
Proof Assistants
Floating-Point Arithmetic and Verification

Guillaume Melquiond

INRIA Saclay – Île-de-France
Laboratoire de Recherche en Informatique

2011-02-15

G. Melquiond (INRIA, LRI) MPRI 2-7-2 2011-02-15 1 / 16

Outline

1 Floating-Point Arithmetic and Programs
Number Representation
Rounded Computations
Verifying Floating-Point Algorithms

2 Floating-Point Arithmetic and Proofs
Interval Arithmetic
Proving Mathematical Theorems

G. Melquiond (INRIA, LRI) MPRI 2-7-2 2011-02-15 2 / 16

Floating-Point Arithmetic and Programs Number Representation

Computers and Number Representation

32-bit integers with 2-complement sign:
1+ 1→ 2,
2147483647+ 1→ −2147483648,
1000002 → 1410065408,
−2147483648 mod − 1→ BOOM (floating-point exception?!)

64-bit binary floating-point numbers (IEEE-754):
2× 2× · · · × 2→ +∞,
1÷ 0→ +∞,
1÷−0→ −∞,
0÷ 0→ NaN.

G. Melquiond (INRIA, LRI) MPRI 2-7-2 2011-02-15 3 / 16

Floating-Point Arithmetic and Programs Number Representation

Floating-Point Numbers

Represented by sign s, mantissa m (aka significand), and exponent e:

f = (−1)s ·m · βe .

Radix β is fixed, usually 2 or 10.

Finite datatype:
m is a bounded integer (e.g., |m| < 253), limited precision,
e is a bounded integer (e.g., −1074 ≤ e ≤ 970), limited range.

Consequences: inaccurate results and exceptional behaviors.

G. Melquiond (INRIA, LRI) MPRI 2-7-2 2011-02-15 4 / 16

Floating-Point Arithmetic and Programs Rounded Computations

Rounded Computations

Value 0.1 cannot be represented as m · 2e .
Closest floating-point number with |m| < 224:

0.1 ' 13421773 · 2−27 = 0.100000001490116119384765625

Example
Accumulate 0.1 during 864000 iterations:

float f = 0;
for (int i = 0; i < 10 * 60 * 60 * 24; ++i)

f = f + 0.1f;
printf("f␣=␣%g\n", f);

Computed result: f = 87145.8. Expected result: 86400. Error: +0.86%

First Gulf War, a Patriot antimissile system has been running for 48 hours,
it fails to intercept and destroy a Scud missile: 28 casualties.

G. Melquiond (INRIA, LRI) MPRI 2-7-2 2011-02-15 5 / 16

Floating-Point Arithmetic and Programs Rounded Computations

Some Other Numerical Failures

1983, truncation while computing an index of Vancouver Stock
Exchange causes it to drop to half its value.

1987, the inflation in UK is computed with a rounding error:
pensions are off by £100M for 21 months.

1992, Green Party of Schleswig-Holstein seats in Parliament
for a few hours, until a rounding error is discovered.

1995, Ariane 5 explodes during its maiden flight due to an overflow:
insurance cost is $500M.

2007, Excel displays the result of 77.1× 850 as 100000.

2010, PHP servers enter an infinite loop on some decimal inputs.

G. Melquiond (INRIA, LRI) MPRI 2-7-2 2011-02-15 6 / 16

Floating-Point Arithmetic and Programs Rounded Computations

Verifying Numerical Algorithms

2007, Excel displays the result of 77.1× 850 as 100000.

Bug in binary/decimal conversion.
Failing inputs: 12 FP numbers.
Probability to uncover them by random testing: 10−18.

Numerical algorithms require detailed proofs of correctness.

But these proofs are long, tedious, and error-prone.
Hence the need for formal methods.

G. Melquiond (INRIA, LRI) MPRI 2-7-2 2011-02-15 7 / 16

Floating-Point Arithmetic and Programs Verifying Floating-Point Algorithms

Roundoff and Method Errors

Example (Computing Cosine Around Zero)

/*@ requires \abs(x) <= 0x1p -5 ;
@ ensures \abs(\ result - \cos(x)) <= 0x1p -23; */

float toy_cos(float x) {
//@ assert \abs(1.0-x*x*0.5 - \cos(x)) <= 0x1p -24;
return 1.f - x * x * 0.5f;

}

Two kinds of error occur:
roundoff error between toy_cos(x) and 1− x2/2,
method error between 1− x2/2 and cos(x).

Note: Method errors cannot be detected without a specification!

G. Melquiond (INRIA, LRI) MPRI 2-7-2 2011-02-15 8 / 16

Floating-Point Arithmetic and Programs Verifying Floating-Point Algorithms

Peculiarities of Floating-Point Algorithms

Example (Veltkamp’s Algorithm)

void split(double x, double *xh , double *xl) {
double t = 0x8000001 * x;
*xh = (x - t) + t;
*xl = x - *xh;

}

Replacing floating-point operations by the corresponding real operators
does not hint at what the algorithm computes (*xh 6' x and *xl 6' 0).

Approaches like abstract interpretation cannot work on this kind of code.

G. Melquiond (INRIA, LRI) MPRI 2-7-2 2011-02-15 9 / 16

Floating-Point Arithmetic and Programs Verifying Floating-Point Algorithms

Peculiarities of Floating-Point Algorithms

Example (Dekker’s Algorithm)

/*@ requires ...
@ ensures *zh + *zl = x * y; */

void mul(double x, double y, double *zh, double *zl) {
double xh, xl , yh, yl;
split(x, &xh, &xl);
split(y, &yh, &yl);
*zh = x * y;
*zl = -*zh + xh * yh + xh * yl + xl * yh + xl * yl;

}

G. Melquiond (INRIA, LRI) MPRI 2-7-2 2011-02-15 10 / 16

Floating-Point Arithmetic and Proofs

Proving Mathematical Theorems

Numerical programs

prove

��
Mathematical theorems

verify

GO

While programs are formally verified by theorems,
theorems can be proved by computations (reflection, extraction, etc).

G. Melquiond (INRIA, LRI) MPRI 2-7-2 2011-02-15 11 / 16

Floating-Point Arithmetic and Proofs Interval Arithmetic

Interval Arithmetic

An expression is overapproximated by a set containing its value.
Operations on these sets are derived from the operations on R.

Property (Inclusion)
For any two sets X and Y , set X � Y is defined so that

∀x ∈ X , y ∈ Y , x � y ∈ X � Y .

By composition, ∀x ∈ X , y ∈ Y , . . . f (x , y , . . .) ∈ F (X ,Y , . . .).

Definition (Interval Arithmetic)
For u ∈ [u, u] and v ∈ [v , v],

u + v ∈ [u + v , u + v]
u − v ∈ [u − v , u − v]

...

G. Melquiond (INRIA, LRI) MPRI 2-7-2 2011-02-15 12 / 16

Floating-Point Arithmetic and Proofs Interval Arithmetic

Interval Arithmetic with Floating-Point Bounds

The inclusion property still holds if bounds are rounded outwards.

Definition (Interval Arithmetic with Floating-Point Bounds)
For u ∈ U = [u, u] and v ∈ V = [v , v],

u + v ∈ [5(u + v),4(u + v)] =: U + V
u − v ∈ [5(u − v),4(u − v)] =: U − V
u × v ∈ [min(5(u · v),5(u · v),5(u · v),5(u · v)),max(. . .)]

...

Advantage: guaranteed arithmetic and constant-time operations.
Drawback: correlation loss, x − x ∈ X − X 6= [0, 0].

G. Melquiond (INRIA, LRI) MPRI 2-7-2 2011-02-15 13 / 16

Floating-Point Arithmetic and Proofs Interval Arithmetic

Tightening Intervals

How to reduce correlation when proving ∀x ∈ X , f (x) ∈ I?

1 Splitting intervals into subintervals:
f (x) ∈

⋃
i F (Xi) if X ⊆

⋃
i Xi

2 Working at a higher order:
f (x) ∈ F (x0) + (X − x0)× F ′(X) if x0 ∈ X

3 Replacing intervals by models:
Affine arithmetic; Taylor, Bernstein, Chebyshev models; etc.

4 . . .

G. Melquiond (INRIA, LRI) MPRI 2-7-2 2011-02-15 14 / 16

Floating-Point Arithmetic and Proofs Proving Mathematical Theorems

Kepler’s Conjecture

Theorem (Hales, 1998)
Optimal density for packing 3D unit spheres is π√

18
(cubic close packing and hexagonal close packing).

Proof steps:
1 Enumerate all planar graphs.
2 Verify nonlinear inequalities.

G. Melquiond (INRIA, LRI) MPRI 2-7-2 2011-02-15 15 / 16

Floating-Point Arithmetic and Proofs Proving Mathematical Theorems

Kepler’s Conjecture

Example (I_751442360)
∀x ∈ X751442360,

−x1x3 − x2x4 + x1x5 + x3x6 − x5x6+
x2(−x2 + x1 + x3 − x4 + x5 + x6)√√√√√√√4x2


x2x4(−x2 + x1 + x3 − x4 + x5 + x6)+
x1x5(x2 − x1 + x3 + x4 − x5 + x6)+
x3x6(x2 + x1 − x3 + x4 + x5 − x6)
−x1x3x4 − x2x3x5 − x2x1x6 − x4x5x6


< tan

(
π

2
− π√

18

)

1 Verified by a C program performing global optimization
using floating-point interval arithmetic.

2 12 referees during 4 years ⇒ “99% certain of the correctness”.
3 Now being formalized: Flyspeck Project.

G. Melquiond (INRIA, LRI) MPRI 2-7-2 2011-02-15 16 / 16

	Floating-Point Arithmetic and Programs
	Number Representation
	Rounded Computations
	Verifying Floating-Point Algorithms

	Floating-Point Arithmetic and Proofs
	Interval Arithmetic
	Proving Mathematical Theorems

