
Coq
LASER 2011 Summerschool

Elba Island, Italy

Christine Paulin-Mohring
http://www.lri.fr/~paulin/LASER

Université Paris Sud & INRIA Saclay - Île-de-France

September 2011

http://www.lri.fr/~paulin/LASER


The proof assistant COQ

I An environment for developing mathematical facts:
I defining objects

(integers, sets, trees, functions, programs . . . )
I make statements (predicates)
I write proofs

I The compiler checks the correctness:
I of definitions (well-formed sets, terminating functions . . . )
I of proofs

I The environment helps with:
I advanced notations
I proof search
I modular developments
I program extraction



Examples done with COQ

I Mathematics
I Fundamental theorem of Algebra (Barendregt et al)
I Feit-Thompson theorem on finite groups

(INRIA-Microsoft Research)
I Mixing maths and programs

I Four color theorem (Gonthier-Werner)
I Primality checker (Théry et al)
I A Wave Equation Resolution Scheme (Boldo et al)

I Programming environments with proofs
I JavaCard architecture

(Gemalto-Trusted Logic, EAL7 certification)
I Certified optimizing compiler for C (Leroy et al)
I Formal Proofs for Computational Cryptography (Barthe et al)
I Ynot library: imperative programs-separation logic

(Morrisett and al)



Related systems

I COQ is a proof assistant similar to HOL
(Isabelle/HOL, HOL4,HOL-light), PVS, . . .

I COQ is based on intuitionistic type theory:
I Similar to Epigram, Matita, . . . also Agda, NuPrl . . .
I Intentional behavior:

functions are programs that can be computed (not binary
relations).

I Strong correspondance between proofs and programs.



Practical informations on COQ

I The Coq web site coq.inria.fr
I Official distribution (multi-platform), Reference manual
I Libraries and User’s contributions

I Book : the Coq’art by Yves Bertot and Pierre Castéran

Interactive Theorem Proving and Program Development
Coq’Art: The Calculus of Inductive Constructions

Series: Texts in Theoretical Computer Science.

http://www.labri.fr/perso/casteran/CoqArt

I See also:
I Software foundations by B. Pierce and al.
http://www.cis.upenn.edu/~bcpierce/sf/

I Certified Programming with Dependent Types by A. Chlipala.
http://adam.chlipala.net/cpdt/

coq.inria.fr
http://www.labri.fr/perso/casteran/CoqArt
http://www.cis.upenn.edu/~bcpierce/sf/
http://adam.chlipala.net/cpdt/


Two levels architecture

COQ environment

I notations

I extended language

I libraries

I tactics

I user extensible

compiled to

COQ kernel

I limited language

I few rules

I expressive

5=2+3 becomes (using Z_scope)
@eq Z

(Zpos (xI (xO xH)))
(Zplus (Zpos (xO xH)) (Zpos (xI xH)))



Using COQ for program verification

I Express “program p is correct” as a mathematical statement
in COQ and prove it!
Can be hard but proof is safe.

I Program your favorite program analyser (model-checking,
abstract interpretation,. . . ) in COQ, prove it correct and use
it !
A big investment, but automatic result for each program
instance.

I Represent program p as a COQ term t and the specification
as a type T such that t : T implies p is correct.
Works well for functional (possibly monadic) programs.

I Use an external tool to generate proof obligations and then
COQ to solve obligations
Less safe approach but can deal with undecidable
fragments



Using COQ for program verification

I Express “program p is correct” as a mathematical statement
in COQ and prove it!
Can be hard but proof is safe.

I Program your favorite program analyser (model-checking,
abstract interpretation,. . . ) in COQ, prove it correct and use
it !
A big investment, but automatic result for each program
instance.

I Represent program p as a COQ term t and the specification
as a type T such that t : T implies p is correct.
Works well for functional (possibly monadic) programs.

I Use an external tool to generate proof obligations and then
COQ to solve obligations
Less safe approach but can deal with undecidable
fragments



Using COQ for program verification

I Express “program p is correct” as a mathematical statement
in COQ and prove it!
Can be hard but proof is safe.

I Program your favorite program analyser (model-checking,
abstract interpretation,. . . ) in COQ, prove it correct and use
it !
A big investment, but automatic result for each program
instance.

I Represent program p as a COQ term t and the specification
as a type T such that t : T implies p is correct.
Works well for functional (possibly monadic) programs.

I Use an external tool to generate proof obligations and then
COQ to solve obligations
Less safe approach but can deal with undecidable
fragments



Using COQ for program verification

I Express “program p is correct” as a mathematical statement
in COQ and prove it!
Can be hard but proof is safe.

I Program your favorite program analyser (model-checking,
abstract interpretation,. . . ) in COQ, prove it correct and use
it !
A big investment, but automatic result for each program
instance.

I Represent program p as a COQ term t and the specification
as a type T such that t : T implies p is correct.
Works well for functional (possibly monadic) programs.

I Use an external tool to generate proof obligations and then
COQ to solve obligations
Less safe approach but can deal with undecidable
fragments



Coq: outline of the lectures

Introduction

Basics of COQ system

Using simple inductive definitions

Functional programming with COQ

Automating proofs



Outline

Introduction
What is COQ ?
Example

Basics of COQ system

Using simple inductive definitions

Functional programming with COQ

Automating proofs



Example of C program verification

Approximate cosinus function near 0 using floating point
numbers.

float my_cosine(float x) {
return 1.0f − x * x * 0.5f;

}

43210−1−2−3−4

2

1

0

−1

−2

cos(x)

1− x2

2
method error

0x1p-5

0.0312500000
0x1.fffp-6

0.0312461853
0x1.ffep-6

0.0312423706
0x1.ffdp-6

0.0312385559
0x1.ffcp-6

0.0312347412

0x1.ffc014p-1

0.9995123148

0x1.ffc00cp-1

0.9995120764

0x1.ffc004p-1

0.9995118380

Method error Floating point error near 1
32



Using COQ for C program verification

Code with specification (using real numbers):

/*@ requires \abs(x) <= 0x1p−5;
@ ensures \abs(\result − \cos(x)) <= 0x1p−23;
@*/

float my_cosine(float x) {
//@ assert \abs(1.0 − x*x*0.5 − \cos(x)) <= 0x1p−24;
return 1.0f − x * x * 0.5f;

}

Frama-C/Why/Coq



Generating conditions

frama-c -jessie mycos2.c



Generating COQ goals



Generating COQ goals

Certified version of automated tools


