Manifest Termination

Assia Mahboubi Guillaume Melquiond

Inria
June 15, 2023

Mathematics, Proofs, and Computations

Helfgott's proof of the ternary Goldbach conjecture
Every odd number greater than 5 is the sum of three primes.
(250+ pages of proofs, $1000+$ hours of computations)

Mathematics, Proofs, and Computations

Helfgott's proof of the ternary Goldbach conjecture
Every odd number greater than 5 is the sum of three primes. ($250+$ pages of proofs, $1000+$ hours of computations)

Long-term goal: get mathematicians to do formal proofs Intermediate steps:

- get them to use a proof assistant,
- let them perform computations inside a proof assistant,
- let them write their programs inside a proof assistant.

Mathematics, Proofs, and Computations

Helfgott's proof of the ternary Goldbach conjecture

Every odd number greater than 5 is the sum of three primes. (250+ pages of proofs, 1000+ hours of computations)

Long-term goal: get mathematicians to do formal proofs Intermediate steps:

- get them to use a proof assistant,
- let them perform computations inside a proof assistant,
- let them write their programs inside a proof assistant.

What about non-termination?

If an evaluation actually terminates, why do we still need to prove that it terminates?

Example: Factorial

```
Factorial over \(\mathbb{N}=1+\mathbb{N}\)
Fixpoint fact (n: nat): nat \(:=\)
    match \(n\) with
    | \(0=>1\)
    \(\mid \mathrm{S} \mathrm{n}^{\prime}=>\mathrm{n} *\) fact \(\mathrm{n}^{\prime}\)
    end.
```


Termination

Reason: recursive calls on a structurally decreasing argument.

Example: Factorial

```
Factorial over \(\mathbb{N}=1+\mathbb{N}\)
Fixpoint fact (n: nat) : nat \(:=\)
    match \(n\) with
    | \(0=>1\)
    \(\mid \mathrm{S} \mathrm{n}^{\prime}=>\mathrm{n} *\) fact \(\mathrm{n}^{\prime}\)
    end.
```


Termination

Reason: recursive calls on a structurally decreasing argument.
Computations
Goal fact $15=1307674368000$.
Proof. reflexivity. Qed.

Does not terminate in practice!

Factorial, Faster

```
Factorial over }\mathbb{Z}=1+2\mathbb{P},\mathbb{P}=1+2\mathbb{P
Fixpoint factZ (n: Z): Z :=
    if Z.eqb n 0 then 1%Z
    else Z.mul n (factZ (Z.pred n)).
```

No longer structurally decreasing. (Not even terminating in general.) But factZ 15 would terminate!

Factorial, Faster

```
Factorial over }\mathbb{Z}=1+2\mathbb{P},\mathbb{P}=1+2\mathbb{P
Fixpoint factZ (n: Z): Z :=
    if Z.eqb n O then 1%Z
    else Z.mul n (factZ (Z.pred n)).
```

No longer structurally decreasing. (Not even terminating in general.) But factZ 15 would terminate!

Usual solution: provide some structurally decreasing fuel

- Variant 1: prove beforehand that there is enough fuel, e.g., provide a well-founded relation and an accessibility proof.
- Variant 2: deal with a possibly stuck computation, e.g., use the option monad.

Factorial, the Hard Way

```
Lemma fact2_aux1 n: (0 <= n)%Z -> Z.eqb n 0 = false ->
        (0 <= Z.pred n)%Z.
Proof. case Z.eqb_spec ; [easyllia]. Qed.
Lemma fact2_aux2 n: (0 <= n)%Z -> Zwf 0 (Z.pred n) n.
Proof. unfold Zwf. lia. Qed.
Fixpoint factZ_aux (n: Z) (H: Z.le 0 n)
                                (W: Acc (Zwf 0) n): Z :=
    ( if Z.eqb n 0 as b return Z.eqb n 0 = b -> Z
        then fun _ => 1%Z
        else fun Hn =>
        match W with
        | Acc_intro _ W' =>
            Z.mul n (factZ_aux (Z.pred n)
                        (fact2_aux1 n H Hn) (W, _ (fact2_aux2 n H)))
        end
    ) eq_refl.
Definition factZ n (H: Z.le 0 n) :=
    factZ_aux n H (Acc_intro_generator 20 (
        Zwf_well_founded 0) n).
```

Eval compute in factZ 15 _.

Open Recursion and Computations

```
Open factorial over }\mathbb{Z}=1+2\mathbb{P},\mathbb{P}=1+2\mathbb{P
Definition factZ (k: Z -> Z) (n: Z): Z :=
    if Z.eqb n O then 1%Z
    else Z.mul n (k (Z.pred n)).
```

factZ has type $(\mathbb{Z} \rightarrow \mathbb{Z}) \rightarrow(\mathbb{Z} \rightarrow \mathbb{Z})$.
(More generally, $F:(T \rightarrow U) \rightarrow(T \rightarrow U)$.)
We want to compute " $F^{*} x$ ", i.e., " $(F \circ \cdots \circ F \circ \ldots) x$ ".

Open Recursion and Computations

```
Open factorial over \(\mathbb{Z}=1+2 \mathbb{P}, \mathbb{P}=1+2 \mathbb{P}\)
Definition factZ (k: Z -> Z) (n: Z): Z :=
    if \(Z\).eqb \(n 0\) then \(1 \% Z\)
    else Z.mul \(n(k\) (Z.pred n)).
```

factZ has type $(\mathbb{Z} \rightarrow \mathbb{Z}) \rightarrow(\mathbb{Z} \rightarrow \mathbb{Z})$.
(More generally, $F:(T \rightarrow U) \rightarrow(T \rightarrow U)$.)
We want to compute " $F^{*} x$ ", i.e., " $(F \circ \cdots \circ F \circ \ldots) x$ ".

Bounded computations

Goal forall k, iter 100 factZ k $15=1307674368000 \%$ Z. Proof. reflexivity. Qed.

Next Step: Proving Something Interesting

Knowing " $\forall k, F^{n} k x=y$ ", can we prove anything about y ?
Example: $(0 \leq x \Rightarrow y=x!)$ for factZ.

Next Step: Proving Something Interesting

Knowing " $\forall k, F^{n} k x=y$ ", can we prove anything about y ?
Example: $(0 \leq x \Rightarrow y=x!)$ for factZ.

```
Lemma nat_spec \(\{T \mathrm{U}\}\) ( \(\mathrm{F}:(\mathrm{T}->\mathrm{U})->\mathrm{T}->\mathrm{U})(\mathrm{P}: \mathrm{T}->\mathrm{U}->\operatorname{Prop}):\)
    ( \(\exists \mathrm{f}, \forall \mathrm{x}, \mathrm{P} \mathrm{x}(\mathrm{f} x)\) ) ->
    \((\forall \mathrm{kx},(\forall \mathrm{y}, \mathrm{P} \mathrm{y}(\mathrm{k} \mathrm{y})) \rightarrow \mathrm{P} \mathrm{x}(\mathrm{F} \mathrm{k} \mathrm{x})) \rightarrow->(* 2 *)\)
    \(\forall \mathrm{n} \mathrm{x} \mathrm{y},(\forall \mathrm{h}, \mathrm{Nat}\).iter \(\mathrm{n} \mathrm{F} \mathrm{h} \mathrm{x}=\mathrm{y}) \rightarrow\) (*3*)
    \(P \mathrm{x}\) y.
```


Requirements

(1) Some function satisfies the specification P.
(2) P is an invariant of F.
(3) The computation $F^{*} x$ terminates.

Manifest Termination

Back to factorial

```
Definition factZ (k: Z -> Z) (n: Z): Z :=
    if Z.eqb n 0 then 1%Z
    else Z.mul n (k (Z.pred n)).
Goal Z.of_nat (fact 15) = 1307674368000%Z.
Proof.
apply nat_spec with (F := factZ) (n := 20)
    (P x y := Z.le 0 x -> Z.of_nat(fact(Z.to_nat x))=y).
- eexists; reflexivity.
- ... (* Z.of_nat is a morphism *)
- reflexivity.
Qed. (* axiom-free *)
```


Manifest Termination

Back to factorial

```
Definition factZ (k: Z -> Z) (n: Z): Z :=
    if Z.eqb n 0 then 1%Z
    else Z.mul n (k (Z.pred n)).
Goal Z.of_nat (fact 15) = 1307674368000%Z.
Proof.
apply nat_spec with (F := factZ) (n := 20)
    (P x y := Z.le 0 x -> Z.of_nat(fact(Z.to_nat x))=y).
- eexists; reflexivity.
- ... (* Z.of_nat is a morphism *)
- reflexivity.
Qed. (* axiom-free *)
```

It works just fine
But can we do without the hypothesis " $\exists f, \forall x, P x(f x)$ "?

Going Further

```
A Constructive Fixed Point Combinator (Charguéraud 09)
Definition fixacc \{T U\} (dummy: U) (F: (T->U)->T->U)
    ( R : \(\mathrm{T}->\mathrm{T}->\mathrm{bool}\) ) ( \(\mathrm{x}: \mathrm{T}\) ) ( \(\mathrm{W}: \mathrm{Acc} \mathrm{R}\) x) :=
    Acc_rect - (fun u - k =>
```



```
    F k \({ }^{\prime}\) ) W.
```

Just a fancy way of writing " $F^{*} x$ "

- " $R v u$ " describes the call graph. It holds when
- either $F u$ was never called during the evaluation of $F^{*} x$,
- or $F u$ performed a direct call to $F v$.
- W proves that the graph rooted at x is finite, acyclic.

Axioms! Lots of Axioms!

Assume the existence of a symbol

$$
\text { fixrel: ((T -> U) -> (T -> U)) -> T } \rightarrow \text { U -> Prop }
$$

such that (fixrel F x y) holds when $F^{*} x \equiv y$.

Axioms! Lots of Axioms!

Assume the existence of a symbol

$$
\text { fixrel: ((T -> U) -> (T -> U)) -> T } \rightarrow \text { U } \rightarrow \text { Prop }
$$

such that (fixrel $\mathrm{F} x \mathrm{y}$) holds when $F^{*} x \equiv y$.

```
Axiom fixrel_spec: }\forall{T|U} (F:(T->U)->T->U) x y
    fixrel F x y ->
    \exists R,
    (}\forall\textrm{u}f1\textrm{f}2,(\forallv,R v u -> f1 v = f2 v) ->
                        F f1 u = F f2 u) /\
    G: Acc R x,
    |, y = fixacc d F R x W.
```


Axioms! Lots of Axioms!

Assume the existence of a symbol

$$
\text { fixrel: ((T -> U) -> (T -> U)) -> T } \rightarrow \text { U } \rightarrow \text { Prop }
$$ such that (fixrel $\mathrm{F} x \mathrm{y}$) holds when $F^{*} x \equiv y$.

```
Axiom fixrel_spec: }\forall{T|U}(F:(T->U)->T->U) x y
    fixrel F x y ->
    \exists R,
    (}\forall\textrm{u}f1\textrm{f}2,(\forall\textrm{v},\textrm{R}v\textrm{v}-> f1 v = f2 v) ->
                        F f1 u = F f2 u) /\
    \existsW:Acc R x,
    |, y = fixacc d F R x W.
```


Consistency

Does it need decidable equality on T ?

Conclusion

Using (non) terminating computations inside proofs
(1) Prove " $\forall k, F^{n} k x=y$ " by computation.
(2) Compute then assume an accessibility witness.

Conclusion

Using (non) terminating computations inside proofs

(1) Prove " $\forall k, F^{n} k x=y$ " by computation.
(2) Compute then assume an accessibility witness.

Questions?

- Can we get rid of the hypothesis " $\exists f, \forall x, P x(f x)$ " in the generic lemma for the iterative version?
- Is the axiomatic version more useful in practice?
- It currently requires an ad-hoc proof for each F.

Can we find a generic lemma as with the iterative version?

