Coqg

LASER 2011 Summerschool
Elba Island, Italy

Christine Paulin-Mohring
http://www.lri.fr/~paulin/LASER

Université Paris Sud & INRIA Saclay - fle-de-France

September 2011

http://www.lri.fr/~paulin/LASER

The proof assistant CoQ

» An environment for developing mathematical facts:
» defining objects
(integers, sets, trees, functions, programs ...)
» make statements (predicates)
» write proofs

» The compiler checks the correctness:
» of definitions (well-formed sets, terminating functions .. .)
» of proofs
» The environment helps with:
» advanced notations
» proof search
» modular developments
» program extraction

Examples done with CoQ

» Mathematics

» Fundamental theorem of Algebra (Barendregt et al)
» Feit-Thompson theorem on finite groups
(INRIA-Microsoft Research)
» Mixing maths and programs
» Four color theorem (Gonthier-Werner)
» Primality checker (Théry et al)
» A Wave Equation Resolution Scheme (Boldo et al)
» Programming environments with proofs
» JavaCard architecture
(Gemalto-Trusted Logic, EAL7 certification)
» Certified optimizing compiler for C (Leroy et al)
» Formal Proofs for Computational Cryptography (Barthe et al)
» Ynot library: imperative programs-separation logic
(Morrisett and al)

Related systems

» CoaQ is a proof assistant similar to HOL
(Isabelle/HOL, HOL4,HOL-light), PVS, ...

» CoaqQ is based on intuitionistic type theory:
» Similar to Epigram, Matita, ... also Agda, NuPrl ...
» Intentional behavior:
functions are programs that can be computed (not binary
relations).
» Strong correspondance between proofs and programs.

Practical informations on CoQ

» The Coq web site cog.inria.fr
» Official distribution (multi-platform), Reference manual
» Libraries and User’s contributions

» Book : the Coq’art by Yves Bertot and Pierre Castéran
|

Interactive Theorem Proving and Program Development
Coq’Art: The Calculus of Inductive Constructions

Series: Texts in Theoretical Computer Science.
http://www.labri.fr/perso/casteran/CogArt

» See also:
» Software foundations by B. Pierce and al.
http://www.cis.upenn.edu/~bcpierce/sf/
» Certified Programming with Dependent Types by A. Chlipala.
http://adam.chlipala.net/cpdt/

coq.inria.fr
http://www.labri.fr/perso/casteran/CoqArt
http://www.cis.upenn.edu/~bcpierce/sf/
http://adam.chlipala.net/cpdt/

Two levels architecture

CoqQ environment
Coaq kernel
> notations
» extended language) » limited language
compiled to
> libraries > few rules
» tactics > expressive
> user extensible

5=2+3 becomes (using Z_scope)
Qeqg Z
(Zpos (xI (xO xH)))
(Zplus (Zpos (xO xH)) (Zpos (xI xH)))

Using Coa for program verification

» Express “program p is correct” as a mathematical statement
in CoQ and prove it!
Can be hard but proof is safe.

Using Coa for program verification

» Express “program p is correct” as a mathematical statement
in CoQ and prove it!
Can be hard but proof is safe.

» Program your favorite program analyser (model-checking,
abstract interpretation,...) in CoQ, prove it correct and use
it !

A big investment, but automatic result for each program
instance.

Using Coa for program verification

» Express “program p is correct” as a mathematical statement
in CoQ and prove it!
Can be hard but proof is safe.

» Program your favorite program analyser (model-checking,
abstract interpretation,...) in CoQ, prove it correct and use
it !

A big investment, but automatic result for each program
instance.

» Represent program p as a CoqQ term t and the specification

as atype T such that t: T implies p is correct.
Works well for functional (possibly monadic) programs.

Using Coa for program verification

» Express “program p is correct” as a mathematical statement
in CoQ and prove it!
Can be hard but proof is safe.

» Program your favorite program analyser (model-checking,
abstract interpretation,...) in CoQ, prove it correct and use
it !

A big investment, but automatic result for each program
instance.

» Represent program p as a CoqQ term t and the specification
as atype T such that t: T implies p is correct.
Works well for functional (possibly monadic) programs.

» Use an external tool to generate proof obligations and then
Coaq to solve obligations
Less safe approach but can deal with undecidable
fragments

Coq

: outline of the lectures

Introduction

Basics of COQ system

Using simple inductive definitions
Functional programming with CoQ

Automating proofs

Outline

Introduction
e What is Coq ?
e Example

Basics of CoQ system

Using simple inductive definitions

Functional programming with CoaQ

Automating proofs

Example of C program verification

Approximate cosinus function near 0 using floating point

numbers.
float my_cosine (float x) {
return 1.0f — x » x x» 0.5f;

2 3 2 T [1 2 3 1

Method error

0x1 £1c004p-1
0.0095115350

0x1 11cp-6
00312347412

; ; 1
Floating point error near 5

Using Coa for C program verification

Code with specification (using real numbers):

/+@ requires \abs(x) <= 0Oxlp—5;
@ ensures \abs (\result — \cos(x)) <= 0xIp—23;
@x/
float my_cosine (float x) {
//@ assert \abs (1.0 — x*x%x0.5 — \cos (x)) <= 0xlp—24;
return 1.0f — x » x = 0.5f;

}

Frama-C/Why/Coq

Generating conditions

frama-c —-jessie mycos2.c

File Configuration Proof

Alt-Ergo| Z3 | Gappa my cosine ensures_default po 1
Proof obligations 0923 2.3 0.15.0 Statistics
(55) x @: single
N N H1: abs real(single value(x ©)) <= €xl.p-5
- Function my cosine 0 0 © » - - -
Default behavior -
1. assertion MG abs_real((1.8 - single_value(x_8) * single value(x_8) * 0.5 -
2. postcondition) cos(single value(x 0)))) <= oxl.p-24
Function my cosine
safety 0 0 v »
1. check FP overflow a 6
2. check FP overflow @ @
3. check FP overflow gg gg @

/*@ requires \abs(x) <= @x1p-5; // $x \in [-1/32,1/32]%
@ ensures \abs(\result - \cos(x)) <= Ox1p-23;
@ // total error
@/
float my _cosine(float x) {
//@ assert
// method error
return 1.6f - x * x * 0.5f;

Tlmeou* 10 . [Pretty Printer | file: mycos2.c VC: assertion

Generating CoQ goals

File Edit Navigation TryTactics Templates Queries Display Compile Windows Help

EXI242+F %O
@mycos2_why.v

2

(* why obligation from file "mycos2.c

.c*, line 6, characters 13-53: *)
(*Why goal*) Lemma my cosine ensures default po 1 :
forall (x @: single]

B

1 subgoal

forall (HW 1: (* JE 3 %) (Rle (Rabs (single_value x_8)) (1 / 32)3R)),
{* 3c 13 %)

(Rle

(Rabs

(Rminus

(Rminus

{1/ 16777216)%R) .
Proof.

intuition.

(* FILL PROOF HERE *)

interval with (i bisect diff (single value x 8))
Save.

Ready, proving my_cosine_ensures_default_po_1

(1)%R (Rnult (Rmult (single value x 0) (single value x 6)) (65 / 10)%R))
cos (single value x 8))))

T

X0 :
HW 1

(Rabs

single

(Rabs (single value x 0) <= 1 / 32)%R

(1 - single value x @ * single value x 6 * (5 / 16) -
cos (single value x 8)) <= 1 / 16777216)%R

Line: 166 Char: 11 . oglde started

Generating CoQ goals

Certified version of automated tools

File Edit Navigation Try Tactics Templates Queries Display Compile Windows Help
EX I 23T IO P
£ mycos2_gappa.

(€q (SIngle exacT resutt) (L)%K} /\

o [~] [t subgoal &)
(eq (single model result) (1)%R)), x 0 : single
forall (resulto: si . HW_1 : (Rabs (single value x_8) <= 1/ 32)%R
forall (HW 6: (mul single post nearest even x 0 x @ resulto)), Hi 4 : (Rabs -
forall (resultl: single), B (1 - single value x @ * single value x 6 * (5 / 18) -
forall (HW_7: (eq (single value resultl) (05 / 10)%R) /\ cos (single_value x 0)) <= 1 / 16777216)%R
(eq (single exact resultl) (65 / 18)%R) /\ result : single N N
(eq (single model resultl) (05 / 10)%R)), H : single value result = 1%R
forall single), resultd : single
forall (HW_8: (mul single post nearest even resultd resultl result2))| | resultl : single
forall gle), Ho : single value resultl = (5 / 10)%R L
forall (MW 9: (sub_single post nearest_even result result2 result3)), | | result2 : single 1
forall (_retres: single), result3 : single
forall (HW_10: _retres = result3), H1 : single value resulte =
forall (why_ return: single), round_single nearest even (single value x @ * single value x_0)
W_11: why return = _ retres), H3 : single value result2 =
- § round single nearest even (single value resultd * single value resultl)
(Rle (Rabs (Rninus (single value why return) (cos (single value X 0) 1| s : single value result3 =
(1 / 8388668)%R). round_single nearest even (single value result - single value result2)
Proof. - (1/1)
intuition; subst. (Rabs (single value result3 - cos (single value x 0)) <= 1 / 8388608)%R
clear H1 H2 H4 H5. -

unfold mul_single_post,sub_single_post in *;
intuition.

clear H7 H8 H2 H9 H4 H16.

rewrite H5, H3, H1, H9, H.

unfold round single; simpl.

gappa.

Save.

@

Ready, proving my_cosine_ensures_default_po_2

Line: 192 Char: 26 coqlg %ned I

