$$

A few Theorems of Flocq

• Sterbenz' lemma.

A few Theorems of Flocq

- Sterbenz' lemma.
- Error-free transformations for +, ×, ÷, $\sqrt{\cdot}$, e.g., $x \in \mathbb{F} \Rightarrow x - (\circ^{\tau}(\sqrt{x}))^2 \in \mathbb{F}$ for \mathbb{F} without underflow.

A few Theorems of Flocq

- Sterbenz' lemma.
- Error-free transformations for +, ×, ÷, $\sqrt{\cdot}$, e.g., $x \in \mathbb{F} \Rightarrow x - (\circ^{\tau}(\sqrt{x}))^2 \in \mathbb{F}$ for \mathbb{F} without underflow.
- Innocuous double rounding, even in presence of underflow: $x, y \in \mathbb{F}_p \Rightarrow \circ_p^{\tau_1}(\circ_{p'}^{\tau_2}(x/y)) = \circ_p^{\tau_1}(x/y)$ with $2p \le p'$.

Effective Computations

• Effective algorithms for division and square root.

Effective Computations

- Effective algorithms for division and square root.
- Signed zeroes, infinities, Not-a-Numbers.

(CompCert)

(CogInterval)

9/16

Effective Computations

- Effective algorithms for division and square root.
- Signed zeroes, infinities, Not-a-Numbers. (CompCert)
- Native binary64 numbers in proofs.

Outline

2 Flocq

Gappa

- Formulas and predicates
- Database of theorems
- User hints

Formulas and Predicates

Input formulas for Gappa

 $\forall x_1,\ldots,x_k\in\mathbb{R},\ e_1\in I_1\wedge\ldots\wedge e_n\in I_n\Rightarrow e\in \ree$

with e_1, \ldots, e_n, e arithmetic expressions with rounding functions, and I_1, \ldots, I_n intervals with numerical bounds.

Formulas and Predicates

Input formulas for Gappa

$$\forall x_1,\ldots,x_k\in\mathbb{R},\ e_1\in I_1\wedge\ldots\wedge e_n\in I_n\Rightarrow e\in \ree$$

with e_1, \ldots, e_n , e arithmetic expressions with rounding functions, and I_1, \ldots, I_n intervals with numerical bounds.

Supported predicates

$$\begin{array}{rcl} \mathsf{BND}(x,I) &\triangleq & x \in I, \\ \mathsf{FIX}(x,n) &\triangleq & \exists m \in \mathbb{Z}, \ x = m \cdot 2^n, \\ \mathsf{FLT}(x,n) &\triangleq & \exists m, e \in \mathbb{Z}, x = m \cdot 2^e \wedge |m| < 2^n, \\ \mathsf{REL}(\tilde{x},x,I) &\triangleq & \exists \varepsilon \in \mathbb{R}, \ \tilde{x} = x \cdot (1+\varepsilon) \wedge \varepsilon \in I \\ &\simeq & \mathsf{BND}((\tilde{x}-x)/x,I). \end{array}$$

Gappa's process

Saturate the set of arithmetic facts using theorems, until a fixed point is reached or a contradiction is found.

Gappa's process

Saturate the set of arithmetic facts using theorems, until a fixed point is reached or a contradiction is found.

Some theorems known by Gappa

• Real arithmetic: $BND(u) \wedge BND(v) \Rightarrow BND(u \diamond v)$.

Gappa's process

Saturate the set of arithmetic facts using theorems, until a fixed point is reached or a contradiction is found.

Some theorems known by Gappa

- Real arithmetic: $BND(u) \land BND(v) \Rightarrow BND(u \diamond v)$.
- Rounding functions:
 FIX(○(u)), FLT(○(u)), BND(○(u) u), REL(○(u), u).

12/16

Gappa's process

Saturate the set of arithmetic facts using theorems, until a fixed point is reached or a contradiction is found.

Some theorems known by Gappa

- Real arithmetic: $BND(u) \wedge BND(v) \Rightarrow BND(u \diamond v)$.
- Rounding functions:
 FIX(○(u)), FLT(○(u)), BND(○(u) u), REL(○(u), u).
- Error propagation: $\mathsf{REL}(u, v) \land \mathsf{REL}(v, w) \Rightarrow \mathsf{REL}(u, w);$ $\mathsf{REL}(\tilde{u}, u) \land \mathsf{REL}(\tilde{v}, v) \land \mathsf{BND}(u/(u+v)) \Rightarrow \mathsf{REL}(\tilde{u}+\tilde{v}, u+v).$

User Hints

Newton iteration for $y_n \rightarrow a^{-1}$

$$\begin{aligned} \delta_n &\leftarrow \circ (1 - \mathbf{a} \cdot \mathbf{y}_n), \\ \mathbf{y}_{n+1} &\leftarrow \circ (\mathbf{y}_n + \mathbf{y}_n \cdot \delta_n). \end{aligned}$$

User Hints

Newton iteration for $y_n \rightarrow a^{-1}$

$$\begin{aligned} \delta_n &\leftarrow \circ (1 - a \cdot y_n), \\ y_{n+1} &\leftarrow \circ (y_n + y_n \cdot \delta_n). \end{aligned}$$

Helping Gappa

• Define $\bar{y}_{n+1} = y_n + y_n \cdot (1 - a \cdot y_n)$ and $\varepsilon_n = (y_n - a^{-1})/a^{-1}$. • State $(\bar{y}_{n+1} - a^{-1})/a^{-1} = -\varepsilon_n^2$.

Outline

2 Flocq

- Tools
- Applications

Some Formal Tools

- Flocq: formalization for computer arithmetic.
- Gappa: decision procedure for computer arithmetic.
- Coquelicot: formalization of real analysis.
- CoqInterval: decision procedure for real analysis.

Tools Applications

Applications

- Order-2 discriminant; area of a triangle; correctly-rounded average.
- FastTwoSum, TwoSum; error of an FMA.
- Some elementary functions.
- CompCert C compiler.
- 3-point numerical scheme for the 1D wave equation.

Computer Arithmetic and Formal Proofs

Sylvie Boldo and Guillaume Melquiond

Verifying Floating-point Algorithms with the Coq System

