Proof Assistants
Floating-Point Arithmetic and Verification

Guillaume Melquiond

INRIA Saclay – Île-de-France
Laboratoire de Recherche en Informatique

2011-02-15
Outline

1 Floating-Point Arithmetic and Programs
 - Number Representation
 - Rounded Computations
 - Verifying Floating-Point Algorithms

2 Floating-Point Arithmetic and Proofs
 - Interval Arithmetic
 - Proving Mathematical Theorems
32-bit integers with 2-complement sign:
- $1 + 1 \rightarrow 2$,
- $2147483647 + 1 \rightarrow -2147483648$,
- $100000^2 \rightarrow 1410065408$,
- $-2147483648 \mod -1 \rightarrow \text{BOOM (floating-point exception?!)}$

64-bit binary floating-point numbers (IEEE-754):
- $2 \times 2 \times \cdots \times 2 \rightarrow +\infty$,
- $1 \div 0 \rightarrow +\infty$,
- $1 \div -0 \rightarrow -\infty$,
- $0 \div 0 \rightarrow \text{NaN}$.
Floating-Point Numbers

Represented by sign s, mantissa m (aka significand), and exponent e:

$$f = (-1)^s \cdot m \cdot \beta^e.$$

Radix β is fixed, usually 2 or 10.

Finite datatype:
- m is a bounded integer (e.g., $|m| < 2^{53}$), limited precision,
- e is a bounded integer (e.g., $-1074 \leq e \leq 970$), limited range.

Consequences: inaccurate results and exceptional behaviors.
Rounded Computations

Value 0.1 cannot be represented as \(m \cdot 2^e \).
Closet floating-point number with \(|m| < 2^{24}\):

\[
0.1 \approx 13421773 \cdot 2^{-27} = 0.10000001490116119384765625
\]

Example

Accumulate 0.1 during 864000 iterations:

```c
float f = 0;
for (int i = 0; i < 10 * 60 * 60 * 24; ++i)
    f = f + 0.1f;
printf("f/uni2423=/uni2423%g\n", f);
```

Computed result: \(f = 87145.8 \). Expected result: 86400. Error: +0.86%

First Gulf War, a Patriot antimissile system has been running for 48 hours, it fails to intercept and destroy a Scud missile: 28 casualties.
Some Other Numerical Failures

- 1983, truncation while computing an index of Vancouver Stock Exchange causes it to drop to half its value.
- 1987, the inflation in UK is computed with a rounding error: pensions are off by £100M for 21 months.
- 1992, Green Party of Schleswig-Holstein seats in Parliament for a few hours, until a rounding error is discovered.
- 1995, Ariane 5 explodes during its maiden flight due to an overflow: insurance cost is $500M.
- 2007, Excel displays the result of 77.1×850 as 100000.
- 2010, PHP servers enter an infinite loop on some decimal inputs.
Verifying Numerical Algorithms

- 2007, Excel displays the result of 77.1×850 as 100000.
 Bug in binary/decimal conversion.
 Failing inputs: 12 FP numbers.
 Probability to uncover them by random testing: 10^{-18}.

Numerical algorithms require detailed proofs of correctness.
But these proofs are long, tedious, and error-prone.
Hence the need for formal methods.
Roundoff and Method Errors

Example (Computing Cosine Around Zero)

```c
/*@ requires \abs(x) <= 0x1p-5 ;
  @ ensures \abs(\result - \cos(x)) <= 0x1p-23; */
float toy_cos(float x) {
  //@ assert \abs(1.0-x*x*0.5 - \cos(x)) <= 0x1p-24;
  return 1.f - x * x * 0.5f;
}
```

Two kinds of error occur:

- **roundoff error** between `toy_cos(x)` and `1 - x^2/2`,
- **method error** between `1 - x^2/2` and `\cos(x)`.

Note: Method errors cannot be detected without a **specification**!
Peculiarities of Floating-Point Algorithms

Example (Veltkamp’s Algorithm)

```c
void split(double x, double *xh, double *xl) {
    double t = 0x8000001 * x;
    *xh = (x - t) + t;
    *xl = x - *xh;
}
```

Replacing floating-point operations by the corresponding real operators does not hint at what the algorithm computes (*xh \not\approx x and *xl \not\approx 0). Approaches like abstract interpretation cannot work on this kind of code.
Peculiarities of Floating-Point Algorithms

Example (Dekker’s Algorithm)

```c
/*@ requires ... 
  @ ensures  *zh + *zl = x * y; */
void mul(double x, double y, double *zh, double *zl) {
  double xh, xl, yh, yl;
  split(x, &xh, &xl);
  split(y, &yh, &yl);
  *zh = x * y;
  *zl = -*zh + xh * yh + xh * yl + xl * yh + xl * yl;
}
```
Proving Mathematical Theorems

While programs are formally verified by theorems, theorems can be proved by computations (reflection, extraction, etc).
Interval Arithmetic

An expression is overapproximated by a set containing its value. Operations on these sets are derived from the operations on \(\mathbb{R}\).

Property (Inclusion)

For any two sets \(X\) and \(Y\), set \(X \diamond Y\) is defined so that

\[
\forall x \in X, y \in Y, \ x \diamond y \in X \diamond Y.
\]

By composition, \(\forall x \in X, y \in Y, \ldots f(x, y, \ldots) \in F(X, Y, \ldots)\).

Definition (Interval Arithmetic)

For \(u \in [\underline{u}, \overline{u}]\) and \(v \in [\underline{v}, \overline{v}]\),

\[
\begin{align*}
 u + v & \in [u + v, \overline{u} + \overline{v}] \\
 u - v & \in [u - \overline{v}, \overline{u} - v]
\end{align*}
\]

\vdots
The inclusion property still holds if bounds are rounded \textit{outwards}.

Definition (Interval Arithmetic with Floating-Point Bounds)

For $u \in U = [\underline{u}, \overline{u}]$ and $v \in V = [\underline{v}, \overline{v}]$,

- $u + v \in \left[\bigtriangledown (u + v), \bigtriangleup (\overline{u} + \overline{v})\right] =: U + V$
- $u - v \in \left[\bigtriangledown (u - v), \bigtriangleup (\overline{u} - \overline{v})\right] =: U - V$
- $u \times v \in \left[\min(\bigtriangledown (u \cdot v), \bigtriangledown (u \cdot \overline{v}), \bigtriangledown (\overline{u} \cdot v), \bigtriangledown (\overline{u} \cdot \overline{v})), \max(\ldots)\right]$
- \(\vdots\)

- **Advantage:** guaranteed arithmetic and constant-time operations.
- **Drawback:** correlation loss, $x - x \in X - X \neq [0, 0]$. \\

G. Melquiond (INRIA, LRI)
Tightening Intervals

How to reduce correlation when proving $\forall x \in X, \ f(x) \in I$?

1. Splitting intervals into subintervals:
 \[f(x) \in \bigcup_i F(X_i) \quad \text{if} \ X \subseteq \bigcup_i X_i \]

2. Working at a higher order:
 \[f(x) \in F(x_0) + (X - x_0) \times F'(X) \quad \text{if} \ x_0 \in X \]

3. Replacing intervals by models:
 Affine arithmetic; Taylor, Bernstein, Chebyshev models; etc.

4. ...
Kepler’s Conjecture

Theorem (Hales, 1998)

Optimal density for packing 3D unit spheres is \(\frac{\pi}{\sqrt{18}} \)
(cubic close packing and hexagonal close packing).

Proof steps:

1. Enumerate all planar graphs.
2. Verify nonlinear inequalities.
Kepler’s Conjecture

Example (l_751442360)

\[\forall x \in X_{751442360}, \]
\[-x_1 x_3 - x_2 x_4 + x_1 x_5 + x_3 x_6 - x_5 x_6 + \]
\[x_2 (-x_2 + x_1 + x_3 - x_4 + x_5 + x_6) \]
\[\sqrt{4x_2 \left(x_2 x_4 (-x_2 + x_1 + x_3 - x_4 + x_5 + x_6) + \right.} \]
\[\left. x_1 x_5 (x_2 - x_1 + x_3 + x_4 - x_5 + x_6) + \right. \]
\[\left. x_3 x_6 (x_2 + x_1 - x_3 + x_4 + x_5 - x_6) \right) \]
\[-x_1 x_3 x_4 - x_2 x_3 x_5 - x_2 x_1 x_6 - x_4 x_5 x_6 \]
\[< \tan \left(\frac{\pi}{2} - \frac{\pi}{\sqrt{18}} \right) \]

1. Verified by a C program performing global optimization using floating-point interval arithmetic.
2. 12 referees during 4 years ⇒ “99% certain of the correctness”.
3. Now being formalized: Flyspeck Project.