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Université Paris-Saclay, CNRS, ENS Paris-Saclay, Inria
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Implementing a Mathematical Library

Traditional approach: the case of exp x

1 Argument reduction: x ' t + (k/N) log 2 with k ∈ Z.

2 Polynomial approx: exp t '
∑

i pi · t i for |t| ≤ log 2/(2N).

3 Result reconstruction: exp x ' 2k/N · exp t.

The GNU libc implementation

p0 = 1 + ck with 0 ≤ k < N = 128
p1 = 1
p2 = 0x1.ffffffffffdbdp− 2 6' 1/2
p3 = 0x1.555555555543cp− 3 6' 1/6
p4 = 0x1.55555cf172b91p− 5 6' 1/24
p5 = 0x1.1111167a4d017p− 7 6' 1/120

How to check the quality of a polynomial?

By plotting the error between the polynomial and the function.
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Plotting the Error: What the Developer Hopes for
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Plotting the Error: What the Developer Gets (Gnuplot)
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Plotting the Error: What the Developer Gets (SageMath)

One cannot use a floating-
point plotter to help devise
a floating-point algorithm.
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Accuracy is not the Only Issue

sin(x) for x ∈ [0; 3141]

How to sample?

Gnuplot: 150 points

Matplotlib: 200 points

Sollya: 501 points + noise
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Introduction

Current situation

When plotting, computer algebra systems might fall short.

Accuracy might not be sufficient.

Sampling might miss some features.

Bugs might occur.

Objectives

1 Formally characterize what a correct plot is.

2 Devise an efficient algorithm and formally verify it.

3 Execute it inside the logic of the Coq proof assistant.

4 Try to make it usable.
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Plotting with Coq

From Coq Require Import Reals.
From Interval Require Import Plot Tactic.
Open Scope R_scope.

Definition g := ltac:(plot
(fun x => (1 + x +

9007199254740413 * powerRZ 2 (-54) * x^2 +
1501199875790095 * powerRZ 2 (-53) * x^3 +
6004801545907089 * powerRZ 2 (-57) * x^4 +
4803841055051799 * powerRZ 2 (-59) * x^5)

- exp x)
(-ln 2 / 256) (ln 2 / 256) (* domain *)
with (i_prec 90)). (* precision *)

Plot g.
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Outline

1 Introduction

2 Plot correctness

3 Computing the graph

4 Conclusion
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2 Plot correctness
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Coq formalization

3 Computing the graph
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Some Concepts

A function plot is. . .

correct if blank pixels are not traversed by the function graph;

complete if filled pixels are traversed by the function graph.

We will guarantee correctness and strive for completeness.
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Some Preexisting Work

O’Connor, 2008, A computer verified theory of compact sets
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Coq Formalization of Correctness

Plots as lists of intervals

∀x ∈ Xi , f (x) ∈ `i with Xi = [ox + dx · i ; ox + dx · (i + 1)].

Internal definition
Definition plot1 (f : R -> R) (ox dx : R)

(l : list I.type) :=
forall i x, ox + dx * i <= x <= ox + dx * (i+1) ->
I.contains (nth i l I.nai) (f x).

Interface with the outer world
Definition plot2 (f : R -> R) (ox dx oy dy : R)

(h : Z) (l : list (Z * Z)) :=
forall i x, ox + dx * i <= x <= ox + dx * (i+1) ->
oy <= f x <= oy + dy * h ->
let r := nth i l (0, h) in
oy + dy * (fst r) <= f x <= oy + dy * (snd r).
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General Process

1 Reify ox , dx , and f .

2 Reify oy and dy , or compute tentative values by sampling f .

3 Compute a list ` of intervals that satisfies plot1.

4 Compute oy and dy , if not reified.

5 Convert ` to a list that satisfy plot2.

Plot of x 7→ x2 between 0 and 1, resolution 10× 100

A proof term of type

plot2 (fun x => x^2) 0 (820/8192)
( -5/16384) (665/65536) 100

((0, 2) :: (0, 5) :: (3, 9) :: (8, 16) :: (15, 25)
:: (24, 36) :: (35, 49) :: (48, 64) :: (62, 81)
:: (79, 100) :: nil)
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Plotting is no Harder than Integrating

How to integrate f between u and v?

1 Split [u; v ] into smaller subintervals Wk .

2 Compute a polynomial approximation (pk ,∆k) of f over Wk :
∀x ∈Wk , pk(x)− f (x) ∈ ∆k .

3 If ∆k is not thin enough, go back to step 1.

4 Integrate pk over Wk .

How to plot f between u and v?

4 Plot pk over Wk , one horizontal pixel at a time.
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How to Plot a Polynomial?

Interval arithmetic
1 Define interval operators such that
∀U,V ∈ I, ∀u, v ∈ R, u ∈ U ∧ v ∈ V ⇒ u � v ∈ U � V .

2 Compose them to compute Yi = pk(Xi ) + ∆k .

3 Deduce ∀x ∈ Xi , f (x) ∈ Yi from Xi ⊆Wk .

Could we have directly computed f (Xi)?

The resulting plot would have been useless,
because of the dependency effect of interval arithmetic.

With f (x) = (1 + x + ...)− exp x and W = [0.002697; 0.002708],

f (W )  [−1.06 · 10−5; 1.06 · 10−5],
p(W ) + ∆  [−2.11 · 10−20;−1.83 · 10−20].

Guillaume Melquiond Plotting in a Formally Verified Way 17 / 22



Introduction Correctness Plot Conclusion Integrals Intervals Polynomials

How to Plot a Polynomial?

Interval arithmetic
1 Define interval operators such that
∀U,V ∈ I, ∀u, v ∈ R, u ∈ U ∧ v ∈ V ⇒ u � v ∈ U � V .

2 Compose them to compute Yi = pk(Xi ) + ∆k .

3 Deduce ∀x ∈ Xi , f (x) ∈ Yi from Xi ⊆Wk .

Could we have directly computed f (Xi)?

The resulting plot would have been useless,
because of the dependency effect of interval arithmetic.

With f (x) = (1 + x + ...)− exp x and W = [0.002697; 0.002708],

f (W )  [−1.06 · 10−5; 1.06 · 10−5],
p(W ) + ∆  [−2.11 · 10−20;−1.83 · 10−20].

Guillaume Melquiond Plotting in a Formally Verified Way 17 / 22



Introduction Correctness Plot Conclusion Integrals Intervals Polynomials

How to Plot a Polynomial?

Interval arithmetic
1 Define interval operators such that
∀U,V ∈ I, ∀u, v ∈ R, u ∈ U ∧ v ∈ V ⇒ u � v ∈ U � V .

2 Compose them to compute Yi = pk(Xi ) + ∆k .

3 Deduce ∀x ∈ Xi , f (x) ∈ Yi from Xi ⊆Wk .

Could we have directly computed f (Xi)?

The resulting plot would have been useless,
because of the dependency effect of interval arithmetic.

With f (x) = (1 + x + ...)− exp x and W = [0.002697; 0.002708],

f (W )  [−1.06 · 10−5; 1.06 · 10−5],
p(W ) + ∆  [−2.11 · 10−20;−1.83 · 10−20].

Guillaume Melquiond Plotting in a Formally Verified Way 17 / 22



Introduction Correctness Plot Conclusion Integrals Intervals Polynomials

Plotting Using Polynomials

Trade-off:
high degree ⇒ costly polynomials
low degree ⇒ lots of polynomials
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User Interface

Tactic plot

Produce a proof term whose type denotes a correct plot.

plot f x1 x2 [y1 y2 ] [with options ]

Main options:

output resolution (default: 512× 384),

degree of polynomials (default: 10),

precision of computations (default: machine numbers).

Command Plot

Convert the type of a given term into a Gnuplot file and open it.

Plot p [as "file "].
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Raster or Vector Graphics?

The issue with bitmaps

It does not look that good in practice,
especially when zoomed in.

Solution: Pessimize the plot to make it vector-based
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Conclusion and Perspectives

This work

A formally verified plotting algorithm, run inside Coq.

Correct plots, but not always complete.

Fast enough to be usable in practice.

Long-term goal

Turn Coq into a computer algebra system.

CoqInterval

https://coqinterval.gitlabpages.inria.fr/
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