
Coq
LASER 2011 Summerschool

Elba Island, Italy

Christine Paulin-Mohring
http://www.lri.fr/~paulin/LASER

Université Paris Sud & INRIA Saclay - Île-de-France

September 2011

Lecture 4 : Advanced functional programming with COQ

I Example minimal.v, Monads.v
I Challenges section 5.2 ListChallenges.v

http://www.lri.fr/~paulin/LASER


Outline

Introduction

Basics of COQ system

Using simple inductive definitions

Functional programming with COQ

Recursive functions
Partiality and dependent types
Simple programs on lists
Well-founded induction and recursion
Imperative programming



Representing a partial function

I f : A→ B defined only on a subset dom of A.
I extend f in an arbitrary way (need a default value in B)
I use an option type:

Coq? Print option.
Inductive option (A : Type) : Type
:= Some : A -> option A | None : option A

I need to consider the None case explicitely
I can be hidden with monadic notations

I Consider the function as a relation of type A→ B → Prop
I Prove functionality
I F x y instead of f x
I no computation



Introducing logic in types

Types and properties can be mixed freely.
I add an explicit precondition to the function:

f : ∀x : A,dom x → B

I each call to f a requires a proof p of doma
internally: f a p.

I partially hide the proof in a subset type:
f : {x : A|dom x} → B internally f (a,p)

Coq? Print sig.
Inductive sig (A : Type) (P : A -> Prop) : Type :=

exist : forall x : A, P x -> sig P

I use high-level tools like Program or type classes to
separate programming from solving proof obligations.



Using subset types for specifications

I Proposition can appear also to restrict images:

S : nat→ {n : nat|0 < n}

I restrictions can depend on the input:

next : ∀n : nat, {m : nat|n < m}

Dependent types



Other useful dependent types

Coq? Print sumbool.
Inductive sumbool (A B : Prop) : Set :=

left : A -> {A} + {B} | right : B -> {A} + {B}

Coq? Print sumor.
Inductive sumor (A : Type) (B : Prop) : Type :=

inleft : A -> A + {B} | inright : B -> A + {B}

Coq? Check forall n m, {n <= m}+{m < n}.

Coq? Check forall n, { m | m < n }+{n=0}.

Use objects in sumbool as booleans value:
Coq? Check zerop.
zerop

: forall n : nat, {n = 0} + {0 < n}

Coq? Definition choice (n x y:nat) :=
Coq? if zerop n then x else y.
choice is defined



Annotated programs

Advantages:
I Develop program and proof simultaneously.
I The specification is available each time the program is used.
I Possibly discovery of a program from a proof.

Coq? Goal forall n m, {n <= m} + {m <= n}.

Drawbacks:
I Inside Coq, the program contains proof-terms:

printing, reduction can become awful.
I Some proof-irrelevance mechanism needed (primitive in

PVS)



Outline

Introduction

Basics of COQ system

Using simple inductive definitions

Functional programming with COQ

Recursive functions
Partiality and dependent types
Simple programs on lists
Well-founded induction and recursion
Imperative programming



Lists

Coq? Require Import List.

Coq? Print list.
Inductive list (A : Type) : Type :=

nil : list A | cons : A -> list A -> list A
For nil: Argument A is implicit and maximally inserted

First challenge on computing sum and max proving:

sum l ≤ length l × max l



Outline

Introduction

Basics of COQ system

Using simple inductive definitions

Functional programming with COQ

Recursive functions
Partiality and dependent types
Simple programs on lists
Well-founded induction and recursion
Imperative programming



Well-founded induction and recursion

I Only structural recursion is accepted
I But it can be structural on complex inductive definitions
I Loop:

let f n = if p n then n else f (n + 1)

I Fixpoint for well-founded relations:

let f x = t(x , f )

Any call to f y in t is such that y < x for a well-founded
relation (no infinite decreasing sequence).



Analysing the loop construction

let f n = if p n then n else f (n + 1)

Terminates only if there exists m ≥ n such that p m = true.

See minimal.v



Typing well-founded fixpoint

let f x = t(x , f )

I To get f : A→ B we need:
t : A→ (A→ B)→ B

I To ensure calls are done on smaller instances:
t : ∀x : A, (∀y : A, y < x → B)→ B

I generalisation to f : ∀x : A,P(x)
t : ∀x : A, (∀y : A, y < x → P(y))→ P(x)



Well-founded fixpoint in COQ

Coq? Check Fix.
Fix

: forall (A : Type) (R : A -> A -> Prop),
well_founded R ->
forall P : A -> Type,
(forall x : A, (forall y : A, R y x -> P y) -> P x) ->
forall x : A, P x

Property of Fix
Coq? Check Fix_eq.
Fix_eq

: forall (A : Type) (R : A -> A -> Prop) (Rwf : well_founded R)
(P : A -> Type)
(F : forall x : A, (forall y : A, R y x -> P y) -> P x),

(forall (x : A) (f g : forall y : A, R y x -> P y),
(forall (y : A) (p : R y x), f y p = g y p) -> F x f = F x g) ->
forall x : A,
Fix Rwf P F x = F x (fun (y : A) (_ : R y x) => Fix Rwf P F y)



Accessibility

How is it possible ?
I The fixpoint is on the proof of well-foundness of the relation.

Coq? Print Acc.
Inductive Acc (x : A) : Prop :=

Acc_intro : (forall y : A, R y x -> Acc R y) -> Acc R x

Coq? Print Acc_inv.
Acc_inv =
fun (x : A) (H : Acc R x) =>

match H with | Acc_intro H0 => H0 end
: forall (x : A), Acc R x -> forall y : A, R y x -> Acc R y

When H : AccR x , Acc_invxH is structurally smaller than H.
Coq? Print Fix_F.
Fix_F (P : A -> Type)

(F : forall x : A, (forall y : A, R y x -> P y) -> P x) =

fix Fix_F (x : A) (a : Acc R x) {struct a} : P x :=

F x (fun (y : A) (h : R y x) => Fix_F y (Acc_inv a h))



Summary

I Fixpoint in COQ are syntactically restricted but expressive
I High-level tools help define recursive functions and reason

on them: Program, Function. . .
I Types may contain logical parts.
I Functions in COQ are computable, may help doing proofs.
I Extraction of Ocaml or Haskell.
I Formally proved versions of tools developed this way:

I Compilers (C, lustre)
I Verifiers (prover traces, register allocation, LR-automata. . . )
I Kernel of an SMT solver (alt-ergo)



Outline

Introduction

Basics of COQ system

Using simple inductive definitions

Functional programming with COQ

Recursive functions
Partiality and dependent types
Simple programs on lists
Well-founded induction and recursion
Imperative programming



Monads to handle non functional behavior

Used in Haskell to simulate imperative features.

A monad is given by
I comp : Type→ Type,
comp A represents computations of type A;

I return : A→ comp A (aka unit)
return v represents the value v seen as the result of a
computation;

I bind : comp A→ (A→ comp B)→ comp B,
bind passes the result of the first computation to the
second one.

Syntax: “do p <- e1; e2” means bind e1 (fun p ⇒ e2).

See Monads.v



Memory representation

I The previous monadic approach for states does not
consider aliases in programs.

I Functional representation of memory and adresses:

See LinkedLists.v



Representation of memory

Coq? Definition adr := option Z.

Coq? Definition null : adr := None.

Coq? Record node : Type
Coq? := mknode { value : nat ; next : adr}.

Coq? Definition heap := Z -> option node.

Coq? Definition val (h : heap) (a : adr) : option node
Coq? := match a with None => None | Some z => h z end.

The state of the program will be the heap.



Alternative representation of memory

More static separation (model à la Burstall-Bornat)
Coq? Definition alloc := Z -> bool.

Coq? Definition value_m := Z -> nat.

Coq? Definition next_m := Z -> adr.

Coq? Definition val (h:alloc) (vm:value_m) (nm:next_m) (a:adr)
Coq? : option node
Coq? := match a with None => None
Coq? | Some z =>
Coq? if h z then Some (mknode (vm z) (nm z))
Coq? else None
Coq? end.



Frame properties

I Need to specify logically validity of adresses, separation
I Separation logic can be encoded
I See Ynot (Harvard, Morrisett) : a COQ library to reason on

imperative programs with separation logic.


