Lecture 3: Functional programming with Coq

- Covers section 4 of course notes
- Example: recursive.v
Example
 Reachability

move $b_1 b_2$ if b_2 is obtained from b_1 with one valid move.

Coq? Inductive move (b1:board) : board -> Prop :=
Coq? move_row : forall p, move b1 (turn_row p b1)
Coq? move_col : forall p, move b1 (turn_col p b1).

Reflexive-transitive closure

Coq? Inductive moves (b1:board): board -> Prop :=
Coq? moves_init : moves b1 b1
Coq? moves_step : forall (b2 b3:board),
Coq? moves b1 b2 -> move b2 b3 -> moves b1 b3.

Coq? Hint Constructors move moves.
Induction on predicate

Coq? Lemma moves_trans
Coq? : forall (b1 b2 b3:board),
Coq? moves b1 b2 -> moves b2 b3 -> moves b1 b3.

Induction principle capture minimality

Coq? Check moves_ind.
moves_ind : forall (b1 : board) (P : board -> Prop),
P b1 ->
(forall b2 b3 : board, moves b1 b2 -> P b2 -> move b2 b3 -> P b3)
-> forall b : board, moves b1 b -> P b

Coq? induction 2.
2 subgoals

b1 : board
b2 : board
H : moves b1 b2

subgoal 2 is:
moves b1 b3
Proving a state is not reachable

- A white board cannot be accessed from start
- Assuming \texttt{moves start white_board}, derive a contradiction
- Find an appropriate invariant
- any idea?
- parity of white tokens at the 4 corners
What you should have learned so far

- Load and query libraries
- Do basic logical reasoning
- Model simple problems

From the theoretical point of view:

- Every type (proposition) is a sort, a product or an inductive.
- Basic term (proof) construction is a variable, a constructor, a function, an application or a **match**.
Outline

- Introduction
- Basics of CoQ system
- Using simple inductive definitions
- Functional programming with CoQ
 - Recursive functions
 - Partiality and dependent types
 - Simple programs on lists
 - Well-founded induction and recursion
 - Imperative programming
(Co)Inductive definitions

- **match** only captures the fact that we have a fixpoint.
- any **value** in an inductive definitions starts with a constructor.
- consider the smallest or the greatest set of terms which satisfies this property.
- How to say that we have least or greatest fixpoints?
Least fixpoints

Induction principle

Coq? Check nat_ind.
nat_ind : forall P : nat -> Prop,
 P 0 -> (forall n : nat, P n -> P (S n))
-> forall n : nat, P n

Computational counterpart

Coq? Fixpoint leb (n m:nat) : bool :=
Coq? match n with O => true
Coq? | S p => match m with O => false
Coq? | S q => leb p q
Coq? end
Coq? end.

leb is recursively defined (decreasing on 1st argument)

Will not work is \(\infty = S \infty \) has type \(\text{nat} \).
Fixpoint definitions

Fixpoint \textit{name} (x_1: type_1) \ldots (x_p: type_p) \{ \text{struct } x_i \} : \text{type}_f \ := \ \text{term}.

- Fixpoint is a term constructor (covers mutually recursive functions)
- \textbf{Syntactic restriction} on recursive calls on \textit{term}.
- Sufficient for encoding many recursive functions, proving induction principles.
- Typing as usual for fixpoints.
- Reduction when x_i starts with a \textit{constructor}.
- Equality always provable by case analysis.
Only one argument decreases

Coq? **Fixpoint** test (b:bool) (n m:nat) :bool
Coq? := **match** (n,m) **with**
Coq? | (O,_) => true
Coq? | (_,0) => false
Coq? | (S p,S q) => if b then test b p m else test b n q
Coq? end.
Error: Cannot guess decreasing argument of fix.

Cannot be written directly like that.
Ackermann function

Structural recursion on higher-order functions:

Coq? Fixpoint ack (n m:nat) {struct n} : nat
Coq? := match n with
Coq? 0 => S m
Coq? | S p => let fix ackn (m:nat) {struct m} :=
Coq? match m with 0 => ack p 1
Coq? | S q => ack p (ackn q)
Coq? end
Coq? in ackn m
Coq? end.

ack is recursively defined (decreasing on 1st argument)

Check equations are valid:

Coq? Lemma ack_Sn_0 : forall n, ack (S n) 0 = ack n 1.

Coq? Lemma ack_Sn_Sm : forall n m, ack (S n) (S m) = ack n (ack (S n) m).

are solved using reflexivity.
Empty inductive definitions

No constructor:

Coq? **Inductive** empty : Type := .
empty is defined
empty_rect is defined
empty_ind is defined
empty_rec is defined

Coq? **Definition** any A (e:empty) : A :=
Coq? match e with end.
any is defined

No finite element:

Coq? **Inductive** E : Type := Ei : E -> E.
E is defined
E_rect is defined
E_ind is defined
E_rec is defined

Coq? **Fixpoint** Eany (A:Type) (x : E) : A :=
Coq? match x with (Ei y) => Eany A y end.
Eany is recursively defined (decreasing on 2nd argument)