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Representing a partial function

I f : A→ B defined only on a subset dom of A.
I extend f in an arbitrary way (need a default value in B)
I use an option type:

Coq? Print option.
Inductive option (A : Type) : Type
:= Some : A -> option A | None : option A

I need to consider the None case explicitely
I can be hidden with monadic notations

I Consider the function as a relation of type A→ B → Prop
I Prove functionality
I F x y instead of f x
I no computation



Introducing logic in types

Types and properties can be mixed freely.
I add an explicit precondition to the function:

f : ∀x : A,dom x → B

I each call to f a requires a proof p of doma
internally: f a p.

I partially hide the proof in a subset type:
f : {x : A|dom x} → B internally f (a,p)

Coq? Print sig.
Inductive sig (A : Type) (P : A -> Prop) : Type :=

exist : forall x : A, P x -> sig P

I use high-level tools like Program or type classes to
separate programming from solving proof obligations.



Using subset types for specifications

I Proposition can appear also to restrict images:

S : nat→ {n : nat|0 < n}

I restrictions can depend on the input:

next : ∀n : nat, {m : nat|n < m}

Dependent types



Other useful dependent types

Coq? Print sumbool.
Inductive sumbool (A B : Prop) : Set :=

left : A -> {A} + {B} | right : B -> {A} + {B}

Coq? Print sumor.
Inductive sumor (A : Type) (B : Prop) : Type :=

inleft : A -> A + {B} | inright : B -> A + {B}

Coq? Check forall n m, {n <= m}+{m < n}.

Coq? Check forall n, { m | m < n }+{n=0}.

Use objects in sumbool as booleans value:
Coq? Check zerop.
zerop

: forall n : nat, {n = 0} + {0 < n}

Coq? Definition choice (n x y:nat) :=
Coq? if zerop n then x else y.
choice is defined



Annotated programs

Advantages:
I Develop program and proof simultaneously.
I The specification is available each time the program is used.
I Possibly discovery of a program from a proof.

Coq? Goal forall n m, {n <= m} + {m <= n}.

Drawbacks:
I Inside Coq, the program contains proof-terms:

printing, reduction can become awful.
I Some proof-irrelevance mechanism needed (primitive in

PVS)
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Lists

Coq? Require Import List.

Coq? Print list.
Inductive list (A : Type) : Type :=

nil : list A | cons : A -> list A -> list A
For nil: Argument A is implicit and maximally inserted

First challenge on computing sum and max proving:

sum l ≤ length l × max l
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Well-founded induction and recursion

I Only structural recursion is accepted
I But it can be structural on complex inductive definitions
I Loop:

let f n = if p n then n else f (n + 1)

I Fixpoint for well-founded relations:

let f x = t(x , f )

Any call to f y in t is such that y < x for a well-founded
relation (no infinite decreasing sequence).



Analysing the loop construction

let f n = if p n then n else f (n + 1)

Terminates only if there exists m ≥ n such that p m = true.

See minimal.v



Typing well-founded fixpoint

let f x = t(x , f )

I To get f : A→ B we need:
t : A→ (A→ B)→ B

I To ensure calls are done on smaller instances:
t : ∀x : A, (∀y : A, y < x → B)→ B

I generalisation to f : ∀x : A,P(x)
t : ∀x : A, (∀y : A, y < x → P(y))→ P(x)



Well-founded fixpoint in COQ

Coq? Check Fix.
Fix

: forall (A : Type) (R : A -> A -> Prop),
well_founded R ->
forall P : A -> Type,
(forall x : A, (forall y : A, R y x -> P y) -> P x) ->
forall x : A, P x

Property of Fix
Coq? Check Fix_eq.
Fix_eq

: forall (A : Type) (R : A -> A -> Prop) (Rwf : well_founded R)
(P : A -> Type)
(F : forall x : A, (forall y : A, R y x -> P y) -> P x),

(forall (x : A) (f g : forall y : A, R y x -> P y),
(forall (y : A) (p : R y x), f y p = g y p) -> F x f = F x g) ->
forall x : A,
Fix Rwf P F x = F x (fun (y : A) (_ : R y x) => Fix Rwf P F y)



Accessibility

How is it possible ?
I The fixpoint is on the proof of well-foundness of the relation.

Coq? Print Acc.
Inductive Acc (x : A) : Prop :=

Acc_intro : (forall y : A, R y x -> Acc R y) -> Acc R x

Coq? Print Acc_inv.
Acc_inv =
fun (x : A) (H : Acc R x) =>

match H with | Acc_intro H0 => H0 end
: forall (x : A), Acc R x -> forall y : A, R y x -> Acc R y

When H : AccR x , Acc_invxH is structurally smaller than H.
Coq? Print Fix_F.
Fix_F (P : A -> Type)

(F : forall x : A, (forall y : A, R y x -> P y) -> P x) =

fix Fix_F (x : A) (a : Acc R x) {struct a} : P x :=

F x (fun (y : A) (h : R y x) => Fix_F y (Acc_inv a h))



Summary

I Fixpoint in COQ are syntactically restricted but expressive
I High-level tools help define recursive functions and reason

on them: Program, Function. . .
I Types may contain logical parts.
I Functions in COQ are computable, may help doing proofs.
I Extraction of Ocaml or Haskell.
I Formally proved versions of tools developed this way:

I Compilers (C, lustre)
I Verifiers (prover traces, register allocation, LR-automata. . . )
I Kernel of an SMT solver (alt-ergo)
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Monads to handle non functional behavior

Used in Haskell to simulate imperative features.

A monad is given by
I comp : Type→ Type,
comp A represents computations of type A;

I return : A→ comp A (aka unit)
return v represents the value v seen as the result of a
computation;

I bind : comp A→ (A→ comp B)→ comp B,
bind passes the result of the first computation to the
second one.

Syntax: “do p <- e1; e2” means bind e1 (fun p ⇒ e2).

See Monads.v



Memory representation

I The previous monadic approach for states does not
consider aliases in programs.

I Functional representation of memory and adresses:

See LinkedLists.v



Representation of memory

Coq? Definition adr := option Z.

Coq? Definition null : adr := None.

Coq? Record node : Type
Coq? := mknode { value : nat ; next : adr}.

Coq? Definition heap := Z -> option node.

Coq? Definition val (h : heap) (a : adr) : option node
Coq? := match a with None => None | Some z => h z end.

The state of the program will be the heap.



Alternative representation of memory

More static separation (model à la Burstall-Bornat)
Coq? Definition alloc := Z -> bool.

Coq? Definition value_m := Z -> nat.

Coq? Definition next_m := Z -> adr.

Coq? Definition val (h:alloc) (vm:value_m) (nm:next_m) (a:adr)
Coq? : option node
Coq? := match a with None => None
Coq? | Some z =>
Coq? if h z then Some (mknode (vm z) (nm z))
Coq? else None
Coq? end.



Frame properties

I Need to specify logically validity of adresses, separation
I Separation logic can be encoded
I See Ynot (Harvard, Morrisett) : a COQ library to reason on

imperative programs with separation logic.


