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Abstract
We present a call-by-need λ-calculus that enables strong reduction (that is, reduction inside the
body of abstractions) and guarantees that arguments are only evaluated if needed and at most once.
This calculus uses explicit substitutions and subsumes the existing strong-call-by-need strategy, but
allows for more reduction sequences, and often shorter ones, while preserving the neededness.

The calculus is shown to be normalizing in a strong sense: Whenever a λ-term t admits a normal
form n in the λ-calculus, then any reduction sequence from t in the calculus eventually reaches
a representative of the normal form n. We also exhibit a restriction of this calculus that has the
diamond property and that only performs reduction sequences of minimal length, which makes it
systematically better than the existing strategy. We have used the Abella proof assistant to formalize
part of this calculus, and discuss how this experiment affected its design.
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1 Introduction

Lambda-calculus is seen as the standard model of computation in functional programming
languages, once equipped with an evaluation strategy [26]. The most famous evaluation
strategies are call-by-value, which eagerly evaluates the arguments of a function before
resolving the function call, call-by-name, where the arguments of a function are evaluated
when they are needed, and call-by-need [28, 5], which extends call-by-name with a memoization
or sharing mechanism to remember the value of an argument that has already been evaluated.

The strength of call-by-name is that it only evaluates terms whose value is effectively
needed, at the (possibly huge) cost of evaluating some terms several times. Conversely, the
strength and weakness of call-by-value (by far the most used strategy in actual programming
languages) is that it evaluates each function argument exactly once, even when its value is
not actually needed and when its evaluation does not terminate. At the cost of memoization,
call-by-need combines the benefits of call-by-value and call-by-name, by only evaluating
needed arguments and evaluating them only once.

A common point of these strategies is that they are concerned with evaluation, that is
computing values. As such they operate in the subset of λ-calculus called weak reduction, in
which there is no reduction inside λ-abstractions, the latter being already considered to be
values. Some applications however, such as proof assistants or partial evaluation, require
reducing inside λ-abstractions, and possibly aiming for the actual normal form of a λ-term.

The first known abstract machine computing the normal form of a term is due to
Crégut [16] and implements normal order reduction. More recently, several lines of work
have transposed the known evaluation strategies to strong reduction strategies or abstract
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9:2 A strong call-by-need calculus

machines: call-by-value [19, 10, 3], call-by-name [1], and call-by-need [9, 11]. Some non-
advertised strong extensions of call-by-name or call-by-need can also be found in the internals
of proof assistants, notably Coq.

These strong strategies are mostly conservative over their underlying weak strategy, and
often proceed by iteratively applying a weak strategy to open terms. In other words, they use
a restricted form of strong reduction to enable reduction to normal form, but do not try to
take advantage of strong reduction to obtain shorter reduction sequences. Since call-by-need
has been shown to capture optimal weak reduction [8], it is known that the deliberate use of
strong reduction [20] is the only way of allowing shorter reduction sequences.

This paper presents a strong call-by-need calculus, which obeys the following guidelines.
First, it only reduces needed redexes. Second, it keeps a level of sharing at least equal to
that of call-by-value and call-by-need. Third, it tries to enable strong reduction as generally
as possible. This calculus builds on the syntax and a part of the meta-theory of λ-calculus
with explicit substitutions, which we recall in Section 2.

Neededness of a redex is undecidable in general, thus the first and third guidelines are
antagonist. Section 3 resolves this tension by exposing a simple syntactic criterion capturing
more needed redexes than what is already used in call-by-need strategies. Through reducing
only needed redexes, our calculus enjoys a normalization preservation theorem that is stronger
than usual: Any λ-term that is weakly normalizing in the pure λ-calculus (there is at least
one reduction sequence to a normal form, but some other sequences may diverge) will be
strongly normalizing in our calculus (any reduction sequence is normalizing). This strong
normalization theorem, related to the usual completeness results of call-by-name or call-by-
need strategies, is completely dealt with using a system of non-idempotent intersection types.
This avoids the traditional tedious syntactic commutation lemmas, hence providing more
elegant proofs. This is an improvement over the technique used in previous works [22, 9].

While our calculus contains the strong call-by-need strategy introduced in [9], it also
allows more liberal call-by-need strategies that anticipate some strong reduction steps in
order to reduce the overall length of the reduction to normal form. Section 4 presents a
restriction of the calculus that guarantees reduction sequences of minimal length.

Finally, Section 5 presents a formalization of parts of our results in Abella [6]. Beyond the
proof safety provided by such a tool, this formalization has also influenced the design of our
strong call-by-need calculus itself in a positive way. In particular, it promoted a presentation
based on SOS-style local reduction rules [27], which later became a lever for a more efficient
use of non-idempotent intersection types. The formalization can be found at the following
address: https://hal.inria.fr/hal-03149692.

2 The host calculus λc

Our strong call-by-need calculus is included in an already known calculus λc, that serves as
a technical tool in [9] and which we name our host calculus. This calculus gives the general
shape of reduction rules allowing memoization and comes with a system of non-idempotent
intersection types. Its reduction however is not constrained by any notion of neededness.

The λc-calculus uses the following syntax of λ-terms with explicit substitutions, which is
isomorphic to the original syntax of the call-by-need calculus using let-bindings [5].

t ∈ Λc ::= x | λx.t | t t | t[x\t]

The free variables fv(t) of a term t are defined as usual. We call pure λ-term a term that
contains no explicit substitution. We write C for a context, i.e., a term with exactly one
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hole □, and L for a context with the specific shape □[x1\t1] . . . [xn\tn] (n ⩾ 0). We write C[t]
for the term obtained by plugging the subterm t in the hole of the context C (with possible
capture of free variables of t by binders in C), or tL when the context is of the specific
shape L. We also write CJtK for plugging a term t whose free variables are not captured by C.
The values we consider are λ-abstractions.

Reduction in λc is defined by the following three reduction rules, applied in any context.
Rather than using traditional propagation rules for explicit substitutions [21], it builds on
the Linear Substitution Calculus [25, 4, 2] which is more similar to the let-in constructs
commonly used for defining call-by-need.

(λx.t)L u →dB t[x\u]L
CJxK[x\vL] →lsv CJvK[x\v]L with v value

t[x\u] →gc t with x ̸∈ fv(t)

The rule →dB describes β-reduction “at a distance”. It applies to a β-redex whose λ-
abstraction is possibly hidden by a list of explicit substitutions. This rule is a combination
of a single use of β-reduction with a repeated use of the structural rule lifting the explicit
substitutions at the left of an application. The rule →lsv describes the linear substitution
of a value, i.e., the substitution of one occurrence of the variable x bound by an explicit
substitution. It has to be understood as a lookup operation. Similarly to →dB, this rule
embeds a repeated use of a structural rule for unnesting explicit substitutions. Note that this
calculus only allows the substitution of λ-abstractions, and not of variables as it is sometimes
seen [24]. This restricted behavior is enough for the main results of this paper, and will
allow a more compact presentation. Finally, the rule →gc describes garbage collection of an
explicit substitution for a variable that does not live anymore. Reduction by any of these
rules in any context is written t →c u.

A term t of λc is related to a pure λ-term t⋆ by the unfolding operation which applies all
the explicit substitutions. We write t{x\u} for the meta-level substitution of x by u in t.

x⋆ = x (t u)⋆ = t⋆ u⋆

(λx.t)⋆ = λx.(t⋆) (t[x\u])⋆ = (t⋆){x\u⋆}

Through unfolding, any reduction step t →c u in λc is related to a sequence of reductions
t⋆ →∗

β u⋆ in the pure λ-calculus.
The host calculus λc comes with a system of non-idempotent intersection types [15, 18],

defined in [23] by adding explicit substitutions to an original system from [18]. A type τ

may be a type variable α or an arrow type M → τ , where M is a multiset {{σ1, . . . , σn}} of
types. A typing environment Γ associates to each variable in its domain a multiset of types.
This multiset contains one type for each potential use of the variable, and may be empty
if the variable is not actually used. A typing judgment Γ ⊢ t : τ assigns exactly one type
to the term t. As shown by the typing rules in Fig. 1, an argument of an application or of
an explicit substitution may be typed several times in a derivation. Note that, in the rules,
the subscript σ ∈ M quantifies on all the instances of elements in the multiset M. This
type system is known to characterize λ-terms that are weakly normalizing for β-reduction, if
associated with the side condition that the empty multiset {{}} does not appear at a positive
position in the typing judgment. Posititive type occurrences T+(Γ ⊢ t : τ) and negative type
occurrences T−(Γ ⊢ t : τ) of a typing judgment are defined by the following equations.

T+(α) = {α} T−(α) = ∅
T+(M) = {M} ∪

⋃
σ∈M T+(σ) T−(M) =

⋃
σ∈M T−(σ)

T+(M → σ) = {M → σ} ∪ T−(M) ∪ T+(σ) T−(M → σ) = T+(M) ∪ T−(σ)
T+(Γ ⊢ t : σ) = T+(σ) ∪

⋃
x∈dom(Γ) T−(Γ(x))

FSCD 2021



9:4 A strong call-by-need calculus

ty-var

x : {{σ}} ⊢ x : σ

ty-@
Γ ⊢ t : M → τ (∆σ ⊢ u : σ)σ∈M

Γ +
∑

σ∈M ∆σ ⊢ t u : τ

ty-λ
Γ; x : M ⊢ t : τ

Γ ⊢ λx.t : M → τ

ty-es
Γ; x : M ⊢ t : τ (∆σ ⊢ u : σ)σ∈M

Γ +
∑

σ∈M ∆σ ⊢ t[x\u] : τ

Figure 1 Typing rules for λc

▶ Theorem 1 (Typability [17, 12]). If the pure λ-term t is weakly normalizing for β-reduction,
then there is a typing judgment Γ ⊢ t : τ such that {{}} ̸∈ T+(Γ ⊢ t : τ).

A typing derivation Φ for a typing judgment Γ ⊢ t : τ (written Φ ▷ Γ ⊢ t : τ) defines in t a
set of typed positions, which are the positions of the subterms of t for which the derivation Φ
contains a subderivation. More precisely:

ε is a typed position for any derivation;
if Φ ends with rule ty-λ, ty-@ or ty-es, then 0p is a typed position of Φ if p is a typed
position of the subderivation Φ′ relative to the first premise;
if Φ ends with rule ty-@ or ty-es, then 1p is a typed position of Φ if p is a typed position
of the subderivation Φ′ relative to one of the instances of the second premise.

Note that, in the latter case, there is no instance of the second premise and no typed position
1p when the multiset M is empty. On the contrary, when M has several elements, we get
the union of the typed positions contributed by each instance.

These typed positions have an important property; they satisfy a weighted subject
reduction theorem ensuring a decreasing derivation size, which we will use in the next section.
We call size of a derivation Φ the number of nodes of the derivation tree.

▶ Theorem 2 (Weighted subject reduction [9]). If Φ ▷ Γ ⊢ t : τ and t →c t′ by reduction of
a redex at a typed position, then there is a derivation Φ′ ▷ Γ ⊢ t′ : τ with Φ′ smaller than Φ.

3 Strong call-by-need calculus λsn

Our strong call-by-need calculus is defined by the same terms and reduction rules as λc,
with restrictions on where the reduction rules can be applied. These restrictions ensure in
particular that only the needed redexes are reduced. Notice that gc-reduction is never needed
in this calculus and will thus be ignored from now on.

3.1 Reduction in λsn

The main reduction relation is written t →sn t′ and represents one step of dB or lsv reduction
at an eligible position of the term t. The starting point is the same as the one for the original
(weak) call-by-need calculus. Since the argument of a function is not always needed, we do
not reduce in advance the right part of an application t u. Instead, we first evaluate t to an
answer (λx.t′)L, then apply a dB-reduction to put the argument u in the environment of t′,
and then go on with the resulting term t′[x\u]L, evaluating u only if and when it is required.
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Strong reduction. The previous principle is enough for weak reduction, but new behaviors
appear with strong reduction. For instance, consider the top-level term λx.x t u. It is
an abstraction, which would not need to be further evaluated in weak call-by-need. Here
however, we have to reduce it further to reach its putative normal form. So, let us gather
some knowledge on the term. Given its position, we know that this abstraction will never be
applied to an argument. This means in particular that its variable x will never be substituted
by anything; it is blocked and is now part of the rigid structure of the term. Following [9],
we say that variable x is frozen. As for the arguments t and u given to the frozen variable x,
they will always remain at their respective positions and their neededness is guaranteed. So,
the calculus allows their reduction. Moreover, these subterms t and u will never be applied
to other subterms; they are in top-level-like positions and can be treated as independent
terms. In particular, assuming that the top-level term is λx.x (λy.t′) u (that is, t is the
abstraction λy.t′), the variable y will never be substituted and both variables x and y can be
seen as frozen in the subterm t′.

Let us now consider the top-level term (λx.x (λy.t′) u) v, i.e., the previous one applied
to some argument v. The analysis becomes radically different. Indeed, both abstractions in
this term are at positions where they may eventually interact with other parts of the term:
(λx . . .) is already applied to an argument, while (λy.t′) might eventually be substituted at
some position inside v whose properties are not yet known. Thus, none of the abstractions
is at a top-level-like position and we cannot rule out the possibility that some occurrences
of x or y become substituted eventually. Consequently, neither x nor y can be considered
as frozen. In addition, notice that the subterms λy.t′ and u are not even guaranteed to be
needed in (λx.x (λy.t′) u) v. Thus our calculus shall not allow them to be reduced yet.

Therefore, the set of top-level-like positions of a subterm t, and more importantly the set
of its positions that are eligible for reduction largely depend on the context surrounding t.
Consequently, the bulk of the definition of t →sn t′ is an inductive relation t

ρ,φ,µ−−−→sn t′ that
plays two roles: identifying a position where a reduction rule can be applied in t, depending
on some outer context information, and performing said reduction. The information on the
context is abstracted by two parameters of the inductive relation:

a flag µ indicating whether t is at a top-level-like position (⊤) or not (⊥);
the set φ of variables that are frozen at the considered position.

The flow of this information along the inductive rules is a critical aspect of the definitions.
Since the identification of positions that are eligible for reduction does not depend on the

choice of the rule dB or lsv, the inductive reduction relation is also parametric with respect to
the rule. This is the role of the parameter ρ of ρ,φ,µ−−−→sn, whose value can be dB, lsv, or others
that we will introduce shortly. Thus, the top-level reduction relation t →sn t′ holds whenever
t

dB,φ,⊤−−−−→sn t′ or t
lsv,φ,⊤−−−−→sn t′, where the flag µ is ⊤, and the set φ is typically empty when t

is closed, or contains the free variables of t otherwise.

Inductive rules. The inference rules for ρ,φ,µ−−−→sn are given in Fig. 3. Notice that information
about φ and µ flow outside-in, that is from top-level to the position of the reduction, or
equivalently upward in the inference rules, while ρ flows the other way. Notice also that in
this paper, we define top-level-like positions and frozen variables only through these inductive
rules.

Rule @-left makes reduction always possible on the left of an application, but as shown
by the premise this position is not a ⊤ position. Rule @-right on the other hand allows
reducing on the right of an application, and even doing so in ⊤ mode, but only when the
application is led by a frozen variable.

FSCD 2021



9:6 A strong call-by-need calculus

x ∈ φ

x ∈ Sφ

t ∈ Sφ

t u ∈ Sφ

t ∈ Sφ

t[x\u] ∈ Sφ

t ∈ Sφ∪{x} u ∈ Sφ

t[x\u] ∈ Sφ

Figure 2 Structures of λsn.

@-left
t

ρ,φ,⊥−−−−→sn t′

t u
ρ,φ,µ−−−→sn t′ u

@-right
t ∈ Sφ u

ρ,φ,⊤−−−−→sn u′

t u
ρ,φ,µ−−−→sn t u′

λ-top
t

ρ,φ∪{x},⊤−−−−−−−→sn t′

λx.t
ρ,φ,⊤−−−−→sn λx.t′

λ-bot
t

ρ,φ,⊥−−−−→sn t′

λx.t
ρ,φ,⊥−−−−→sn λx.t′

es-left
t

ρ,φ,µ−−−→sn t′

t[x\u] ρ,φ,µ−−−→sn t′[x\u]

es-left-φ

t
ρ,φ∪{x},µ−−−−−−−→sn t′ u ∈ Sφ

t[x\u] ρ,φ,µ−−−→sn t′[x\u]

es-right
t

idx,φ,µ−−−−→sn t u
ρ,φ,⊥−−−−→sn u′

t[x\u] ρ,φ,µ−−−→sn t[x\u′]

id

x
idx,φ,µ−−−−→sn x

sub

x
subx\v,φ,µ
−−−−−−−→sn v

dB
t →db t′

t
dB,φ,µ−−−−→sn t′

lsv
t

φ,µ−−→lsv t′

t
lsv,φ,µ−−−−→sn t′

Figure 3 Reduction rules for λsn.

The latter criterion is made formal through the notion of structure, which is an application
x t1 . . . tn led by a frozen variable x, possibly interlaced with explicit substitutions (Fig. 2).
As implied by the last rule in Fig. 2, an explicit substitution in a structure may even affect
the leading variable, provided that the content of the substitution is itself a structure. We
write Sφ the set of structures under a set φ of frozen variables. It differs from the notion
in [9] in that it does not require the term to be in normal form.

Notice that frozen variables in a term t are either free variables of t, or variables introduced
by binders in t. As such they obey the usual renaming conventions. In particular, the third
and fourth rules in Fig. 2 implicitly require that the variable x bound by the explicit
substitution is fresh and hence not in the set φ. We keep this freshness convention in all the
definitions of the paper.

Rules λ-top and λ-bot make reduction always possible inside a λ-abstraction, i.e.,
unconditional strong reduction. If the abstraction is in a ⊤ position, its variable is added to
the set of frozen variables while reducing the body of the abstraction. Rules es-left and
es-left-φ show that it is always possible to reduce a term affected by an explicit substitution.
If the substitution contains a structure, the variable bound by the substitution can be added
to the set of frozen variables. Rule es-right restricts reduction inside a substitution to the
case where an occurrence of the substituted variable is at a reducible position. It uses an
auxiliary rule idx, which propagates using the same inductive reduction relation, to probe a
term for the presence of some variable x at a reduction position. By freshness, x ̸∈ φ. This
auxiliary rule does not modify the term to which it applies, as witnessed by its base case id.

Rules dB and lsv are the base cases for applying reductions dB or lsv. Using the notations
of λc, they allow the following reductions.

(λx.t)L u
dB,φ,µ−−−−→sn t[x\u]L

CJxK[x\vL] lsv,φ,µ−−−−→sn CJvK[x\v]L with v value, and C a suitable context



T. Balabonski and A. Lanco and G. Melquiond 9:7

dB-base

(λx.t) u →db t[x\u]

lsv-base
t

subx\v,φ,µ
−−−−−−−→sn t′ v value

t[x\v] φ,µ−−→lsv t′[x\v]

dB-σ
t u →db v

t[x\w] u →db v[x\w]

lsv-σ
t[x\u] φ,µ−−→lsv t′

t[x\u[y\w]] φ,µ−−→lsv t′[y\w]

lsv-σ-φ

t[x\u] φ∪{y},µ−−−−−→lsv t′ w ∈ Sφ

t[x\u[y\w]] φ,µ−−→lsv t′[y\w]

Figure 4 Auxiliary reduction rules for λsn.

Each is defined using an auxiliary reduction relation dealing with the list L of explicit
substitutions. These auxiliary reductions are given in Fig. 4.

Rules dB-base and lsv-base describe the base cases of the auxiliary reductions, where
the list L is empty. Note that, while dB-base is an axiom, the inference rule lsv-base uses
as a premise a reduction ρ,φ,µ−−−→sn using a new reduction rule ρ = subx\v. This reduction rule
substitutes one occurrence of the variable x at a reducible position by the value v (with,
by freshness, x ̸∈ φ). As seen for idx above, this reduction rule propagates using the same
inductive reduction relation, and its base case is the rule sub in Fig. 3. The presence of
this premise t

subx\v,φ,µ−−−−−−−→sn t′ in the rule is the primary reason why the auxiliary relation
φ,µ−−→lsv is parameterized by φ and µ. The combination of the rules lsv and lsv-base makes
it possible, in the case of a lsv-reduction, to resume the search for a reducible variable in the
context in which the substitution has been found (instead of resetting the context). In [9], a
similar effect was achieved using a more convoluted condition on a composition of contexts.

Rule dB-σ makes it possible to float out an explicit substitution applied to the left part
of an application. That is, if a dB-reduction is possible without the substitution, then the
reduction is performed and the substitution is applied to the result. Rules lsv-σ and lsv-σ-φ
achieve the same effect with the nested substitutions applied to the value substituted by an
lsv-reduction step. As with rule es-left-φ, if the substitution is a structure, the variable
can be frozen. This difference between lsv-σ and lsv-σ-φ can be ignored until Sec. 4.

Finally, note that the strong call-by-need strategy introduced in [9] is included in our
calculus. One can recover this strategy by imposing two restrictions on ρ,φ,µ−−−→sn:

remove the rule λ-bot, so as to only reduce abstractions that are in top-level-like positions;
restrict the rule @-right to the case where the left member of the application is a
structure in normal form, since the strategy imposes left-to-right reduction of structures.

Example. The reduction (λa.a x)[x\(λy.t)[z\u] v] →sn (λa.a x)[x\t[y\v][z\u]] is allowed by
λsn, as shown by the following derivation. The left branch of the derivation checks that an
occurrence of the variable x is actually at a needed position in λa.a x, while its right branch
reduces the argument of the substitution.

λ-top

@-right
a ∈ S{a} x

idx,{a},⊤−−−−−−→sn x
id

a x
idx,{a},⊤−−−−−−→sn a x

λa.a x
idx,∅,⊤−−−−→sn λa.a x

(λy.t) v →db t[y\v]
dB-base

(λy.t)[z\u] v →db t[y\v][z\u]
dB-σ

(λy.t)[z\u] v
dB,∅,⊥−−−−→sn t[y\v][z\u]

dB

(λa.a x)[x\(λy.t)[z\u] v] dB,∅,⊤−−−−→sn (λa.a x)[x\t[y\v][z\u]]
es-right

FSCD 2021



9:8 A strong call-by-need calculus

x ∈ φ

x ∈ Nφ

t ∈ Nφ t ∈ Sφ u ∈ Nφ

t u ∈ Nφ

t ∈ Nφ∪{x}

λx.t ∈ Nφ

t ∈ Nφ∪{x} u ∈ Nφ u ∈ Sφ

t[x\u] ∈ Nφ

t ∈ Nφ

t[x\u] ∈ Nφ

Figure 5 Normal forms of λsn.

3.2 Soundness
The calculus λsn is sound with respect to the λ-calculus, in the sense that any normalizing
reduction in λsn can be related to a normalizing β-reduction through unfolding. This section
establishes this result (Th. 6). All proofs in this section are formalized in Abella.

The first part of the proof requires relating λsn-reduction to β-reduction.

▶ Lemma 3 (Simulation). If t →sn t′ then t⋆ →∗
β t′⋆.

Proof. By induction on the reduction t
ρ,φ,µ−−−→sn t′. ◀

The second part requires relating the normal forms of λsn to β-normal forms. The normal
forms of λsn correspond to the normal forms of the strong call-by-need strategy [9]. They
can be characterized by the inductive definition given in Fig. 5.

▶ Lemma 4 (Normal forms). t ∈ Nφ if and only if there is no reduction t
ρ,φ,µ−−−→sn t′.

Proof. The first part (a term cannot be in normal form and reducible) is by induction on
the reduction rules. The second part (any term is either a normal form or a reducible term)
is by induction on t. ◀

▶ Lemma 5 (Unfolded normal forms). If t ∈ Nφ then t⋆ is a normal form in the λ-calculus.

Proof. By induction on t ∈ Nφ. ◀

Soundness is a direct consequence of the three previous lemmas.

▶ Theorem 6 (Soundness). Let t be a λsn-term. If there is a reduction t →∗
sn u with u a

λsn-normal form, then u⋆ is the β-normal form of t⋆. ◀

This theorem implies that all the λsn-normal forms of a term t are equivalent modulo
unfolding. This mitigates the fact that the calculus, without a gc rule, is not confluent. For
instance, the term (λx.x) (λy.(λz.z)y) admits two normal forms (λy.z[z\y])[x\λy.(λz.z)y]
and (λy.z[z\y])[x\λy.z[z\y]], but both of them unfold to λy.y.

3.3 Completeness
Our strong call-by-need calculus is complete with respect to normalization in the λ-calculus
in a strong sense: Whenever a λ-term t admits a normal form in the pure λ-calculus, every
reduction path in λsn eventually reaches a representative of this normal form. This section is
devoted to proving this completeness result (Th. 12). The proof relies on the non-idempotent
intersection type system in the following way. First, typability (Th. 1) ensures that any
weakly normalizing λ-term admits a typing derivation (with no positive occurrence of {{}}).
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ty-var

x : {{σ}} ⊢µ
φ x : σ

ty-λ-⊥
Γ; x : M ⊢⊥

φ t : τ

Γ ⊢⊥
φ λx.t : M → τ

ty-λ-⊤
Γ; x : M ⊢⊤

φ∪{x} t : τ

Γ ⊢⊤
φ λx.t : M → τ

ty-@
Γ ⊢⊥

φ t : M → τ (∆σ ⊢⊥
φ u : σ)σ∈M

Γ +
∑

σ∈M ∆σ ⊢µ
φ t u : τ

ty-@-S
Γ ⊢⊥

φ t : M → τ t ∈ Sφ (∆σ ⊢⊤
φ u : σ)σ∈M

Γ +
∑

σ∈M ∆σ ⊢µ
φ t u : τ

ty-es
Γ; x : M ⊢µ

φ t : τ (∆σ ⊢⊥
φ u : σ)σ∈M

Γ +
∑

σ∈M ∆σ ⊢µ
φ t[x\u] : τ

ty-es-φ
Γ; x : M ⊢µ

φ∪{x} t : τ u ∈ Sφ (∆σ ⊢⊥
φ u : σ)σ∈M

Γ +
∑

σ∈M ∆σ ⊢µ
φ t[x\u] : τ

Figure 6 Annotated system for non-idempotent intersection types.

Second, we prove that any λsn-reduction in a typed λsn-term t (with no positive occurrence of
{{}}) is at a typed position of t (Th. 11). Third, weighted subject reduction (Th. 2) provides
a decreasing measure for λsn-reduction. Finally, the obtained normal form is related to the
β-normal form using Lemmas 3, 4, and 5.

The proof of the forthcoming typed reduction (Th. 11) uses a refinement of the non-
idempotent intersection types system of λc, given in Fig. 6. Both systems derive the same
typing judgments with the same typed positions. The refined system however features an
annotated typing judgment Γ ⊢µ

φ t : τ embedding the same context information that are
used in the inductive reduction relation ρ,φ,µ−−−→sn, namely the set φ of frozen variables at the
considered position and a marker µ of top-level-like positions. These annotations are faithful
counterparts to the corresponding annotations of λsn reduction rules; their information flows
upward in the inference rules following the same criteria.

In particular, the rule for typing an abstraction is split in two versions ty-λ-⊥ and
ty-λ-⊤, the latter being applicable to ⊤ positions and thus freezing the variable bound by
the abstraction (in both rules, by freshness convention we assume x ̸∈ φ). The rule for typing
an application is also split in two version: ty-@-S is applicable when the left part of the
application is a structure and marks the right part as a ⊤ position, while ty-@ is applicable
otherwise. Note that this second rule allows the argument of the application to be typed
even if its position is not (yet) reducible, but its typing is in a ⊥ position. Finally, the rule
for typing an explicit substitution is similarly split in two versions, depending on whether
the content of the substitution is a structure or not, and handling the set of frozen variables
accordingly. In both cases, the content of the substitution is typed in a ⊥ position, since
this position is never top-level-like. We write Φ ▷ Γ ⊢µ

φ t : τ if there is a derivation Φ of the
annotated typing judgment Γ ⊢µ

φ t : τ . We denote fzt(Φ) the set of types associated to frozen
variables in judgments of the derivation Φ.

▶ Lemma 7 (Typing derivation annotation). If there is a derivation Φ ▷ Γ ⊢ t : τ , then for
any φ and µ there is a derivation Φ′ ▷ Γ ⊢µ

φ t : τ such that the sets of typed positions in Φ
and Φ′ are equal.

Proof. By induction on Φ, since annotations do not interfere with typing. ◀

The converse property is also true, by erasing of the annotations, but is not used in the proof
of the completeness result.
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9:10 A strong call-by-need calculus

The most crucial part of the proof of Th. 11 is ensuring that any argument of a typed
structure is itself at a typed position. This follows from the following three lemmas.

▶ Lemma 8 (Typed structure). If Γ ⊢µ
φ t : τ and t ∈ Sφ, there is x ∈ φ such that τ ∈ T+(Γ(x)).

Proof. By induction on the structure of t.1 The most interesting case is the one of an explicit
substitution t1[x\t2]. The induction hypothesis applied on t1 can give the variable x which
does not appear in the conclusion, but in that case t2 is guaranteed to be a structure whose
type contains τ . ◀

▶ Lemma 9 (Subformula property).

1. If Φ ▷ Γ ⊢⊤
φ t : τ then

{
T+(fzt(Φ)) ⊆

⋃
x∈φ T+(Γ(x)) ∪ T−(τ)

T−(fzt(Φ)) ⊆
⋃

x∈φ T−(Γ(x)) ∪ T+(τ)

2. If Φ ▷ Γ ⊢⊥
φ t : τ then

{
T+(fzt(Φ)) ⊆

⋃
x∈φ T+(Γ(x))

T−(fzt(Φ)) ⊆
⋃

x∈φ T−(Γ(x))

Proof. By mutual induction on the typing derivations.1 Most cases are fairly straightforward.
The only difficult case comes from the rule ty-@-S, in which there is a premise ∆ ⊢⊤

φ u : σ

with mode ⊤ but with a type σ that does not clearly appear in the conclusion. Here we need
the typed structure (Lem. 8) to conclude. ◀

▶ Lemma 10 (Typed structure argument). If Φ ▷ Γ ⊢µ
φ t : τ with {{}} ̸∈ T+(Γ ⊢ t : τ), then

every typing judgment of the shape Γ′ ⊢µ′

φ′ s : M → σ in Φ with s ∈ Sφ′ satisfies M ≠ {{}}.

Proof. Let Γ′ ⊢µ′

φ′ s : M → σ in Φ with s ∈ Sφ′ . By Lemma 8, there is x ∈ φ′ such
that M → σ ∈ T+(Γ′(x)). Then M ∈ T−(Γ′(x)) and M ∈ T−(fzt(Φ)). By Lemma 9,
M ∈ T+(Γ ⊢µ

φ t : τ), thus M ≠ {{}}. ◀

▶ Theorem 11 (Typed reduction). If Φ ▷ Γ ⊢µ
φ t : τ with {{}} ̸∈ T+(Γ ⊢ t : τ), then every

λsn-reduction t
ρ,φ,µ−−−→sn t′ is at a typed position.

Proof. We prove by induction on t
ρ,φ,µ−−−→sn t′ that, if Φ ▷ Γ ⊢µ

φ t : τ with Φ such that any
typing judgment Γ′ ⊢µ′

φ′ s : M → σ in Φ with s ∈ Sφ′ satisfies M ̸= {{}}, then t
ρ,φ,µ−−−→sn t′

reduces at a typed position (the restriction on Φ is enabled by Lemma 10). Since all other
reduction cases concern positions that are systematically typed, we focus here on @-right
and es-right.

Case @-right: t u
ρ,φ,µ−−−→sn t u′ with t ∈ Sφ and u

ρ,φ,⊤−−−−→sn u′, assuming Φ ▷ Γ ⊢µ
φ t u : σ.

By inversion of the last rule in Φ we know there is a subderivation Φ′ ▷ Γ′ ⊢⊥
φ t : M → σ

and by hypothesis M ≠ {{}}. Then u is typed in Φ and we can conclude by induction
hypothesis.
Case es-right: t[x\u] ρ,φ,µ−−−→sn t[x\u′] with t

idx,φ,µ−−−−→sn t′ and u
ρ,φ,⊥−−−−→sn u′, assuming

Φ ▷ Γ ⊢µ
φ t[x\u] : τ . By inversion of the last rule in Φ we kown there is a subderivation

Φ′ ▷ Γ′; x : M ⊢µ
φ t : τ . By induction hypothesis we know that reduction t

idx,φ,µ−−−−→sn t′ is
at a typed position in Φ′, thus x is typed in t and M ≠ {{}}. Then u is typed in Φ and
we can conclude by induction hypothesis on u

ρ,φ,⊥−−−−→sn u′. ◀

▶ Theorem 12 (Completeness). If a λ-term t is weakly normalizing in the λ-calculus, then
t is strongly normalizing in λsn. Moreover, if nβ is the normal form of t in the λ-calculus,
then any normal form nsn of t in λsn is such that n⋆

sn = nβ.

1 See appendix for the complete proof.
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t
subx\v,φ,µ
−−−−−−−→sn t′ v ∈ Nφ,∅,⊥

t[x\v] φ,µ−−→lsv t′[x\v]
lsv-base

Figure 7 New rule lsv-base for λsn+.

Proof. Let t be a pure λ-term that admits a normal form nβ for β-reduction. By Theorem 1
there exists a derivable typing judgment Γ ⊢ t : τ such that {{}} ̸∈ T+(Γ ⊢ t : τ). Thus by
Theorems 11 and 2, the term t is strongly normalizing for →sn. Let t →∗

sn nsn be a maximal
reduction in λsn. By Lemma 4, nsn ∈ Nφ, and by Lemma 5, n⋆

sn is a normal form in the
λ-calculus. Moreover, by simulation (Lem. 3), there is a reduction t⋆ →∗

β n⋆
sn. By uniqueness

of the normal form in the λ-calculus, n⋆
sn = nβ . ◀

Note that, despite the fact that λsn does not enjoy the diamond property, our theorems of
soundness (Th. 6) and completeness (Th. 12) imply that, in λsn, a term is weakly normalizing
if and only if it is strongly normalizing.

4 Relatively optimal strategies

Our proposed λsn-calculus guarantees that, in the process of reducing a term to its strong
normal form, only needed redexes are ever reduced. This does not tell anything about the
length of reduction sequences, though. Indeed, a term might be substituted several times
before being reduced, thus leading to duplicate computations. To prevent this duplication,
we introduce a notion of local normal form, which is used to restrict the value criterion in
the lsv-base rule. This restricted calculus, named λsn+, has the same rules as λsn (Fig. 3
and 4), except that lsv-base is replaced by the rule shown in Fig. 7.

We then show that this restriction is strong enough to guarantee the diamond property.
Finally, we explain why our restricted calculus only produces minimal sequences, among all
the reduction sequences allowed by λsn. This makes it a relatively optimal strategy.

4.1 Local normal forms
In λc and λsn, substituted terms can be arbitrary values. In particular, they might be
abstractions whose body contains some redexes. Since substituted variables can appear
multiple times, this would cause the redex to be reduced several times if the value is
substituted too soon. Let us illustrate this phenomenon on the following example, where
id = λx.x. The sequence of reductions does not depend on the set φ of frozen variables nor
on the position µ, so we do not write them to lighten a bit the notations. Subterms that are
about to be substituted or reduced are underlined.

(λw.w w) (λy.id y) db−→sn (w w)[w\λy.id y]
lsv−→sn ((λy.id y) w)[w\λy.id y]
db−→sn ((λy.x[x\y]) w)[w\λy.id y]
db−→sn x[x\y][y\w][w\λy.id y]

lsv × 3−−−−→sn (λy.id y)[x\λy.id y][y\λy.id y][w\λy.id y]
db−→sn (λy.x[x\y])[x\λy.id y][y\λy.id y][w\λy.id y]
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9:12 A strong call-by-need calculus

x ∈ φ ∪ ω

x ∈ Nφ,ω,µ

var
t ∈ Nφ∪{x},ω,⊤

λx.t ∈ Nφ,ω,⊤
λ-φ

t ∈ Nφ,ω∪{x},⊥

λx.t ∈ Nφ,ω,⊥
λ-ω

t ∈ Nφ,ω,µ

t[x \ u] ∈ Nφ,ω,µ

es

t ∈ Nφ,ω,µ t ∈ Sφ u ∈ Nφ,ω,⊤

t u ∈ Nφ,ω,µ

@-φ
t ∈ Nφ,ω,µ t ∈ Sω

t u ∈ Nφ,ω,µ

@-ω

t ∈ Nφ∪{x},ω,µ u ∈ Nφ,ω,⊥ u ∈ Sφ

t[x \ u] ∈ Nφ,ω,µ

es-φ
t ∈ Nφ,ω∪{x},µ u ∈ Sω

t[x \ u] ∈ Nφ,ω,µ

es-ω

Figure 8 Local normal forms.

Notice how id y is reduced twice, which would not have happened if the second reduction
had focused on the body of the abstraction.

This suggests that a substitution should only be allowed if the substituted term is in
normal form. But such a strong requirement is incompatible with our calculus, as it would
prevent the abstraction λy.y Ω (with Ω a diverging term) to ever be substituted in the
following example, thus preventing normalization (with a a closed term).

w (λx.a)[w\λy.y Ω] lsv−→sn (λy.y Ω) (λx.a)[w\λy.y Ω]
db−→sn (y Ω)[y\λx.a][w\λy.y Ω]
lsv−→sn ((λx.a) Ω)[y\λx.a][w\λy.y Ω]
db−→sn a[x\Ω][y\λx.a][w\λy.y Ω]

Notice how the sequence of reductions has progressively removed all the occurrences of Ω,
until the only term left to reduce is the closed term a.

To summarize, substituting any value is too permissive and can cause duplicate computa-
tions, while substituting only normal forms is too restrictive as it prevents normalization. So,
we need some relaxed notion of normal form, which we call local normal form. The intuition
is as follows. The term λy.y Ω is not in normal form, because it could be reduced if it was
in a ⊤ position. But in a ⊥ position, variable y is not frozen, which prevents any further
reduction of y Ω. The inference rules are presented in Fig. 8.

If an abstraction is in a ⊤ position, its variable is added to the set φ of frozen variables,
as in Fig. 3. But if an abstraction is in a ⊥ position, its variable is added to a new set ω, as
shown in rule λ-ω of Fig. 8. That is what will happen to y in λy.y Ω.

For an application, the left part is still required to be a structure. But if the leading
variable of the structure is not frozen (and thus in ω), our λsn-calculus guarantees that no
reduction will occur in the right part of the application. So, this part does not need to be
constrained in any way. This is rule @-ω of Fig. 8. It applies to our example, since y Ω is a
structure led by y ∈ ω. Substitutions are handled in a similar way, as shown by rule es-ω.

4.2 Diamond property

As mentioned before, in both λc and λsn, terms might be substituted as soon as they are
values, thus potentially causing duplicate computations. As a consequence, these calculi
cannot have the diamond property, as shown on the following example.
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(w w)[w\λx.(λy.y) x]

((λx.(λy.y) x) w)[w\λx.(λy.y) x]

(w w)[w\λx.y[y\x]] ((λx.y[y\x]) w)[w\λx.y[y\x]]

((λx.y[y\x]) w)[w\λx.(λy.y) x]
1

2

4

3

/

In λsn, the leftmost term can be reduced, either by rule lsv (arrow 1) because the
substituted term is a value, or by rule dB (arrow 2). The top term can only be reduced
by rule dB (arrow 3) because the substitution variable is not reachable. The bottom term
can only be reduced by rule lsv (arrow 4) because the substituted term is not reducible.
The two new terms are different, thus breaking the diamond property. It would take one
more reduction step (in λc) for the top sequence to reach the bottom-right term. But in
our restricted calculus λsn+, arrow 1 is forbidden, since the substituted term is not in local
normal form. By preventing such sequences, the diamond property is restored.

▶ Theorem 13 (Diamond). Suppose t
ρ1,φ,µ−−−−→sn+ t1 and t

ρ2,φ,µ−−−−→sn+ t2. Assume that, if ρ1
and ρ2 are sub or id, then they apply to separate variables. Then there exists t′ such that
t1

ρ2,φ,µ−−−−→sn+ t′ and t2
ρ1,φ,µ−−−−→sn+ t′.

Proof. The statement has first to be generalized so that the steps t → t1 and t → t2 can use
the main reduction ρ,φ,µ−−−→sn or the auxiliary reductions →db and φ,µ−−→lsv. Then it becomes a
tedious but rather unsurprising induction on t, with reasoning by case on the last inference
rule applied on each side. One notable case is when the two reductions are respectively given
by rules @-left and @-right. Indeed, the reduction on the left does not interfere with the
reduction on the right thanks to a stability property of structures (Lem. 14 below). ◀

▶ Lemma 14 (Stability of structures). If t ∈ Sφ and t
ρ,φ,µ−−−→sn+ t′ then t′ ∈ Sφ

4.3 Relative optimality
The λsn+-calculus is a restriction of λsn that requires terms to be eagerly reduced to local
normal form before they can be substituted (Fig. 7). This eager reduction is never wasted:
λsn (and a fortiori its subset λsn+) only reduces needed redexes, that is redexes that are
necessarily reduced in any reduction to normal form. As a consequence, reductions in λsn+ are
never longer than equivalent reductions in λsn. On the contrary, by forcing some reductions
to be performed before a term is substituted (i.e., potentially duplicated), this strategy
produces in many cases reduction sequences that are strictly shorter than the ones given by
the original strong call-by-need strategy [9].

▶ Theorem 15 (Minimality). With t′ ∈ Nφ, if t −→n
sn t′ and t −→m

sn+ t′ then m ⩽ n.

Remark that this minimality result is relative to λsn. The reduction sequences of λsn+
are not necessarily optimal with respect to the unconstrained λc or λ-calculi. For instance,
neither λsn+ nor λsn allow reducing r in the term (λx.x (x a)) (λy.y r) prior to its duplication.

5 Formalization in Abella

We used the Coq proof assistant for our first attempts to formalize our results. We experi-
mented both with the locally nameless approach [13] and parametric higher-order abstract
syntax [14]. While we might eventually have succeeded using the locally nameless approach,
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9:14 A strong call-by-need calculus

having to manually handle binders felt way too cumbersome. So, we turned to a dedicated for-
mal system, Abella [6], in the hope that it would make syntactic proofs more straightforward.
This section describes our experience with this tool.2

5.1 Nominal variables and λ-tree syntax
Our initial motivation for using Abella was the availability of nominal variables through
the nabla quantifier. Indeed, in order to open a bound term, one has to replace the bound
variable with a fresh global variable. This freshness is critical to avoid captures; but handling
it properly causes a lot of bureaucracy in the proofs. By using nominal variables, which are
guaranteed to be fresh by the logic, this issue disappears.

Here is an excerpt of our original definition of the nf predicate, which states that a term
is in normal form for our calculus. The second line states that any nominal variable is in
normal form, while the third line states that an abstraction is in normal form, as long as the
abstracted term is in normal form for any nominal variable.
Define nf : trm -> prop by

nabla x, nf x;

nf (abs U) := nabla x, nf (U x);

...

Note that Abella is based on a λ-tree approach (higher-order abstract syntax). In the
above excerpt, U has a bound variable and (U x) substitutes it with the fresh variable x.
More generally, (U V) is the term in which the bound variable is substituted with the term V.

This approach to fresh variables was error-prone at first. Several of our formalized
theorems ended up being pointless, despite seemingly matching the statements of our pen-
and-paper formalization. Consider the following example. This proposition states that, if T

is a structure with respect to x, and if U is related to T by the unfolding relation star, then
U is also a structure with respect to x.
forall T U, nabla x,

struct T x -> star T U -> struct U x.

Notice that the nominal variable x is quantified after T. As a consequence, its freshness
ensures that it does not occur in T. Thus, the proposition is vacuously true, since T cannot
be a structure with respect to a variable that does not occur in it. Had the quantifiers
been exchanged, the statement would have been fine. Unfortunately, Abella kind of requires
universal quantifiers to happen before nominal ones in theorem statements, thus exacerbating
the issue. The correct way to state the above proposition is by carefully lifting any term in
which a given free variable could occur:
forall T U, nabla x,

struct (T x) x -> star (T x) (U x) -> struct (U x) x.

Once one has overcome these hurdles, advantages become apparent. For example, to state
that some free variable does not occur in a term, not lifting this term is sufficient. And if it
needed to be lifted for some other reason, one can always equate it to a constant λ-tree. For
instance, one of our theorems needs to state that the free variable x occurring in T cannot
occur in U, by virtue of star. This is expressed as follows (with y\V denoting y 7→ V ):
star (T x) (U x) -> exists V, U = (y\ V).

2 See appendix for the definitions and the statement of the main theorems, and online material for the
full development.
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5.2 Judgments, contexts, and derivations
Abella provides two levels of logic: a minimal logic used for specifications and an intuitionistic
logic used for inductive reasoning over relations. At first, we only used the reasoning logic.
By doing so, we were using Abella as if we were using Coq, except for the additional nabla
quantifiers. We knew of the benefits of the specification logic when dealing with judgments
and contexts; but in the case of the untyped λ-calculus, we could not see any use for those.

Our point of view started to shift once we had to manipulate sets of free variables, in
order to distinguish which of them were frozen. We could have easily formalized such sets by
hand; but since Abella is especially designed to handle sets of binders, we gave it a try. Let
us consider the above predicate nf anew, except that it is now defined using λ-Prolog rules
(pi is the universal quantifier in the specification logic).

nf X :- frozen X.

nf (abs U) :- pi x\ frozen x => nf (U x).

...

Specification-level propositions have the form {L |- P}, with P a proposition defined in
λ-Prolog and L a list of propositions representing the context of P. Consider the proposition
{L |- nf (abs T)}. If there were only the two rules above, there would be only three ways of
deriving the proposition. Indeed, it can be derived from {L |- frozen (abs T)} (first rule).
It can also be derived from nabla x, {L, frozen x |- nf (T x)} (second rule). Finally,
the third way to derive it is if nf (abs T) is already a member of the context L.

The second and third derivations illustrate how Abella automates the handling of contexts.
But where Abella shines is that some theorems come for free when manipulating specification-
level properties, especially when it comes to substitution. Suppose that one wants to prove
{L |- P (T U)}, i.e., term T whose bound variable was replaced with U satisfies predicate P

in context L. The simplest way is if one can prove nabla x, {L |- P (T x)}. In that case,
one can instantiate the nominal variable x with U and conclude.

But more often that not, x occurs in the context, e.g., {L, Q x |- P (T x)} instead of
{L |- P (T x)}. Then, proving {L |- P (T U)} is just a matter of proving {L |- Q x}. But,
what if the latter does not hold? Suppose one can only prove {L |- R x}, with R V :- Q V.
In that case, one can reason on the derivation of {L, Q x |- P (T x)} and prove that {L,

R x |- P (T x)} necessarily holds, by definition of R. This ability to inductively reason on
derivations is a major strength of Abella.

Having to manipulate contexts led us to revisit most of our pen-and-paper concepts. For
example, a structure was no longer defined as a relation with respect to its leading variable
(e.g., struct T x) but with respect to all the frozen variables (e.g., {frozen x |- struct T}).
In turn, this led us to handle live variables purely through their addition to contexts: φ ∪ {x}.
Our freshness convention is a direct consequence, as in Fig. 2 for example.

Performing specification-level proofs does not come without its own set of issues, though.
As explained earlier, a proposition {L |- nf (abs T)} is derivable from the consequent
being part of the context L, which is fruitless. The way around it is to define a predicate
describing contexts that are well-formed, e.g., L contains only propositions of the form (nf x)

with x nominal. As a consequence, the case above can be eliminated because (abs T) is
not a nominal variable. Unfortunately, defining these predicates and proving the associated
helper lemmas is tedious and extremely repetitive. Thus, the user is encouraged to reuse
existing context predicates rather than creating dedicated new ones, hence leading to sloppy
and convoluted proofs. Having Abella provide some automation for handling well-formed
contexts would be a welcome improvement.
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5.3 Functions and relations
Our Abella formalization assumes a type trm and three predefined ways to build elements of
that type: application, abstraction, and explicit substitution. For example, a term t[x\u] of
our calculus will be denoted (es (x\t) u) with t containing some occurrences of x.

type app trm -> trm -> trm.

type abs (trm -> trm) -> trm.

type es (trm -> trm) -> trm -> trm.

Since Abella does not provide functions, we instead use a relation to define the unfolding
function t 7→ t⋆. Of particular interest is the way binders are handled; they are characterized
by stating that they are their own image: star x x.

star (app U V) (app X Y) :- star U X, star V Y.

star (abs U) (abs X) :- pi x\ star x x => star (U x) (X x).

star (es U V) (X Y) :- star V Y, pi x\ star x x => star (U x) (X x).

Since this is just a relation, we have to prove that it is defined over all the closed terms
of our calculus, that it maps only to pure λ-terms, and that it maps to exactly one λ-term.
Needless to say, all of that would be simpler if Abella had native support for functions.

6 Conclusion

This paper presents a λ-calculus dedicated to strong reduction. In the spirit of a call-by-need
strategy with explicit substitutions, it builds on a linear substitution calculus [2]. Our
calculus, however, embeds a syntactic criterion that ensures that only needed redexes are
considered. Moreover, by delaying substitutions until they are in so-called local normal forms
rather than just values, all the reduction sequences are of minimal length.

Properly characterizing these local normal forms proved difficult and lots of iterations
were needed until we reached the presented definition. Our original approach relied on
evaluation contexts, as in the original presentation of a strong call-by-need strategy [9].
While tractable, this made the proof of the diamond property long and tedious. It is the use
of Abella that led us to reconsider this approach. Indeed, the kind of reasoning Abella favors
forced us to give up on evaluation contexts and look for reduction rules that were much more
local in nature. In turn, these changes made the relation with typing more apparent. In
hindsight, this would have avoided a large syntactic proof in [9].

Due to decidability, our syntactic criterion can characterize only part of the needed
redexes at a given time. All the needed reductions will eventually happen, but detecting
the neededness of a redex too late might prevent the optimal reduction. It is an open
question whether some other simple criterion would characterize more needed redexes, and
thus potentially allow for even shorter sequences than our calculus.

Even with the current criterion, there is still work to be done. First and foremost, the
Abella formalization should be completed to at least include the diamond property. There
are also some potential improvements to consider. For example, our calculus could be made
to not substitute variables that are not applied (rule lsv-base), following [29, 3] but it opens
the question of how to characterize the normal forms then. Another venue for investigation
is how this work interacts with fully lazy sharing, wich avoids more duplications but whose
properties are tightly related to weak reduction [7]. Finally, this paper stops at describing the
reduction rules of our calculus and does not investigate what an efficient abstract machine
would look like.
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A Formal definitions

This appendix describes the main definitions of the Abella formalization. The reduction
rules of λsn and λsn+ presented in Fig. 3 are as follows.

step R top (abs T) (abs T’) :- pi x\ frozen x => step R top (T x) (T’ x).

step R B (abs T) (abs T’) :- pi x\ omega x => step R bot (T x) (T’ x).

step R B (app T U) (app T’ U) :- step R bot T T’.

step R B (app T U) (app T U’) :- struct T, step R top U U’.

step R B (es T U) (es T’ U) :- pi x\ omega x => step R B (T x) (T’ x).

step R B (es T U) (es T’ U) :-

pi x\ frozen x => step R B (T x) (T’ x), struct U.

step R B (es T U) (es T U’) :-

pi x\ active x => step (idx x) B (T x) (T x), step R bot U U’.

step (idx X) B X X :- active X.

step (sub X V) B X V :- active X.

step db B T T’ :- aux_db T T’.

step lsv B T T’ :- aux_lsv B T T’.

A small difference with the core of the paper is the predicate active, which characterizes
the variable being considered idx (idx) and subx\v (sub). This predicate is just a cheap way
of remembering that the active variable is fresh yet not frozen. Similarly, the predicate omega

is used in two rules to tag a variable as being neither frozen nor active. Another difference is
rule λ-bot. While the antecedent of the rule is at position ⊥ as in the paper, the consequent
is in any position rather than just ⊥. Since any term reducible in position ⊥ is provably
reducible in position ⊤, this is just a conservative generalization of the rule.

The auxiliary rules for λsn+, as given in Fig. 4 and Fig. 7 for rule lsv-base, are the same
as in the core of the paper.

aux_db (app (abs T) U) (es T U).

aux_db (app (es T W) U) (es T’ W) :- pi x\ aux_db (app (T x) U) (T’ x).

aux_lsv B (es T (abs V)) (es T’ (abs V)) :-

pi x\ active x => step (sub x (abs V)) B (T x) (T’ x), lnf bot (abs V).

aux_lsv B (es T (es U W)) (es T’ W) :-

pi x\ omega x => aux_lsv B (es T (U x)) (T’ x).

aux_lsv B (es T (es U W)) (es T’ W) :-

pi x\ frozen x => aux_lsv B (es T (U x)) (T’ x), struct W.

Finally, an actual reduction is just comprised of rules dB and lsv in a ⊤ position:

red T T’ :- step db top T T’.

red T T’ :- step lsv top T T’.

The normal forms of λsn and λsn+, given in Fig. 5, are as follows.

nf X :- frozen X.

nf (app U V) :- nf U, nf V, struct U.

nf (abs U) :- pi x\ frozen x => nf (U x).

nf (es U V) :- pi x\ frozen x => nf (U x), nf V, struct V.

nf (es U V) :- pi x\ nf (U x).

They make use of structures (struct), as given in Fig. 2.

struct X :- frozen X.

FSCD 2021
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struct (app U V) :- struct U.

struct (es U V) :- pi x\ struct (U x).

struct (es U V) :- pi x\ frozen x => struct (U x), struct V.

The local norm forms of Fig. 8 are as follows. As for the step relation, one of the rules
for abstraction was generalized with respect to the paper. This time, it is for the ⊤ position,
since any term that is locally normal in a ⊤ position is locally normal in any position.

lnf B X :- frozen X.

lnf B X :- omega X.

lnf B (app T U) :- lnf B T, struct T, lnf top U.

lnf B (app T U) :- lnf B T, struct_omega T.

lnf B (abs T) :- pi x\ frozen x => lnf top (T x).

lnf bot (abs T) :- pi x\ omega x => lnf bot (T x).

lnf B (es T U) :- pi x\ active x => lnf B (T x).

lnf B (es T U) :- pi x\ frozen x => lnf B (T x), lnf bot U, struct U.

lnf B (es T U) :- pi x\ omega x => lnf B (T x), struct_omega U.

Structures with respect to the set ω use a dedicated predicate struct_omega, which is
just a duplicate of struct. Another approach, perhaps more elegant, would have been to
parameterize struct with either frozen or omega.

struct_omega X :- omega X.

struct_omega (app U V) :- struct_omega U.

struct_omega (es U V) :- pi x\ struct_omega (U x).

struct_omega (es U V) :-

pi x\ omega x => struct_omega (U x), struct_omega V.

Normal forms of the λ-calculus are defined as follows:

nfb X :- frozen X.

nfb (abs T) :- pi x\ frozen x => nfb (T x).

nfb (app T U) :- nfb T, nfb U, notabs T.

notabs T :- frozen T.

notabs (app T U).

The definition of λsn-terms is sometimes useful to allow induction on terms rather than
induction on one of the previous predicates.

trm (app U V) :- trm U, trm V.

trm (abs U) :- pi x\ trm x => trm (U x).

trm (es U V) :- pi x\ trm x => trm (U x), trm V.

Finally, let us remind the definitions of a pure λ-term, of the unfolding operation from λc
to λ, of a β-reduction, and of a sequence of zero or more β-reductions.

pure (app U V) :- pure U, pure V.

pure (abs U) :- pi x\ pure x => pure (U x).

star (app U V) (app X Y) :- star U X, star V Y.

star (abs U) (abs X) :- pi x\ star x x => star (U x) (X x).

star (es U V) (X Y) :- star V Y, pi x\ star x x => star (U x) (X x).

beta (app M N) (app M’ N) :- beta M M’.

beta (app M N) (app M N’) :- beta N N’.

beta (abs R) (abs R’) :- pi x\ beta (R x) (R’ x).

beta (app (abs R) M) (R M).
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betas M M.

betas M N :- beta M P, betas P N.

B Formally verified properties

This appendix states the theorems that were fully proved using Abella. First comes the
simulation property (Lem. 3), which states that, if T →sn+ U , then T ⋆ →∗

β U⋆.

Theorem simulation ’ : forall T U T* U*,

{star T T*} -> {star U U*} -> {red T U} -> {betas T* U*}.

Then comes the fact that (local) normal forms are exactly the terms that are not reducible
in λsn+ (Lem. 4).

Theorem lnf_nand_red : forall T U,

{lnf top T} -> {red T U} -> false.

Theorem nf_nand_red : forall T U,

{nf T} -> {red T U} -> false.

Theorem lnf_or_red : forall T,

{trm T} -> {lnf top T} \/ exists U, {red T U}.

Theorem nf_or_red : forall T,

{trm T} -> {nf T} \/ exists U, {red T U}.

Finally, if T is a normal form of λsn, then T ⋆ is a normal form of the λ-calculus (Lem. 5).

Theorem nf_star ’ : forall T T*,

{nf T} -> {star T T*} -> {nfb T*}.

C Proof of the subformula properties

We recall here Lemma 8:
If Γ ⊢µ

φ t : τ and t ∈ Sφ, then there is x ∈ φ such that τ ∈ T+(Γ(x)).

Proof. By induction on the structure of t.
Case t = x. By inversion of x ∈ Sφ we deduce x ∈ φ. Moreover the only rule applicable
to derive Γ ⊢µ

φ x : τ is ty-var, which gives the conclusion.
Case t = t1 t2. By inversion of t1 t2 ∈ Sφ we deduce t1 ∈ Sφ. Moreover the only
rules applicable to derive Γ ⊢µ

φ t1 t2 : τ are ty-@ and ty-@-S. Both have a premise
Γ′ ⊢⊥

φ t1 : M → τ with Γ′ ⊆ Γ, to which the induction hypothesis applies, ensuring
M → τ ∈ T+(Γ′(x)) and thus τ ∈ T+(Γ′(x)) and τ ∈ T+(Γ(x)).
Case t = t1[x\t2]. We reason by case on the last rules applied to derive t1[x\t2] ∈ Sφ and
Γ ⊢µ

φ t1[x\t2] : τ . There are two possible rules for each.
Case where t1[x\t2] ∈ Sφ is deduced from t1 ∈ Sφ (with x ̸∈ φ) and Γ ⊢µ

φ t1[x\t2] : τ

comes from rule ty-es. This rule has in particular a premise Γ′ ⊢µ
φ t1 : τ for a

Γ′ = Γ′′; x : M such that Γ′′ ⊆ Γ. We thus have by induction hypothesis on t1 that
τ ∈ T+(Γ′(y)) for some y ∈ φ ∩ dom(Γ′). Since y ∈ φ and x ̸∈ φ we have y ≠ x. Then
y ∈ dom(Γ′′) and y ∈ dom(Γ), and Γ(y) = Γ′′(y).
In the three other cases, we have:

1. a hypothesis t1 ∈ Sφ or t1 ∈ Sφ∪{x}, from which we deduce t1 ∈ Sφ∪{x},
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2. a hypothesis Γ′ ⊢µ
φ t1 : τ or Γ′ ⊢µ

φ∪{x} t1 : τ (for a Γ′ = Γ′′; x : M such that Γ′′ ⊆ Γ),
from which we deduce Γ′ ⊢µ

φ∪{x} t1 : τ , and
3. a hypothesis t2 ∈ Sφ, coming from the derivation of t1[x\t2] or the derivation of

Γ ⊢µ
φ t1[x\t2] : τ (or both).

Then by induction hypothesis on t1 we have τ ∈ T+(Γ′(y)) for some y ∈ φ ∪ {x}.
∗ If y ̸= x, then y ∈ φ and Γ(y) = Γ′′(y), which allows a direct conclusion.
∗ If y = x, then τ ∈ T+(Γ′(x)) implies M ̸= {{}}. Let σ ∈ M with τ ∈ T+(σ). The

instance of the rule ty-es or ty-es-φ we consider thus has at least one premise
∆ ⊢⊥

φ t2 : σ with ∆ ⊆ Γ. Since t2 ∈ Sφ, by induction hypothesis on t2 there is
z ∈ φ ∩ dom(∆) such that σ ∈ T+(∆(z)). Then τ ∈ T+(∆(z)), and τ ∈ Γ. ◀

We recall here Lemma 9:

1. If Φ ▷ Γ ⊢⊤
φ t : τ then

{
T+(fzt(Φ)) ⊆

⋃
x∈φ T+(Γ(x)) ∪ T−(τ)

T−(fzt(Φ)) ⊆
⋃

x∈φ T−(Γ(x)) ∪ T+(τ)

2. If Φ ▷ Γ ⊢⊥
φ t : τ then

{
T+(fzt(Φ)) ⊆

⋃
x∈φ T+(Γ(x))

T−(fzt(Φ)) ⊆
⋃

x∈φ T−(Γ(x))

Proof. By mutual induction on the typing derivations.
Both properties are immediate in case ty-var, where fzt(Φ) = {σ}.
Cases for abstractions.

If Φ ▷ Γ ⊢⊥
φ λx.t : M → τ by rule ty-λ-⊥ with premise Φ′ ▷ Γ; x : M ⊢⊥

φ t : τ .
Write Γ′ = Γ; x : M. By induction hypothesis we have T+(fzt(Φ′)) ⊆

⋃
y∈φ T+(Γ′(y)).

Since x ̸∈ φ by renaming convention, we deduce that T+(fzt(Φ′)) ⊆
⋃

y∈φ T+(Γ(y)) and
T+(fzt(Φ)) ⊆

⋃
y∈φ T+(Γ(y)). The same applies to negative type occurrences, which

concludes the case.
If Φ ▷ Γ ⊢⊤

φ λx.t : M → τ by rule ty-λ-⊤ with premise Φ′ ▷ Γ; x : M ⊢⊤
φ∪{x} t : τ .

Write Γ′ = Γ; x : M. By induction hypothesis we have

T+(fzt(Φ′)) ⊆
⋃

y∈(φ∪{x}) T+(Γ′(y)) ∪ T−(τ)
=

⋃
y∈φ T+(Γ(y)) ∪ T+(M) ∪ T−(τ)

=
⋃

y∈φ T+(Γ(y)) ∪ T−(M → τ)

Thus T+(fzt(Φ)) ⊆
⋃

y∈φ T+(Γ(y)) ∪ T−(M → τ). The same applies to negative
occurrences, which concludes the case.

Cases for application.
Cases for ty-@ are by immediate application of the induction hypotheses.
If Φ ▷ Γ ⊢µ

φ t u : τ by rule ty-@-S, with premises Φt ▷ Γt ⊢⊥
φ t : M → τ , t ∈ Sφ

and Φσ ▷ ∆σ ⊢⊤
φ u : σ for σ ∈ M, with Γt ⊆ Γ and Γσ ⊆ Γ for all σ ∈ M.

Independently of the value of µ, we show that T+(fzt(Φ)) ⊆
⋃

x∈φ T+(Γ(x)) and
T−(fzt(Φ)) ⊆

⋃
x∈φ T−(Γ(x)) to conclude on both sides of the mutual induction.

Directly from the induction hypothesis, T+(fzt(Φt)) ⊆
⋃

x∈φ Γt(x) ⊆ T+(fzt(Φ)). By
induction hypothesis on the other premises we have T+(fzt(Φσ)) ⊆

⋃
x∈φ Γσ(x) ∪ T−(τ)

for σ ∈ M. We immediately have
⋃

x∈φ Γσ(x) ⊆
⋃

x∈φ Γ(x). We conclude by showing
that T−(σ) ⊆ T+(Γt(x)) for some x ∈ φ. Since t ∈ Sφ, by the first subformula
property and the typing hypothesis on t we deduce that there is a x ∈ φ such that
M → τ ∈ T+(Γt(x)). By closeness of type occurrences sets T+(τ) this means T+(M →
τ) ⊆ T+(Γt(x)). By definition T+(M → τ) = T−(M) ∪ T+(τ) =

⋃
σ∈M T−(σ) ∪ T+(τ),

which allows us to conclude the proof that
⋃

x∈φ Γσ(x) ∪ T−(τ) ⊆
⋃

x∈φ Γ(x).
The same argument also applies to negative positions, and concludes the case.

Cases for explicit substitution immediately follow the induction hypothesis. ◀
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