Lecture 2: Using simple inductive definitions

- Covers section 3 (+ part of 4) of course notes
- Example: board.v
- Challenge 5.4 (Needham-Schroeder protocol)
Basic objects

- sorts: $\text{Prop} : \text{Type}_1$, $\text{Type}_i : \text{Type}_{i+1}$
- variables
- one product: $\forall x : A, B$ (includes $A \rightarrow B$)
- function abstraction: \texttt{fun } $x : A \Rightarrow t$
- function application: $t \ u$

Computation:

- $(\texttt{fun } x : A \Rightarrow t) \ u \equiv t[x \leftarrow u]$
Basic rules

Environment ($\Gamma \vdash$):

\[
\begin{align*}
\Gamma & \vdash \\
\end{align*}
\]

\[
\begin{align*}
\Gamma, x : A & \vdash \\
\end{align*}
\]

Constant and variable:

\[
\begin{align*}
\Gamma & \vdash \\
\Gamma, x : A & \vdash \\
\end{align*}
\]

\[
\begin{align*}
\Gamma & \vdash (x, A) \in \Gamma \\
\end{align*}
\]

\[
\begin{align*}
\Gamma & \vdash x : A \\
\end{align*}
\]

Product:

\[
\begin{align*}
\Gamma & \vdash A : s_1 \\
\Gamma, x : A & \vdash B : s_2 \\
\end{align*}
\]

\[
\begin{align*}
\Gamma & \vdash \forall x : A, B : s_2 \\
\end{align*}
\]

Function:

\[
\begin{align*}
\Gamma, x : A & \vdash t : B \\
\end{align*}
\]

\[
\begin{align*}
\Gamma & \vdash \text{fun } x : A \Rightarrow t : \forall x : A, B \\
\end{align*}
\]

\[
\begin{align*}
\Gamma & \vdash t : \forall x : A, B \\
\Gamma & \vdash u : A \\
\end{align*}
\]

\[
\begin{align*}
\Gamma & \vdash tu : B[x \leftarrow u] \\
\end{align*}
\]

Computation:

\[
\begin{align*}
\Gamma & \vdash t : A \\
\Gamma & \vdash B : s \\
\end{align*}
\]

\[
\begin{align*}
A \equiv B \\
\end{align*}
\]

\[
\begin{align*}
\Gamma & \vdash t : B \\
\end{align*}
\]
Local definitions
\[\text{let } x := e \text{ in } t\]

Inductive definitions
See next lecture

Modules
independant level
Outline

- Introduction
- Basics of Coq system
 - Using simple inductive definitions
 - The board example
 - Properties of inductive definitions
 - Functional programming with Coq
 - Automating proofs
The board example

Nine bicolor tokens (one face black and one face white) are placed on a 3×3 board.

- turn at each step either one line or one column (it alternates the color of the tokens)
- study when a configuration is reachable from a starting position.
Example
A little bit of programming

- Booleans to represent colors (true is white)
- Triple of colors to represent lines
- Triple of lines to represent boards

Coq? Definition color := bool.

Coq? Definition line : Type := (color * color * color)%type.

Coq? Definition board : Type := (line * line * line)%type.

Coq? Definition inv_line (l:line) : line :=
Coq? match l with (x,y,z) => (negb x,negb y,negb z) end.

How to define the operation which turns a line?
Which line?
We index the line by an integer: 0, 1 or 2

```coq
Definition turn_line (i:nat) (b:board) :=
  match b with (l0,l1,l2) =>
  match i with 0 => (inv_line l0,l1,l2)
    | 1 => (l0,inv_line l1,l2)
    | 2 => (l0,l1,inv_line l2)
  end
end.
```

Error: Non exhaustive pattern-matching: no clause found for pattern `S (S (S _))`
Making the function total

Coq? **Definition** turn_line (i:nat) (b:board) :=
Coq? match b with (l0,l1,l2) =>
Coq? match i with 0 => (inv_line l0,l1,l2)
Coq? | 1 => (l0,inv_line l1,l2)
Coq? | 2 => (l0,l1,inv_line l2)
Coq? | _ => (l0,l1,l2)
Coq? end
Coq? end.

turn_line is defined
Turning a column

Coq? Definition inv_elt (i:nat) (l:line) : line :=
Coq? match l with (x,y,z) =>
Coq? match i with 0 => (negb x,y,z)
Coq? | 1 => (x,negb y,z)
Coq? | 2 => (x,y,negb z)
Coq? | _ => (x,y,z)
Coq? end
Coq? end.

Coq? Definition turn_col (i:nat) (b:board) :=
Coq? match b with (l0,l1,l2) =>
Coq? (inv_elt i l0, inv_elt i l1, inv_elt i l2)
Coq? end.

Similar code, generalisation ?
Another approach

Work with polymorphic triples

Coq? `Section Polymorphic_Triple.`

Coq? `Variable M : Type.`
M is assumed

triple is defined
triple_rect is defined
triple_ind is defined
triple_rec is defined

Coq? `Definition triple_x (m : M) : triple := Triple m m m.`
triple_x is defined
Operators on triples

Coq? Variable f : M -> M.

Coq? Definition triple_map (t: triple) : triple :=
Coq? match t with (Triple a b c) => (Triple (f a) (f b) (f c))
Coq? end.

Coq? Definition triple_map_select (p : pos) (t:triple) : triple :=
Coq? match t with (Triple a b c) =>
Coq? match p with A => (Triple (f a) b c)
Coq? | B => (Triple a (f b) c)
Coq? | C => (Triple a b (f c))
Coq? end
Coq? end.
Coq? Definition proj_triple (p: pos) (t: triple) : M :=
 Coq? match t with (Triple a b c) =>
 Coq? match p with A => a | B => b | C => c end
 Coq? end.
proj_triple is defined

Coq? Check triple_map.
triple_map
 : triple -> triple

Coq? End Polymorphic_Triple.

Coq? Check proj_triple.
proj_triple
 : forall M : Type, pos -> triple M -> M

Coq? Check triple_map.
triple_map
 : forall M : Type, (M -> M) -> triple M -> triple M

Coq? **Definition** turn_color (c: color) : color :=
Coq? match c with White => Black | Black => White end.

Coq? **Definition** board := triple (triple color).

Coq? **Definition** turn_row (p: pos) : board -> board :=
Coq? triple_map_select (triple_map turn_color) p.

Coq? **Definition** turn_col (p: pos) : board -> board :=
Coq? triple_map (triple_map_select turn_color p).

Coq? **Definition** proj_board (x y: pos) (b:board) : color :=
Coq? proj_triple y (proj_triple x b).
Coq? Eval compute in (turn_color White).
 = Black
 : color

Coq? **Definition** white_board : board
Coq? := triple_x (triple_x White).
white_board is defined

Coq? **Notation** "[x | y | z]" := (Triple x y z).
 Setting notation at level 0.

Coq? Eval compute in (turn_row A (turn_col B white_board)).
 = [[Black | White | Black] | [White | Black | White]
 | [White | Black | White]]
 : board
Outline

- Introduction
- Basics of Coq system
- Using simple inductive definitions
 - The board example
 - Properties of inductive definitions
- Functional programming with Coq
- Automating proofs
Rules for (mutual)-inductive definitions

\[\Gamma \vdash \text{Ind}(l_1 : A_1, \ldots, l_k : A_k)(c_1 : C_1 | \ldots | c_n : C_n) \text{ well-formed} \]
\[\Gamma, \text{Ind}(l_1 : A_1, \ldots, l_k : A_k)(c_1 : C_1 | \ldots | c_n : C_n) \vdash \]

Now we assume \(\text{Ind}(l_1 : A_1, \ldots, l_k : A_k)(c_1 : C_1 | \ldots | c_n : C_n) \in \Gamma \).

New objects available for types and constructors:

\[\Gamma \vdash l_i : A_i \]
\[\Gamma \vdash c_i : C_i \]
Examples

type bool = true | false.
type nat = O | S of nat.

Coq? Print bool.
Inductive bool : Set := true : bool | false : bool

Coq? Print nat.
Inductive nat : Set := O : nat | S : nat -> nat
For S: Argument scope is [nat_scope]

Logical definitions:

Coq? Print or.
Inductive or (A B : Prop) : Prop :=
 or_introl : A -> A \ B | or_intror : B -> A \ B

Infinite branching:

Coq? | lim : (nat -> ord) -> ord.
Examples

type bool = true | false.
type nat = O | S of nat.

Coq? Print bool.
Inductive bool : Set := true : bool | false : bool

Coq? Print nat.
Inductive nat : Set := O : nat | S : nat -> nat
For S: Argument scope is [nat_scope]

Logical definitions:

Coq? Print or.
Inductive or (A B : Prop) : Prop :=
 or_introl : A -> A \/ B | or_intror : B -> A \/ B

Infinite branching:

Coq? | lim : (nat -> ord) -> ord.
Examples

type bool = true | false.
type nat = O | S of nat.

Coq? Print bool.
Inductive bool : Set := true : bool | false : bool

Coq? Print nat.
Inductive nat : Set := O : nat | S : nat -> nat
For S: Argument scope is [nat_scope]

Logical definitions:

Coq? Print or.
Inductive or (A B : Prop) : Prop :=
 or_introl : A -> A \/ B | or_intror : B -> A \/ B

Infinite branching:

Coq? | lim : (nat -> ord) -> ord.
Inductive predicates

\[
\frac{n \leq n}{n \leq m} \quad \frac{n \leq m}{n \leq S\ m}
\]

Coq? \texttt{Print le.}
\texttt{Inductive le (n : nat) : nat \to Prop :=}
\texttt{ le_n : n \leq n | le_S : \forall m : nat, n \leq m \to n \leq S\ m}

Indexed types:

Coq? \texttt{Inductive vect (A:Type) : nat \to Type :=}
Coq? \texttt{ v0 : vect 0}
Coq? \texttt{ v1 : \forall n, A \to vect n \to vect (S\ n).}
Inductive predicates

\[
\frac{n \leq n}{n \leq m} \quad \frac{n \leq m}{n \leq S m}
\]

Coq? Print le.

Inductive le (n : nat) : nat -> Prop :=
 le_n : n <= n | le_S : forall m : nat, n <= m -> n <= S m

Indexed types:

Coq? Inductive vect (A:Type) : nat -> Type :=
 Coq? v0 : vect 0
 Coq? | v1 : forall n, A -> vect n -> vect (S n).
Inductive predicates

\[\begin{align*}
\frac{n \leq n}{n \leq m} & \quad \frac{n \leq m}{n \leq S m}
\end{align*} \]

Coq? Print le.

```
Inductive le (n : nat) : nat -> Prop :=
    le_n : n <= n | le_S : forall m : nat, n <= m -> n <= S m
```

Indexed types:

Coq? Inductive vect (A:Type) : nat -> Type :=

```
Coq?   v0 : vect 0
Coq?   | v1 : forall n, A -> vect n -> vect (S n).
```
Elimination rule for inductive types

- Pattern-matching construction (+ possibly fixpoint)
- Dependent typing

```
match c as x in I y returns P(y, x)
    with |
    | c_1 x_1 ⇒ f_1
    | . . .
    | c_p x_p ⇒ f_p
end
```

- has type $P(t, c)$ when c has type $I t c$
- reduction as expected when $c = c_{i_k} u$:

$$f_k[x_k ← u]$$
Elimination rule for inductive types

- Pattern-matching construction (+ possibly fixpoint)
- Dependent typing

```latex
\textbf{match} \ c \\
\textbf{with} \ | \ c_{i_1} \bar{x}_1 \Rightarrow f_1 \\
| \ldots \\
| c_{i_p} \bar{x}_p \Rightarrow f_p \\
\textbf{end}
```

- has type $P(\bar{t}, c)$ when c has type $I \bar{t} c$
- reduction as expected when $c = c_{i_k} \bar{u}$:

$$f_k[\bar{x}_k \leftarrow \bar{u}]$$
Elimination rule for inductive types

- Pattern-matching construction (+ possibly fixpoint)
- Dependent typing

\[
\text{match } c \\
\text{with } \begin{cases}
 c_{i_1} \bar{x}_1 & \Rightarrow f_1 \\
 \ldots \\
 c_{i_p} \bar{x}_p & \Rightarrow f_p
\end{cases} \\
\text{end}
\]

- has type $P(\bar{t}, c)$ when c has type $I \bar{t} c$
- reduction as expected when $c = c_{i_k} \bar{u}$:

\[
f_k[\bar{x}_k \leftarrow \bar{u}]
\]
Elimination rule for inductive types

- Pattern-matching construction (+ possibly fixpoint)
- Dependent typing

```latex
\textbf{match} \ c \ \textbf{with} \ |
\text{\quad \quad \quad \quad} c_1 \ \vec{x}_1 \Rightarrow f_1 \\
\text{\quad \quad \quad \quad} \ldots \\
\text{\quad \quad \quad \quad} c_p \ \vec{x}_p \Rightarrow f_p \\
\text{\quad \quad \quad \quad} \textbf{end}
```

- has type $P(t, c)$ when c has type $I \vec{t} c$
- reduction as expected when $c = c_{i_k} \vec{u}$:

$$f_k[\vec{x}_k \leftarrow \vec{u}]$$
Examples

Coq? Check color_ind.

color_ind : forall P : color -> Prop,
 P White -> P Black -> forall c : color, P c

Coq? Check triple_ind.

triple_ind: forall (M : Set) (P : triple M -> Prop),
 (forall m m0 m1 : M, P [m | m0 | m1])
 -> forall t : triple M, P t
Dependent case analysis

Coq? Definition color_case (P : Type) (fw fb: P) (c:color) : P := match c with | White => fw | Black => fb end

Coq? Print color_rect.
color_rect = fun (P : color -> Type) (f : P White) (f0 : P Black) (c : color) =>
match c as c0 return (P c0) with
| White => f
| Black => f0
end
: forall P : color -> Type, P White -> P Black
 -> forall c : color, P c
Corresponding tactics

\[
\Gamma \vdash h : \overrightarrow{t}c \quad (\Gamma \vdash ? : \forall \overrightarrow{z}, C[\overrightarrow{y} \leftarrow \overrightarrow{u}, x \leftarrow c_i \overrightarrow{z}])_i \quad \Rightarrow \quad \Gamma \vdash ? : C[\overrightarrow{y} \leftarrow \overrightarrow{t}, x \leftarrow h]
\]

- **case** \(h \)
- **destructor** \(h \): composed tactic doing substitution in context, intros
- complex rule: abstraction of \(C \) (multiple choices),
- generalisation when \(l \) appears in the conclusion of \(h \): find instances and generates extra subgoals.
Equality (intensional)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>reflexivity</td>
<td>(t \equiv u)</td>
</tr>
<tr>
<td></td>
<td>(\Gamma \vdash ? : t = u)</td>
</tr>
<tr>
<td>rewrite (h)</td>
<td>(\Gamma \vdash h : t = u)</td>
</tr>
<tr>
<td></td>
<td>(\Gamma \vdash ? : C[x \leftarrow u])</td>
</tr>
<tr>
<td></td>
<td>(\Gamma \vdash ? : C[x \leftarrow t])</td>
</tr>
<tr>
<td>symmetry</td>
<td>(\Gamma \vdash ? : u = t)</td>
</tr>
<tr>
<td></td>
<td>(\Gamma \vdash ? : t = u)</td>
</tr>
<tr>
<td>transitivity (v)</td>
<td>(\Gamma \vdash ? : t = v)</td>
</tr>
<tr>
<td></td>
<td>(\Gamma \vdash ? : v = u)</td>
</tr>
<tr>
<td></td>
<td>(\Gamma \vdash ? : t = u)</td>
</tr>
<tr>
<td>f_equal</td>
<td>(\Gamma \vdash ? : f = g)</td>
</tr>
<tr>
<td></td>
<td>((\Gamma \vdash ? : t_i = u_i)_i)</td>
</tr>
<tr>
<td></td>
<td>(f t_1 \ldots t_n = g u_1 \ldots u_n)</td>
</tr>
</tbody>
</table>
Equality and inductive definitions

- Different constructors give different values
- Constructors are injective
- Derived from the elimination rule
Coq? **Definition** is_white : color -> Prop :=
Coq? fun c => match c with White => True | Black => False end.

Coq? **Lemma** black_not_white : ~ (Black = White).

Coq? intro H.
1 subgoal

H : Black = White
============================
False

Coq? change (is_white Black).
1 subgoal

H : Black = White
============================
is_white Black

Coq? rewrite H; simpl.
1 subgoal

H : Black = White
============================
True
Tactic **discriminate**

Coq? Restart.
1 subgoal

```
============================
  Black <> White
```

Coq? discriminate.
Proof completed.

Coq? Qed.
Qed.

discriminate.
black_not_white is defined

Extension: discriminate \(h \)
with \(h \) a proof of equality: \(C[c_i] = C[c_j] \)
Injectivity

Coq? *Lemma* inj1 : forall M (x1 x2 x3 y1 y2 y3:M),
Coq? [x1 | x2 | x3] = [y1 | y2 | y3] -> x1 = y1.

Projection:

Coq? *Definition* pr1 M (t:triple M) : M
Coq? := let (x,y,z) := t in x.

Coq? intros; change (pr1 [x1 | x2 | x3] = pr1 [y1 | y2 | y3]).
1 subgoal

 M : Type
 x1 : M
 x2 : M
 x3 : M
 y1 : M
 y2 : M
 y3 : M
 H : [x1 | x2 | x3] = [y1 | y2 | y3]
 ============================
 pr1 [x1 | x2 | x3] = pr1 [y1 | y2 | y3]

Coq? rewrite H; trivial.
Proof completed.
injectivity

Coq? Restart.

Coq? intros.

Coq? injection H.
1 subgoal

M : Type
x1 : M
x2 : M
x3 : M
y1 : M
y2 : M
y3 : M
H : [x1 | x2 | x3] = [y1 | y2 | y3]

subst

x3 = y3 \rightarrow x2 = y2 \rightarrow x1 = y1 \rightarrow x1 = y1

tactic subst x finds an hypothesis \(x = t \) and replaces \(x \) by \(t \).
move $b_1 b_2$ if b_2 is obtained from b_1 with one valid move.

Coq? Inductive move (b1:board) : board -> Prop :=
 Coq? move_row : forall p, move b1 (turn_row p b1)
 Coq? move_col : forall p, move b1 (turn_col p b1).

Reflexive-transitive closure

Coq? Inductive moves (b1:board): board -> Prop :=
 Coq? moves_init : moves b1 b1
 Coq? moves_step : forall (b2 b3:board),
 Coq? moves b1 b2 -> move b2 b3 -> moves b1 b3.

Coq? Hint Constructors move moves.
Properties of moves

Coq? Lemma move_moves
Coq? \(\forall (b1 \ b2 : \text{board}), \text{move} \ b1 \ b2 \rightarrow \text{moves} \ b1 \ b2. \)

Coq? intros; apply moves_step with b1; trivial.

Coq? Save.

Coq? Lemma reachable : \text{moves} \ \text{start} \ \text{target}.

Coq? apply moves_step with (turn_row A \text{start}); auto.

Coq? replace target with (turn_row B (turn_row A \text{start})); auto.

Coq? Save.
Induction on predicate

Coq? **Lemma** moves_trans
Coq? : **forall** (b1 b2 b3:board),
Coq? moves b1 b2 -> moves b2 b3 -> moves b1 b3.

Induction principle capture minimality

Coq? **Check** moves_ind.
Moves_ind : **forall** (b1 : board) (P : board -> Prop),
 P b1 ->
 (**forall** b2 b3 : board, moves b1 b2 -> P b2 -> move b2 b3 -> P b3) ->
 forall b : board, moves b1 b -> P b

Coq? induction 2.
2 subgoals

b1 : board
b2 : board
H : moves b1 b2

===

moves b1 b2

subgoal 2 is:
 moves b1 b3
Proving a state is not reachable

- A white board cannot be accessed from start
- Assuming \texttt{moves start white_board}, derive a contradiction
- Find an appropriate invariant
- any idea?
- parity of white tokens at the 4 corners
Proving a state is not reachable

- A white board cannot be accessed from start
- Assuming `moves start white_board`, derive a contradiction
- Find an appropriate invariant
 - any idea?
 - parity of white tokens at the 4 corners
Proving a state is not reachable

- A white board cannot be accessed from start
- Assuming $\text{moves start white_board}$, derive a contradiction
- Find an appropriate invariant
- any idea?
- parity of white tokens at the 4 corners
Proving a state is not reachable

- A white board cannot be accessed from start
- Assuming `moves start white_board`, derive a contradiction
- Find an appropriate invariant
- any idea?
- parity of white tokens at the 4 corners
Summary

What you should have learned so far

- Load and query libraries
- Do basic logical reasoning
- Model simple problems

From the theoretical point of view:

- Every type (proposition) is a sort, a product or an inductive.
- Basic term (proof) construction is a variable, a constructor, a function, an application or a match.