Coq

LASER 2011 Summerschool
Elba Island, Italy

Christine Paulin-Mohring
http://www.lri.fr/~paulin/LASER

Université Paris Sud & INRIA Saclay - ile-de-France

September 2011

Lecture 4 : Advanced functional programming with CoQ

» Example minimal.v, Monads.v
» Challenges section 5.2 ListChallenges.v


http://www.lri.fr/~paulin/LASER

Outline

Introduction

Basics of CoQ system

Using simple inductive definitions

Functional programming with CoaQ

e Recursive functions

Partiality and dependent types
Simple programs on lists
Well-founded induction and recursion
Imperative programming



Representing a partial function

v

f: A— B defined only on a subset dom of A.
extend f in an arbitrary way (need a default value in B)
use an option type:

Cog? Print option.
Inductive option (A : Type) : Type
:= Some : A —-> option A | None : option A

» need to consider the None case explicitely
» can be hidden with monadic notations

Consider the function as a relation of type A — B — Prop

» Prove functionality
» F xyinstead of f x
» no computation



Introducing logic in types

Types and properties can be mixed freely.
» add an explicit precondition to the function:

f:Vx:A domx — B

» each call to 7 a requires a proof p of doma
internally: fap.

» partially hide the proof in a subset type:
f:{x:Aldomx} — B internally f(a,p)

Cog? Print sig.
Inductive sig (A : Type) (P : A —-> Prop) : Type :=
exist : forall x : A, P x —> sig P

» use high-level tools like Program or type classes to
separate programming from solving proof obligations.



Using subset types for specifications

» Proposition can appear also to restrict images:

S:nat — {n:nat|0 < n}

» restrictions can depend on the input:

next:¥vn:nat,{m:nat|n < m}

Dependent types



Other useful dependent types

Cog? Print sumbool.
Inductive sumbool (A B : Prop) : Set :=
left : A —> {A} + {B} | right : B -> {A} + ({B}

Cog? Print sumor.
Inductive sumor (A : Type) (B : Prop) : Type :=
inleft : A -> A + {B} | inright : B -> A + {B}

Cog? Check forall nm, {n <= m}+{m < n}.
Cog? Check forall n, { m | m < n }+{n=0}.

Use objects in sumbool as booleans value:

Coqg? Check zerop.
Zerop
forall n : nat, {n = 0} + {0 < n}

Cog? Definition choice (n x y:nat) :=
Coqg? if zerop n then x else y.
choice is defined



Annotated programs

Advantages:
» Develop program and proof simultaneously.
» The specification is available each time the program is used.
» Possibly discovery of a program from a proof.

Cog? Goal forall nm, {n <= m} + {m <= n}.

Drawbacks:

» Inside Coq, the program contains proof-terms:
printing, reduction can become awful.

» Some proof-irrelevance mechanism needed (primitive in
PVS)



Outline

Introduction

Basics of CoQ system

Using simple inductive definitions

Functional programming with CoaQ

e Recursive functions

Partiality and dependent types
Simple programs on lists
Well-founded induction and recursion
Imperative programming



Lists

Cog? Require Import List.

Cog? Print list.
Inductive list (A : Type) : Type :=
nil : list A | cons : A -> list A -> list A
For nil: Argument A is implicit and maximally inserted

First challenge on computing sum and max proving:

sum/ < length/ x max/



Outline

Introduction

Basics of CoQ system

Using simple inductive definitions

Functional programming with CoaQ

e Recursive functions

Partiality and dependent types
Simple programs on lists
Well-founded induction and recursion
Imperative programming



Well-founded induction and recursion

v

Only structural recursion is accepted

v

But it can be structural on complex inductive definitions
» Loop:
letfn=if pnthen nelse f(n+1)

v

Fixpoint for well-founded relations:
letfx = t(x,f)

Any callto fy in tis such that y < x for a well-founded
relation (no infinite decreasing sequence).



Analysing the loop construction

letfn=if pnthen nelse f(n+1)

Terminates only if there exists m > n such that pm = true.

Seeminimal.v



Typing well-founded fixpoint

letfx = t(x,f)

» Togetf: A— B we need:
t:-A-(A—-B)— B

» To ensure calls are done on smaller instances:
t:Vx:A((Vy:Ay<x—B)—B

» generalisation to f : Vx : A, P(x)
t:Vx:A (VY Ay <x—P(y)) — P(x)



Well-founded fixpoint in CoQ

Cog? Check Fix.
Fix
forall (A : Type) (R : A -> A -> Prop),
well_founded R —>
forall P : A —> Type,
(forall x : A, (forall y : A, Ry x —>Py) —> P x) —>
forall x ¢ A, P x

Property of Fix

Cog? Check Fix_eq.
Fix_eq
forall (A : Type) (R : A —> A -> Prop) (Rwf : well_ founded R)
(P : A —> Type)
(F : forall x : A, (forall y : A, Ry x —>Py) —> P x),
(forall (x : A) (f g : forall y : A, Ry x —> P vy),
(forall (y : A) (p : Ryx), fyp=9gyp —>Fxf=Fzxgqg
forall x : A,
Fix Rwf P F x = F x (fun (v : A) (_ : Ry x) => Fix Rwf P F vy)



Accessibility

How is it possible ?
» The fixpoint is on the proof of well-foundness of the relation.

Cog? Print Acc.
Inductive Acc (x ¢ A) : Prop :=
Acc_intro : (forall y : A, Ry x —> Acc Ry) -> Acc R x

Cog? Print Acc_inv.
Acc_inv =
fun (x : A) (H : Acc R x) =>
match H with | Acc_intro HO => HO end
forall (x : A), Acc R x -> forall y : A, Ry x —> Acc Ry

When H : Acc Rx, Acc_inv x H is structurally smaller than H.

Cog? Print Fix_F.
Fix_F (P : A -> Type)

(F : forall x : A, (forall y : A, Ry x —> P y) —> P x) =
fix Fix_F (x : A) (a : Acc R x) {struct a} : P x :=

Fx (fun (y : A) (h : Ry x) => Fix F y (Acc_inv a h))



Summary

» Fixpoint in CoQ are syntactically restricted but expressive
» High-level tools help define recursive functions and reason

on them: Program, Function...
» Types may contain logical parts.
» Functions in CoQ are computable, may help doing proofs.
» Extraction of Ocaml or Haskell.
» Formally proved versions of tools developed this way:

» Compilers (C, lustre)

» Verifiers (prover traces, register allocation, LR-automata. . .)
» Kernel of an SMT solver (alt-ergo)



Outline

Introduction

Basics of CoQ system

Using simple inductive definitions

Functional programming with CoaQ

e Recursive functions

Partiality and dependent types
Simple programs on lists
Well-founded induction and recursion
Imperative programming



Monads to handle non functional behavior

Used in Haskell to simulate imperative features.

A monad is given by
» comp : Type — Type,
comp A represents computations of type A;

» return: A — comp A (aka unit)
return Vv represents the value v seen as the result of a
computation;

» bind: comp A — (A — comp B) — comp B,
bind passes the result of the first computation to the
second one.

Syntax: “do p <- el; e2”means bind e (fun p= ey).

See Monads.v



Memory representation

» The previous monadic approach for states does not
consider aliases in programs.

» Functional representation of memory and adresses:

See LinkedLists.v



Representation of memory

Cog? Definition adr := option Z.
Cog? Definition null : adr := None.

Cog? Record node : Type

Cog? := mknode { wvalue : nat ; next : adr}.

Cog? Definition heap := Z -> option node.

Coqg? Definition val (h : heap) (a : adr) : option node
Coqg? := match a with None => None | Some z => h z end.

The state of the program will be the heap.



Alternative representation of memory

More static separation (model a la Burstall-Bornat)

Cog? Definition alloc := Z -> bool.

Cog? Definition value_m := Z —-> nat.

Cog? Definition next_m := Z -> adr.

Cog? Definition val (h:alloc) (vm:value_m) (nm:next_m) (a:adr)
Coqg? : option node

Cog? := match a with None => None

Coqg? | Some z =>

Coqg? if h z then Some (mknode (vm z) (nm z))

Cog? else None

Cog? end.



Frame properties

» Need to specify logically validity of adresses, separation
» Separation logic can be encoded

» See Ynot (Harvard, Morrisett) : a CoaQ library to reason on
imperative programs with separation logic.



