
Proof Assistants
Proofs by Reflection, Tactic Language

Guillaume Melquiond

INRIA Saclay – Île-de-France
Laboratoire de Recherche en Informatique

2011-01-25

G. Melquiond (INRIA, LRI) MPRI 2-7-2 2011-01-25 1 / 25

Outline

1 Proofs by Reflection
Example: Peano’s Arithmetic
Type Theory and β-Conversion
Handling Expressions
Reflecting Propositions
Example : the ring Tactic
Typing and Oracle

2 Tactic Language
Syntactic Analysis
Building Terms
Tactics for Computing

G. Melquiond (INRIA, LRI) MPRI 2-7-2 2011-01-25 2 / 25

Proofs by Reflection Example: Peano’s Arithmetic

Example: Peano’s Arithmetic

Definition (Inductive Type for Integers)

Inductive nat := O : nat | S : nat -> nat.
(* 5 = SSSSSO *)

Axiom (Relating Addition to O and S)
+ : nat→ nat→ nat
addO :

a

∀b, O + b = b
addS : ∀a b, (S a) + b = a + (S b)

Note: formal systems tend to prefer definitional extensions for consistency,
so they won’t contain the above axioms.

G. Melquiond (INRIA, LRI) MPRI 2-7-2 2011-01-25 3 / 25

Proofs by Reflection Example: Peano’s Arithmetic

Deductive Reasoning for Peano’s Arithmetic

Example (Deductive Proof of “4 + (2 + 3) = 9”)

9 = 9
refl_equal

0 + 9 = 9 addO
.... addS× 4

4 + 5 = 9
4 + (0 + 5) = 9

addO

4 + (1 + 4) = 9
addS

4 + (2 + 3) = 9
addS

9 steps

The bigger the natural numbers in the proof, the more theorems have to be
instantiated to prove the statement. This growth has a nonnegligible cost.

Time complexity: matching and applying theorems (any prover).
Space complexity: storing proof terms (Coq-like provers).

G. Melquiond (INRIA, LRI) MPRI 2-7-2 2011-01-25 4 / 25

Proofs by Reflection Example: Peano’s Arithmetic

Computing a bit inside Proofs

Definition (Addition as a Function)

Fixpoint plus x y : nat :=
match x with
| O => y
| S x’ => plus x’ (S y)
end.

Lemma (Soundness)
plus_xlate : ∀a b, a + b = plus a b.

Note: most formal systems define arithmetic operators directly as functions,
hence avoiding the need for soundness theorems.

G. Melquiond (INRIA, LRI) MPRI 2-7-2 2011-01-25 5 / 25

Proofs by Reflection Example: Peano’s Arithmetic

Computing a bit inside Proofs

Example (Proof of “4 + (2 + 3) = 9”)

9 = 9
refl_equal

plus 4 (plus 2 3) = 9 ???

4 + (plus 2 3) = 9
plus_xlate

4 + (2 + 3) = 9
plus_xlate

Note: one could consider λ-calculus as a rewriting system
and iteratively reduce “plus 4 (plus 2 3) = 9” to 9.
This is no less costly than applying Peano’s axioms.

G. Melquiond (INRIA, LRI) MPRI 2-7-2 2011-01-25 6 / 25

Proofs by Reflection Type Theory and β-Conversion

Type Theory and β-Conversion

Theorem (Curry-Howard Isomorphism)
Formula A∗ is valid if and only if type A is inhabited.

Example : (Γ `typing f : P → Q) is equivalent to (Γ∗ `proving P∗ ⇒ Q∗).

Property (Type Theory)
Convertible types have the same inhabitants.

p : A
p : B A ≡ B

β-conversion: (λx .t)u ≡ t[x ← u].

G. Melquiond (INRIA, LRI) MPRI 2-7-2 2011-01-25 7 / 25

Proofs by Reflection Type Theory and β-Conversion

Type Theory and β-Conversion

Example (Proof of “4 + (2 + 3) = 9”)

p : 9 = 9
refl_equal

p : plus 4 (plus 2 3) = 9
β-conversion

4 + (plus 2 3) = 9
plus_xlate

4 + (2 + 3) = 9
plus_xlate

3 steps

Amount of theorem instantiations no longer depends on the constants,
only on the number of arithmetic operators.

Note: β-conversion is necessarily implicit when typechecking,
so term “refl_equal 9” has also type “plus 4 (plus 2 3) = 9”.

G. Melquiond (INRIA, LRI) MPRI 2-7-2 2011-01-25 8 / 25

Proofs by Reflection Type Theory and β-Conversion

β-Reduction

At worst, β-reducing has the same complexity than applying rewriting rules,
but the constant factor is smaller:

no matching of theorems,
only substitutions of terms.

Moreover, β-reduction is amenable to optimizations:
normalization by evaluation (e.g. Isabelle),
abstract machine (e.g. Coq).

Example (Coq’s Virtual Machine)
λ-terms are compiled to OCaml bytecode, executed (call-by-value
evaluation strategy), decompiled to λ-terms that are in weak normal form.

The OCaml interpreter is modified a bit to handle “accumulators”,
e.g. “@eq nat 9 9” (@eq is a function without body).

G. Melquiond (INRIA, LRI) MPRI 2-7-2 2011-01-25 9 / 25

Proofs by Reflection Handling Expressions

Encoding Arithmetic Expressions

Definition (Inductive Type for Expressions over N)

Inductive expr :=
| Cst : nat -> expr
| Add : expr -> expr -> expr.

Definition (Interpretation of Reified Expressions)

Fixpoint interp_expr e : nat :=
match e with
| Cst n => n
| Add x y => (interp_expr x) + (interp_expr y)
end.

Note: “+” is assumed to be an uninterpreted symbol in the code above
(no computational content).

G. Melquiond (INRIA, LRI) MPRI 2-7-2 2011-01-25 10 / 25

Proofs by Reflection Handling Expressions

Encoding Arithmetic Expressions

Example (Proof of “4 + (2 + 3) = 9”)
???

interp_expr (Add (Cst 4) (Add (Cst 2) (Cst 3))) = 9
4 + (2 + 3) = 9

β-conversion

G. Melquiond (INRIA, LRI) MPRI 2-7-2 2011-01-25 11 / 25

Proofs by Reflection Handling Expressions

Evaluating Arithmetic Expressions

Definition (Evaluation of Reified Expressions)

Fixpoint eval_expr e : nat :=
match e with
| Cst n => n
| Add x y => plus (eval_expr x) (eval_expr y)
end.

Lemma (Soundness)
expr_xlate: ∀e, interp_expr e = eval_expr e.

G. Melquiond (INRIA, LRI) MPRI 2-7-2 2011-01-25 12 / 25

Proofs by Reflection Handling Expressions

Evaluating Arithmetic Expressions

Example (Proof of “4 + (2 + 3) = 9”)

9 = 9
refl_equal

eval_expr (Add (Cst 4) . . .)) = 9
β-conversion

interp_expr (Add (Cst 4) . . .)) = 9
expr_xlate

4 + (2 + 3) = 9
β-conversion

2 steps

The proof structure no longer depends on the arithmetic expression,
since rewriting with plus_xlate is no longer needed.

Example (Coq Script)
change (4 + (2 + 3)) with

(interp_expr (Add (Cst 4) (Add (Cst 2) (Cst 3)))).
rewrite expr_xlate.
exact (refl_equal 9).

G. Melquiond (INRIA, LRI) MPRI 2-7-2 2011-01-25 13 / 25

Proofs by Reflection Reflecting Propositions

Comparison Operators

Definition (Less Than or Equal)

Inductive le (n : nat) : nat -> Prop :=
| le_n : n <= n
| le_S : forall m : nat , n <= m -> n <= S m.

Example (Deductive Proof of “9 ≤ 18”)

9 ≤ 9 le_n

9 ≤ 10 le_S
.... le_S× 7

9 ≤ 17
9 ≤ 18 le_S

10 steps

G. Melquiond (INRIA, LRI) MPRI 2-7-2 2011-01-25 14 / 25

Proofs by Reflection Reflecting Propositions

Comparison Operators

While equality proofs are structurally trivial, comparison proofs are not.
So comparisons should be transformed into equalities first.

Definition (Comparing Natural Numbers)

Fixpoint leqb x y : bool =
match x, y with
| O , _ => true
| S _ , O => false
| S x’, S y’ => leqb x’ y’
end.

Lemma (Soundness)
leq_spec : ∀a b, leqb a b = true ⇔ a ≤ b

G. Melquiond (INRIA, LRI) MPRI 2-7-2 2011-01-25 15 / 25

Proofs by Reflection Reflecting Propositions

Encoding Propositions

Definition (Reified Propositions)

Inductive prop := Eq : prop | Le : prop.
Definition interp_prop : prop -> Prop := ...
Definition eval_prop : prop -> bool := ...
Lemma prop_xlate : forall p,

eval_prop p = true -> interp_prop p.

Example (Proof of “4 + (2 + 3) ≤ (5 + 6) + 7”)

true = true refl_equal

eval_prop (Le (Add . . .) (Add . . .)) = true
β-conversion

interp_prop (Le (Add . . .) (Add . . .))
prop_xlate

4 + (2 + 3) ≤ (5 + 6) + 7
β-conversion

2 steps

G. Melquiond (INRIA, LRI) MPRI 2-7-2 2011-01-25 16 / 25

Proofs by Reflection Example : the ring Tactic

Example : the ring Tactic

Example (Polynomial Equality)

Goal forall x y,
((x + y) * (x - y) = x * x - y * y)%Z.

intros x y. ring.

Proof script generated by ring :
pose (hyp_list := nil);
pose (fv_list := x :: y :: nil);
apply (Zr_ring_lemma1 ring_subst_niter fv_list hyp_list

(PEmul (PEadd (PEX Z 1) (PEX Z 2)) (PEsub (PEX Z 1) (PEX Z 2)))
(PEsub (PEmul (PEX Z 1) (PEX Z 1)) (PEmul (PEX Z 2) (PEX Z 2)))).

exact I.
vm_compute; exact (refl_equal true).

Last line is the β-conversion followed by a boolean equality.

G. Melquiond (INRIA, LRI) MPRI 2-7-2 2011-01-25 17 / 25

Proofs by Reflection Typing and Oracle

Typing and Oracle

All the proofs now have the same structure (automatization!).
Only the inductive object reifying the proposition is needed.
This object is the abstract syntax tree of the proposition
(with all the unknown subterms generalized away, possible).
The reification is necessarily performed by an external oracle.
But β-conversion ensures that its result is correct.

true = true
eval_prop . . . = true

〈
typechecking fails
if the user asks too much

....
interp_prop (Le . . .)
4 + (2 + 3) ≤ 5 + 6

〈
typechecking fails
if the oracle is wrong

G. Melquiond (INRIA, LRI) MPRI 2-7-2 2011-01-25 18 / 25

Proofs by Reflection Typing and Oracle

Reification and Reflection

Coq Proposition Inductive Object

Proof of Φ

Φ: Prop

by reflection

Reification

Computation

Soundness

ϕ: formula[[ϕ]] ≡β Φ

Boolean Equality
F(ϕ) ≡β true∀ϕ, F(ϕ) = true⇒ [[ϕ]]

G. Melquiond (INRIA, LRI) MPRI 2-7-2 2011-01-25 19 / 25

Tactic Language

Outline

1 Proofs by Reflection
Example: Peano’s Arithmetic
Type Theory and β-Conversion
Handling Expressions
Reflecting Propositions
Example : the ring Tactic
Typing and Oracle

2 Tactic Language
Syntactic Analysis
Building Terms
Tactics for Computing

G. Melquiond (INRIA, LRI) MPRI 2-7-2 2011-01-25 20 / 25

Tactic Language

Tactic Language

The structure of a λ-term cannot be obtained inside the logic,
hence the need for an oracle, either written in OCaml or in Ltac.

Ltac allows to define new tactics from a Coq script.

Example

Ltac rewrite_clear K :=
rewrite K ; clear K.

Goal forall x, x = 3 -> x + 5 = 8.
intros x H.
rewrite_clear H.

G. Melquiond (INRIA, LRI) MPRI 2-7-2 2011-01-25 21 / 25

Tactic Language

Ltac Characteristics

Term notations are available.
Recursive functions have no termination requirement.
Matching can be performed on terms, hypotheses, goal.
Matching backtracks if the executed branch fails.
Only two types: Coq λ-terms and Coq tactics.
Quite slow.

G. Melquiond (INRIA, LRI) MPRI 2-7-2 2011-01-25 22 / 25

Tactic Language Syntactic Analysis

Syntactic Analysis of the Goal

Example (Finding a Particular Hypothesis)

Ltac find_rewrite v :=
match goal with
| H: v = ?x |- _ => rewrite H
end.

Goal forall x, x = 3 -> x + 5 = 8.
intros.
find_rewrite x.

Note: if Hi were to match but “rewrite Hi ” were to fail,
Coq would then try to find another hypothesis Hj with j > i .

G. Melquiond (INRIA, LRI) MPRI 2-7-2 2011-01-25 23 / 25

Tactic Language Building Terms

Building Terms

Example (Replacing Values in a List)

Ltac replace l u v :=
let rec aux l’ :=

match l’ with
| ?h :: ?t =>

let t’ := aux t in
match h with
| u => constr :(v :: t’)
| _ => constr :(h :: t’)
end

| nil => l
end in

aux l.

Note: matching is purely syntactic, β-conversion is not used in Ltac.
matching l ′ fails if its head is not a list constructor (e.g. rev nil);
u matches h only if they have the exact same structure.

G. Melquiond (INRIA, LRI) MPRI 2-7-2 2011-01-25 24 / 25

Tactic Language Tactics for Computing

Tactics for Computing

During a proof, Coq does not strongly normalize terms, unless asked for.
compute (call-by-value),
lazy (call-by-name),
vm_compute (call-by-value in the abstract machine).

Note: vm_compute decorates the proof term with special coercions,
so that Coq remembers it should use the VM to typecheck at Qed time.

Inside a tactic, the reduction of a term can be obtained by
let t := eval compute u in ...

(or lazy or simpl or hnf or . . .).

G. Melquiond (INRIA, LRI) MPRI 2-7-2 2011-01-25 25 / 25

	Proofs by Reflection
	Example: Peano's Arithmetic
	Type Theory and -Conversion
	Handling Expressions
	Reflecting Propositions
	Example : the ring Tactic
	Typing and Oracle

	Tactic Language
	Syntactic Analysis
	Building Terms
	Tactics for Computing

