
Coq
LASER 2011 Summerschool

Elba Island, Italy

Christine Paulin-Mohring
http://www.lri.fr/~paulin/LASER

Université Paris Sud & INRIA Saclay - Île-de-France

September 2011

Lecture 3 : Functional programming with COQ

I Covers section 4 of course notes
I Example : recursive.v

http://www.lri.fr/~paulin/LASER


Example

−→

−→ −→



Reachability

moveb1 b2 if b2 is obtained from b1 with one valid move.
Coq? Inductive move (b1:board) : board -> Prop :=
Coq? move_row : forall p, move b1 (turn_row p b1)
Coq? | move_col : forall p, move b1 (turn_col p b1).

Reflexive-transitive closure
Coq? Inductive moves (b1:board): board -> Prop :=
Coq? moves_init : moves b1 b1
Coq? | moves_step : forall (b2 b3:board),
Coq? moves b1 b2 -> move b2 b3 -> moves b1 b3.

Coq? Hint Constructors move moves.



Induction on predicate

Coq? Lemma moves_trans
Coq? : forall (b1 b2 b3:board),
Coq? moves b1 b2 -> moves b2 b3 -> moves b1 b3.

Induction principle capture minimality
Coq? Check moves_ind.
moves_ind : forall (b1 : board) (P : board -> Prop),

P b1 ->
(forall b2 b3 : board, moves b1 b2 -> P b2 -> move b2 b3 -> P b3)
-> forall b : board, moves b1 b -> P b

Coq? induction 2.
2 subgoals

b1 : board
b2 : board
H : moves b1 b2
============================
moves b1 b2

subgoal 2 is:
moves b1 b3



Proving a state is not reachable

I A white board cannot be accessed from start
I Assuming moves start white_board, derive a

contradiction
I Find an appropriate invariant
I any idea ?
I parity of white tokens at the 4 corners



Summary

What you should have learned sofar
I Load and query libraries
I Do basic logical reasoning
I Model simple problems

From the theoretical point of view:
I Every type (proposition) is a sort, a product or an inductive.
I Basic term (proof) construction is a variable, a constructor, a

function, an application or a match.



Outline

Introduction

Basics of COQ system

Using simple inductive definitions

Functional programming with COQ

Recursive functions
Partiality and dependent types
Simple programs on lists
Well-founded induction and recursion
Imperative programming



(Co)Inductive definitions

I match only captures the fact that we have a fixpoint.
I any value in an inductive definitions starts with a constructor.
I consider the smallest or the greatest set of terms which

satisfies this property.
I How to say that we have least or greatest fixpoints ?



Least fixpoints

Induction principle
Coq? Check nat_ind.
nat_ind : forall P : nat -> Prop,

P 0 -> (forall n : nat, P n -> P (S n))
-> forall n : nat, P n

Computational counterpart
Coq? Fixpoint leb (n m:nat) : bool :=
Coq? match n with O => true
Coq? | S p => match m with O => false
Coq? | S q => leb p q
Coq? end
Coq? end.
leb is recursively defined (decreasing on 1st argument)

Will not work is∞ = S∞ has type nat.



Fixpoint definitions

Fixpoint name (x1 : type1) . . . (xp : typep){struct xi}
: typef := term.

I Fixpoint is a term constructor
(covers mutually recursive functions)

I Syntactic restriction on recursive calls on term.
I Sufficent for encoding many recursive functions, proving

induction principles.
I Typing as usual for fixpoints.
I Reduction when xi starts with a constructor.
I Equality always provable by case analysis.



Structural recursion

Only one argument decreases
Coq? Fixpoint test (b:bool) (n m:nat) :bool
Coq? := match (n,m) with
Coq? (O,_) => true
Coq? | (_,0) => false
Coq? | (S p,S q) => if b then test b p m else test b n q
Coq? end.
Error: Cannot guess decreasing argument of fix.

Cannot be written directly like that.



Ackermann function

Structural recursion on higher-order functions:
Coq? Fixpoint ack (n m:nat) {struct n} : nat
Coq? := match n with
Coq? 0 => S m
Coq? | S p => let fix ackn (m:nat) {struct m} :=
Coq? match m with 0 => ack p 1
Coq? | S q => ack p (ackn q)
Coq? end
Coq? in ackn m
Coq? end.
ack is recursively defined (decreasing on 1st argument)

Check equations are valid:
Coq? Lemma ack_Sn_0 : forall n, ack (S n) 0 = ack n 1.

Coq? Lemma ack_Sn_Sm : forall n m,
Coq? ack (S n) (S m) = ack n (ack (S n) m).

are solved using reflexivity.



Empty inductive definitions

No constructor:
Coq? Inductive empty : Type := .
empty is defined
empty_rect is defined
empty_ind is defined
empty_rec is defined

Coq? Definition any A (e:empty) : A :=
Coq? match e with end.
any is defined

No finite element:
Coq? Inductive E : Type := Ei : E -> E.
E is defined
E_rect is defined
E_ind is defined
E_rec is defined

Coq? Fixpoint Eany (A:Type) (x : E) : A :=
Coq? match x with (Ei y) => Eany A y end.
Eany is recursively defined (decreasing on 2nd argument)


