Plotting in a Formally Verified Way

Guillaume Melquiond

Université Paris-Saclay, CNRS, ENS Paris-Saclay, Inria Laboratoire Méthodes Formelles

May 24, 2021

Implementing a Mathematical Library

Traditional approach: the case of exp x

- Argument reduction: $x \simeq t + (k/N) \log 2$ with $k \in \mathbb{Z}$.
- **2** Polynomial approx: exp $t \simeq \sum_i p_i \cdot t^i$ for $|t| \le \log 2/(2N)$.
- Sesult reconstruction: $\exp x \simeq 2^{k/N} \cdot \exp t$.

Implementing a Mathematical Library

Traditional approach: the case of exp x

- Argument reduction: $x \simeq t + (k/N) \log 2$ with $k \in \mathbb{Z}$.
- **2** Polynomial approx: exp $t \simeq \sum_i p_i \cdot t^i$ for $|t| \le \log 2/(2N)$.
- Sesult reconstruction: $\exp x \simeq 2^{k/N} \cdot \exp t$.

The GNU libc implementation

=	$1 + c_k$	with $0 \le k < N = 128$
=	1	
=	0x1.ffffffffdbdp-2	eq 1/2
=	0x1.55555555543cp - 3	$ ot\simeq 1/6$
=	0x1.55555cf172b91p-5	$ ot\simeq 1/24$
=	0x1.1111167a4d017p-7	$ ot\simeq 1/120$
		$= 1 + c_k$ = 1 = 0x1.fffffffdbdp - 2 = 0x1.5555555543cp - 3 = 0x1.55555cf172b91p - 5 = 0x1.1111167a4d017p - 7

= 128

Implementing a Mathematical Library

Traditional approach: the case of exp x

- Argument reduction: $x \simeq t + (k/N) \log 2$ with $k \in \mathbb{Z}$.
- **2** Polynomial approx: exp $t \simeq \sum_i p_i \cdot t^i$ for $|t| \le \log 2/(2N)$.
- Sesult reconstruction: $\exp x \simeq 2^{k/N} \cdot \exp t$.

The GNU libc implementation

p_0	=	$1 + c_k$	with $0 \le k < \Lambda$
p_1	=	1	
p_2	=	0x1.fffffffdbdp-2	$ ot\simeq 1/2 $
p_3	=	0x1.55555555543cp-3	$ ot\simeq 1/6$
p_4	=	0x1.55555cf172b91p-5	$ ot\simeq 1/24$
p_5	=	0x1.1111167a4d017p-7	$ ot\simeq 1/120$

How to check the quality of a polynomial?

By plotting the error between the polynomial and the function.

Plotting the Error: What the Developer Hopes for

Plotting the Error: What the Developer Gets (Gnuplot)

Plotting the Error: What the Developer Gets (SageMath)

Plotting the Error: What the Developer Gets (SageMath)

Accuracy is not the Only Issue

sin(x) for $x \in [0; 3141]$

How to sample?

- Gnuplot: 150 points
- Matplotlib: 200 points
- Sollya: 501 points + noise

Introduction

Current situation

When plotting, computer algebra systems might fall short.

- Accuracy might not be sufficient.
- Sampling might miss some features.
- Bugs might occur.

Introduction

Current situation

When plotting, computer algebra systems might fall short.

- Accuracy might not be sufficient.
- Sampling might miss some features.
- Bugs might occur.

Objectives

- Formally characterize what a correct plot is.
- Oevise an efficient algorithm and formally verify it.
- S Execute it inside the logic of the Coq proof assistant.
- Try to make it usable.

Plotting with Coq

```
From Coq Require Import Reals.
From Interval Require Import Plot Tactic.
Open Scope R_scope.
Definition g := ltac:(plot
  (fun x => (1 + x +
    9007199254740413 * powerRZ 2 (-54) * x<sup>2</sup> +
    1501199875790095 * powerRZ 2 (-53) * x^3 +
    6004801545907089 * powerRZ 2 (-57) * x<sup>4</sup> +
    4803841055051799 * powerRZ 2 (-59) * x^5)
  - exp x)
  (-ln 2 / 256) (ln 2 / 256) (* domain *)
  with (i_prec 90)).
                                  (* precision *)
```

Plot g.

Plotting with Coq

Outline

- 2 Plot correctness
- 3 Computing the graph

Outline

2 Plot correctness

- Correct and complete plots
- Coq formalization
- 3 Computing the graph

4 Conclusion

Some Concepts

A function plot is...

- correct if blank pixels are not traversed by the function graph;
- complete if filled pixels are traversed by the function graph.

Some Concepts

A function plot is...

- correct if blank pixels are not traversed by the function graph;
- complete if filled pixels are traversed by the function graph.

We will guarantee correctness and strive for completeness.

Some Preexisting Work

Coq Formalization of Correctness

Plots as lists of intervals $\forall x \in X_i, f(x) \in \ell_i \text{ with } X_i = [ox + dx \cdot i; ox + dx \cdot (i+1)].$

Internal definition

Coq Formalization of Correctness

Plots as lists of intervals $\forall x \in X_i, f(x) \in \ell_i \text{ with } X_i = [ox + dx \cdot i; ox + dx \cdot (i+1)].$

Internal definition

Interface with the outer world

General Process

- **1** Reify ox, dx, and f.
- 2 Reify oy and dy, or compute tentative values by sampling f.
- **③** Compute a list ℓ of intervals that satisfies plot1.
- Compute oy and dy, if not reified.
- **(**) Convert ℓ to a list that satisfy plot2.

General Process

- Reify ox, dx, and f.
- 2 Reify oy and dy, or compute tentative values by sampling f.
- **③** Compute a list ℓ of intervals that satisfies plot1.
- Compute *oy* and *dy*, if not reified.
- **6** Convert ℓ to a list that satisfy plot2.

```
Plot of x \mapsto x^2 between 0 and 1, resolution 10 \times 100
A proof term of type
plot2 (fun x => x^2) 0 (820/8192)
(-5/16384) (665/65536) 100
((0, 2) :: (0, 5) :: (3, 9) :: (8, 16) :: (15, 25)
:: (24, 36) :: (35, 49) :: (48, 64) :: (62, 81)
:: (79, 100) :: nil)
```

Outline

- 2 Plot correctness
- 3 Computing the graph
 - Definite integrals
 - Interval arithmetic
 - Polynomials

Plotting is no Harder than Integrating

How to integrate f between u and v?

- Split [u; v] into smaller subintervals W_k .
- ② Compute a polynomial approximation (p_k, Δ_k) of f over W_k : ∀ $x \in W_k$, $p_k(x) - f(x) \in \Delta_k$.
- If Δ_k is not thin enough, go back to step 1.
- Integrate p_k over W_k .

Plotting is no Harder than Integrating

How to integrate f between u and v?

- Split [u; v] into smaller subintervals W_k .
- ② Compute a polynomial approximation (p_k, Δ_k) of f over W_k : ∀ $x \in W_k$, $p_k(x) - f(x) \in \Delta_k$.
- If Δ_k is not thin enough, go back to step 1.
- Integrate p_k over W_k .

How to plot f between u and v?

• Plot p_k over W_k , one horizontal pixel at a time.

How to Plot a Polynomial?

Interval arithmetic

- Define interval operators such that $\forall U, V \in \mathbb{I}, \forall u, v \in \mathbb{R}, u \in U \land v \in V \Rightarrow u \diamond v \in U \diamond V.$
- **2** Compose them to compute $Y_i = p_k(X_i) + \Delta_k$.
- **O** Deduce $\forall x \in X_i, f(x) \in Y_i$ from $X_i \subseteq W_k$.

How to Plot a Polynomial?

Interval arithmetic

- Define interval operators such that $\forall U, V \in \mathbb{I}, \ \forall u, v \in \mathbb{R}, \ u \in U \land v \in V \Rightarrow u \diamond v \in U \diamond V.$
- **2** Compose them to compute $Y_i = p_k(X_i) + \Delta_k$.
- **O** Deduce $\forall x \in X_i, f(x) \in Y_i$ from $X_i \subseteq W_k$.

Could we have directly computed $f(X_i)$?

The resulting plot would have been useless, because of the dependency effect of interval arithmetic.

With
$$f(x) = (1 + x + ...) - \exp x$$
 and $W = [0.002697; 0.002708]$,
 $f(W) \quad \rightsquigarrow \quad [-1.06 \cdot 10^{-5}; 1.06 \cdot 10^{-5}]$,
 $p(W) + \Delta \quad \rightsquigarrow \quad [-2.11 \cdot 10^{-20}; -1.83 \cdot 10^{-20}]$.

How to Plot a Polynomial?

Interval arithmetic

- Define interval operators such that $\forall U, V \in \mathbb{I}, \ \forall u, v \in \mathbb{R}, \ u \in U \land v \in V \Rightarrow u \diamond v \in U \diamond V.$
- **2** Compose them to compute $Y_i = p_k(X_i) + \Delta_k$.
- **O** Deduce $\forall x \in X_i, f(x) \in Y_i$ from $X_i \subseteq W_k$.

Could we have directly computed $f(X_i)$?

The resulting plot would have been us because of the dependency effect of in

With
$$f(x) = (1 + x + ...) - \exp x$$
 and
 $f(W) \quad \rightsquigarrow \quad [-1.06 \cdot 10^{-5}; 1.06 + p(W) + \Delta \quad \rightsquigarrow \quad [-2.11 \cdot 10^{-20}; -1.8]$

Plotting Using Polynomials

Outline

- 2 Plot correctness
- 3 Computing the graph

User Interface

Tactic plot

Produce a proof term whose type denotes a correct plot.

plot f x1 x2 [y1 y2] [with options]

Main options:

- output resolution (default: 512×384),
- degree of polynomials (default: 10),
- precision of computations (default: machine numbers).

Command Plot

Convert the type of a given term into a Gnuplot file and open it. Plot p [as "file"].

Raster or Vector Graphics?

The issue with bitmaps

It does not look that good in practice, especially when zoomed in.

Solution: Pessimize the plot to make it vector-based

Conclusion and Perspectives

This work

- A formally verified plotting algorithm, run inside Coq.
- Correct plots, but not always complete.
- Fast enough to be usable in practice.

Conclusion and Perspectives

This work

- A formally verified plotting algorithm, run inside Coq.
- Correct plots, but not always complete.
- Fast enough to be usable in practice.

Long-term goal

Turn Coq into a computer algebra system.

CoqInterval

https://coqinterval.gitlabpages.inria.fr/