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Abstract—Short of being able to exhaustively test all the inputs,
writing a formal proof offers the highest possible confidence in
the correctness of a mathematical library. This comes at a large
cost though, since formal proofs require taking into account all
the details, even the seemingly insignificant ones, which makes
them tedious to write. This issue is compounded by the fact
that the objects whose properties we need to verify (floating-
point numbers) are not the ones we would like to reason about
(real numbers and integers). This short paper explores some
ways of reducing the overhead of formal proofs in the setting of
mathematical libraries, so as to let the user focus on the details
that really matter.

Index Terms—Floating-point arithmetic; Mathematical li-
braries; Formal methods; Coq proof assistant

I. INTRODUCTION

The floating-point functions offered by a mathematical
library are often intricate pieces of code that strive for accuracy
and speed, and their development is an error-prone process.
For a univariate binary32 function, one could exhaustively test
all the inputs to make sure that the function is correct, as
done for the CORE-MATH library [1]. But for larger input
domains, one has to resort to a mathematical proof. The
highest confidence is then reached by writing a formal proof
and having it mechanically checked [2, §13.2].

When verifying a floating-point function, it is often useful
to interpret its code in different ways. First of all, the code can
be interpreted as a computation over IEEE-754 floating-point
numbers, including infinities and NaNs [2, §2.1]. Ideally, any
property should be proven on this model as this is the way the
function actually computes. This is the model followed by the
SMTLIB standard and the SMT solvers that adhere to it [3].
But this SMT theory does not offer any way to relate finite
floating-point numbers to the real numbers they represent. As
a consequence, expressing the distance between a computed
value and the real number it is meant to approximate is
impossible, which considerably limits the usefulness of this
model when verifying mathematical libraries.

Since the IEEE-754 standard mandates that floating-point
operations should behave as if they were first computing
an infinitely precise result and then rounded it to the target
format, computed values can also be interpreted as rounded
real numbers. This makes it possible to express the error
between the computed value and some ideal result. So as to
ease the use of known properties of floating-point arithmetic
such as |◦(x) − x| ≤ 2−prec |x|, it is better to let exponents
grow arbitrarily large. This is the main model used when doing
pen-and-paper proofs due to its expressiveness, but it comes
at the expense of not being faithful to the IEEE-754 standard.

In the context of an interactive theorem prover, we would
like to interpret floating-point numbers as rounded real num-
bers, but a formal proof would only be complete once all the
exceptional cases (e.g., overflows) have been handled. Proving
that a floating-point number is finite is something that falls
right in the scope of SMT solvers, since it just involves its
representation as a bit vector. But due to the intricacy of
mathematical libraries, the solvers would not succeed in a
timely fashion without some mathematical knowledge about
the approximated functions, which in turn requires the ability
to speak about real numbers and rounding errors.

The Flocq library for the Coq proof assistant offers both
representations of floating-point numbers, as well as the theo-
rems to switch from one to the other [4, §3]. This short paper
explores how to make it easier to juggle between both repre-
sentations when verifying a mathematical library. The method-
ology is then illustrated with the formal proof of two floating-
point functions: exponential and logarithm. Both examples are
available at https://gitlab.inria.fr/pgeneaud/examples.

II. RELATED WORKS

Several tools make it easier to go from the IEEE-754 model
of floating-point arithmetic to one based on real numbers,
during a formal proofs. For the HOL Light proof assis-
tant, one can use FPTaylor [5], which represents a floating-
point result as a symbolic affine form, that is, an expression
f(x⃗) + Σifi(x⃗)εi + µ where f and the fis are real functions
of the inputs x⃗, the εi variables represent all the potential
rounding errors, and µ is a miscellaneous term that conflates
all the second-order behaviors. In other words, the fis show
how the individual rounding errors are propagated at first
order. Since the fis are computed symbolically, this provides
a rich description of the numerical behavior of the code.

The VCFloat2 tool plays a similar role for the Coq proof
assistant [6]. This time, floating-point values are represented
as rational functions in the inputs and the εis. These rational
functions are first fully expanded and then all the monomials
that are below a given threshold, e.g., 2−30, are conflated in a
single miscellaneous term. This makes it possible to account
for some second-order behaviors, contrarily to FPTaylor, but
at the cost of an “exponential time”.

III. LANGUAGE OF EXPRESSIONS

A. Expression trees

Given an abstract arithmetic expression e, we denote [[e]]flt
the floating-point number it computes, according to the IEEE-
754 standard. By extension, when [[e]]flt is finite, it can also be
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seen as a real number. We denote [[e]]rnd the value obtained by
performing every operation on real numbers and then rounding
it to finite precision. We do not restrict the range of [[e]]rnd
in any way, that is, [[e]]rnd might differ from [[e]]flt if any
operation of the latter overflows. Finally, we might need to
talk about the result [[e]]exa that would have been obtained with
an infinitely precise arithmetic. Note that [[e]]exa is the same as
the coefficient f(x⃗) of the affine form computed by FPTaylor.

As an illustration, assume that we want to prove that some
code e approximates some ideal mathematical value E with
a relative error at most ε. The specification looks like “[[e]]flt
is finite and |[[e]]flt/E − 1| ≤ ε”. The first step is to prove
that no exceptional behavior occurs during the evaluation of
[[e]]flt and thus that it is sufficient to prove |[[e]]rnd/E− 1| ≤ ε.
To verify the latter, one usually splits the inequality into a
rounding error |[[e]]rnd/[[e]]exa − 1| ≤ ε1 and a method error
|[[e]]exa/E − 1| ≤ ε2 with ε ≥ ε1 + ε2 + ε1ε2. When using
the Coq proof assistant, the bound on the rounding error can
be verified by the Gappa tool, while the method error can be
tackled by the CoqInterval library [4, §4].

Unsurprisingly, the expression e is represented by the value
of an inductive type in Coq, that is, an abstract syntax tree
whose internal nodes are arithmetic operations. Floating-point
addition, subtraction, multiplication, division, square root, and
fused multiply-add are supported in rounding to nearest. Inte-
ger operations, as well as functions nearbyint, trunc, and
ldexp are also supported, as they are commonly encountered
during argument reduction and result reconstruction in mathe-
matical libraries. Thanks to Coq’s dependent type system, only
well-formed expressions can be expressed; for example, one
cannot pass a floating-point number to an integer division.

The interpretation [[e]]flt is defined using Flocq’s formal-
ization of the IEEE-754 standard [4, §3.4]. Contrarily to the
arithmetic operations, the conversions to integer nearbyint
and trunc were originally not supported by Flocq, so we
have formalized them. The interpretation [[e]]rnd also relies on
Flocq, but this time, it uses the formalization of the so-called
FLT formats [4, §3.1]. These formats are defined as the sets
{x ∈ R | ∃m, e ∈ Z, x = m · 2e ∧ |m| < 2p ∧ e ≥ emin} with
p the precision and emin the minimal exponent (e.g., p = 53
and emin = −1074 for binary64). As for the operations on real
numbers used in [[e]]rnd and [[e]]exa, they are defined in Coq’s
standard library.

Our expression trees offer two additional features. First,
they support let-bindings, with binders represented by their
de Bruijn indices. The primary use of these bindings is
to explicitly express sharing between sub-expressions, as in
most programming languages. But they will also play an
important role when reasoning about expressions, as explained
in Section IV-C.

The second feature is the availability of exact arithmetic op-
erations. Indeed, when implementing accurate approximations
of mathematical functions, one might arrange floating-point
operations in a way such that their results are exactly repre-
sentable. For example, the FastTwoSum operator is commonly
used during the last step of a polynomial evaluation. It is thus

important that the user can annotate the expression e so that
[[e]]rnd is not polluted with spurious rounding operators.

B. Correspondence theorem

As explained above, to verify the correctness of an expres-
sion e, we need to prove a property about the floating-point
value [[e]]flt, but this is usually too cumbersome and we would
like instead to reason about the rounded real number [[e]]rnd.
We say that an expression e is well-behaved if [[e]]flt is a finite
floating-point number and it represents the real number [[e]]rnd.
Thus, as long as we prove that e is well-behaved, we can
reason over [[e]]rnd.

We recursively define a logical predicate WB over expres-
sions in such a way that, if WB(e) holds, then e is well-
behaved. For example, the formula WB(u/v) for a floating-
point division is

WB(u) ∧WB(v) ∧ [[v]]rnd ̸= 0 ∧ |◦([[u]]rnd/[[v]]rnd)| ≤ Ω

with Ω the value of the largest finite floating-point number. In
other words, for the expression u/v to be well-behaved, it is
sufficient that u and v are well-behaved, that v is non-zero,
and that the division does not overflow.

For the other floating-point operations, WB is defined in
a similar way. For exact operations, the formula contains
an additional conjunct that states that the result is exactly
representable, e.g., ◦([[u]]rnd + [[v]]rnd) = [[u]]rnd + [[v]]rnd for
addition.

Theorem 1. Given an expression e and some predicate G
over the real numbers, we have

WB(e) ∧G([[e]]rnd)⇒ [[e]]flt finite ∧G([[e]]flt).

In other words, to prove some property G([[e]]flt) over
floating-point numbers, e.g., a bound on the distance to an
ideal result, one just has to prove the same property over
rounded real numbers G([[e]]rnd), assuming WB(e) holds.

IV. PROOF TOOLS

A. Polynomial approximations and rounding operators

The CoqInterval library is able to automatically verify
bounds over expressions mixing arithmetic operations and
some elementary functions (e.g., exp, ln, cos, sin, tan,
arctan). It does so by computing a reliable polynomial approx-
imation of the expression, that is, a polynomial that approxi-
mates it and an interval that encloses the distance between this
polynomial and the original expression [7]. This is especially
effective when bounding the method error [[e]]exa/E − 1. But
since CoqInterval does not know about rounding operators, it
is of little help to prove WB(e) as all the conjuncts of the
form |◦([[u]]rnd ⋄ [[v]]rnd)| ≤ Ω are thus out of its scope.

To make CoqInterval useful for our purpose, we have
extended its set of supported operators with some rounding
operators from the Flocq library. These rounding operators
take a real number and return one of the closest numbers
in an FLT format described by a precision p and a minimal
exponent emin. The formalization was performed in two steps.



First, we have taught CoqInterval how to compute an enclosure
of the rounding error ◦(y) − y given an enclosure of y. If
|y| ≤ 2n, then |◦(y)−y| ≤ 2n

′
with n′ = max(n−p+1, emin).

Second, we have extended it to reliable polynomial approx-
imations. Consider an expression f(x) and its approximation
(P,∆) over an interval X , that is, ∀x ∈ X, f(x)−P (x) ∈ ∆.
From P and ∆, we can find n such that |f(x)| ≤ 2n for any
x ∈ X . Thus, (P,∆ + [−2n′

, 2n
′
]) is an approximation of

◦(f(x)) with n′ computed as above. The correctness of this
polynomial approximation is a straightforward consequence of
the following equality: ◦(f(x))−P (x) = (◦(f(x))−f(x))+
(f(x)− P (x)).

This modification of CoqInterval is sufficient to make it
automatically prove most of the formula WB(e) in practice.
Preconditions of exact operations (e.g., ◦([[u]]rnd + [[v]]rnd) =
[[u]]rnd + [[v]]rnd) are still out of the scope of CoqInterval
and would have to be proved using a different approach, for
example using Gappa.

Since CoqInterval is now able to verify bounds on expres-
sions involving rounding operators, it could also be used to
directly verify a bound on an absolute error [[e]]rnd −E rather
than just [[e]]exa − E. But since the modeling of rounding
errors is a bit naive, one should not expect the bounds on
[[e]]rnd − [[e]]exa to be as tight as those found by Gappa. This
is especially true when considering relative errors instead.
CoqInterval is not meant to compete with FPTaylor either,
since the latter is able to notice first-order error compensations.

B. From [[e]]flt to [[e]]rnd

A proof assistant like Coq is primarily used for backward
reasoning, that is, the user works on the conclusion of a
theorem (the “goal”) and simplifies it until it can be trivially
deduced from the hypotheses. Theorem 1 is the primary way
to get rid of the occurrences of [[e]]flt from the goal and to
replace them with [[e]]rnd. We provide two proof strategies for
that purpose. The first one automatically applies Theorem 1
to the current goal. Indeed, the goal might not have quite
the correct form to apply the theorem, so the strategy takes
care of preprocessing it, thus avoiding some cumbersome
manipulations from the user.

The second proof strategy, simplify_wb, is much more
important. It takes care of the hypothesis WB(e) that results
from the application of Theorem 1. In essence, it just applies
CoqInterval to each conjunct individually and removes those
that were automatically proved. The user could perform this
process by hand, but it would not scale. Indeed, the formula
WB(e) grows quadratically in the size of e, as there is a
lot of redundancy between the various conjuncts. Consider
WB(u+v); it requires computing polynomial approximations
of [[u]]rnd (resp. [[v]]rnd) to prove WB(u) (resp. WB(v)), but it
also requires these polynomial approximations to deduce the
one for ◦([[u]]rnd+[[v]]rnd). It is thus important to share as much
work as possible, hence the dedicated strategy.

C. Structuring proofs
When verifying some goal G([[e]]flt) or G([[e]]rnd), one often

needs to first prove some property of some sub-expression.

For example, knowing that an argument reduction has indeed
produced a reduced argument might help in proving a bound
on the rounding error of the subsequent polynomial evaluation.
In other words, we want to be able to assert properties about
sub-expressions. Any proof assistant provides such a critical
feature, but it is cumbersome for our use case, as one needs
to explicitly write the possibly large sub-expression.

So, we have decided to turn let-bindings into implicit
assertion points, that is, any asserted predicate will necessarily
be applied to the bound expression of the topmost let-binding.
The rationale is that, if a sub-expression is not used at least
twice, then it is presumably of little interest on its own. More
concretely, if the current goal is G([[let t = e1 in e2]]rnd) and
the user asserts some predicate H , two subgoals will be gener-
ated: H([[e1]]rnd) and ∀t ∈ R, t ∈ FLT ∧H(t)⇒ G([[e2]]rnd).

For example, in the case of an argument reduction, the user
just has to write a predicate H(t) that states that t (not [[e1]]rnd)
is in a small interval and is close to the ideal reduced argument.
This example will be detailed below.

V. EXAMPLES

A. Cody & Waite’s exponential

The first example we consider is the Cody-Waite imple-
mentation of the exponential, which is one of the earliest
and is notable for its clever argument reduction [8]. Despite
its age, variants of this reduction can still be encountered
in modern implementations since it is cheap yet accurate [2,
§10.2]. Given an input x, it computes the reduced argument t
using the following floating-point operations (see [4, §6.2.2]
for the actual constants Ci):

k ← ⌊x · C1⌉,
t← x− k · C2 − k · C3.

This code exhibits several interesting features. First, it uses
the nearbyint function (denoted ⌊·⌉) and thus involves inte-
gers. Second, the two operations in the subexpression x−k·C2

are performed exactly (i.e., no rounding error), which is crucial
to guarantee that t is close enough to x− k ln 2. By flagging
them as exact in the expression tree, the expression [[t]]rnd
contains fewer rounding operators, which makes it easier to
manipulate for the user. Third, the exponential is approximated
using a rational fraction rather than a polynomial, which
introduces another potential source of exceptional behaviors.

The preexisting Coq proof of this algorithm only consid-
ered rounded real numbers [4, §6.2]. Our goal is thus to
make it support IEEE-754 floating-point numbers instead, with
minimal effort. More precisely, we consider an expression
cwexp that implements the exponential, except for the final
multiplication by 2k+1, and we want to prove the following,
for −746 ≤ x ≤ 710 and k = ⌊◦(x · C1)⌉:

[[cwexp(x)]]flt finite ∧
∣∣∣∣2k+1[[cwexp(x)]]flt

ex
− 1

∣∣∣∣ ≤ 2−51.



We perform a few manipulations and apply Theorem 1,
which yields the goal

WB(cwexp(x)) ∧
∣∣∣∣2[[cwexp(x)]]rndex−k ln 2

− 1

∣∣∣∣ ≤ 2−51,

where WB(cwexp(x)) contains not only proof obligations for
the absence of overflow in all the subexpressions, but also a
proof obligation that the denominator of the rational fraction
is non-zero, and that the two operations in x−k ·C2 are exact.
Applying the simplify_wb strategy would automatically
prove and thus remove all the conjuncts of WB(cwexp(x))
besides the proof obligations for both exact operations. We
would then be left with a goal that is logically equivalent to
the original theorem statement that used rounded real numbers.

That goal, however, is hardly readable, due to the sheer size
of the expressions. So, to make the proof process a bit more
palatable, it is better to first separate the argument reduction
from the fraction evaluation. Since we turned let-bindings into
implicit assertion points, we can simply assert the following
property, as was already done in the original Coq proof:

|[[t]]rnd| ≤ 355 · 2−10 ∧ |[[t]]rnd − (x− k ln 2)| ≤ 65537 · 2−71.

This extra step is not strictly necessary, since we could have
just reused the original proof here. But if we were to start
from scratch, the ability to easily state this assertion would
have been a great help in proving the theorem.

B. CORE-MATH’s logarithm

We have also exercised our approach on a state-of-the-
art implementation: the logarithm from the CORE-MATH li-
brary [1]. Contrarily to the exponential, the argument reduction
is much more straightforward, since it is mostly a matter of
decomposing x into t · 2e with t ∈ [

√
2/2,
√
2]. The code

further reduces it to z = t · ri − 1 using a tabulated value ri
such that z ≃ 0. The interesting part comes afterwards, as the
code relies on the following approximation:

ln(t) ≃ P (z) + z + Ci,1 + Ci,2

where P is a degree-6 polynomial and where Ci,1 and Ci,2

are two tabulated values whose sum approximates − ln ri.
As of writing this article, our tool allows us to prove a

correctness property on the polynomial evaluation P (z), which
uses fused multiply-add operations. More precisely, assuming
that z = t · ri − 1 is close enough to 0, we want to prove

[[P (z)]]flt finite ∧ |[[P (z)]]flt − (ln(1 + z)− z)| ≤ 2−68.72.

Applying Theorem 1 yields a subgoal WB(P (z)) which
consists only of proof obligations of the absence of overflow.
These obligations are automatically proved by the strategy
simplify_wb. The remaining goal

|[[P (z)]]rnd − (ln(1 + z)− z)| ≤ 2−68.72

is proved in three lines of Coq, using Gappa and CoqInterval.

VI. CONCLUSION

We have presented a way to express the kind of floating-
point expressions that appear in the code of mathematical
libraries and a few proof strategies to manipulate them. The
few examples we have experimented with illustrate that it is
effective at tackling the uninteresting but required details of
formal proofs. In particular, in the case of Cody & Waite’s
exponential, a Coq proof already existed but it assumed
exceptional behaviors to be irrelevant and represented floating-
point values as real numbers. Thanks to our approach, handling
actual floating-point numbers instead almost came for free.

This is an early work and the language of expressions is still
lacking several important features. First of all, concrete support
for arrays should be added, as they are commonly encountered
in argument reduction, e.g., for CORE-MATH’s logarithm.
Another missing piece is control flow. Indeed, while the core
of most mathematical functions is branch-free for performance
reasons, there might be some conditional execution at the
entrance and exit of functions to handle exceptional cases.

The language should later be extended with some macro-
operations. For example, a “FastTwoSum” computation is
currently expressed as three separate floating-point additions
and subtractions. It would be more expressive to have a single
macro-operation that receives two numbers x and y and returns
two numbers s and e, with a precondition |[[x]]rnd| ≥ |[[y]]rnd|
in WB. The user would then be allowed to use the equality
[[x]]rnd + [[y]]rnd = [[s]]rnd + [[e]]rnd for free in the subsequent
proof, without having to deal with rounding.
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