
Proof assistants
TD 2- Specifics of the Calculus of Constructions

1 Inductive Predicates

A- Give an inductive definition even : nat -> Prop for the predicate “ to be even ”.
B- Caracterize with an inductive definition a relation exp : nat -> nat -> nat -> Prop

with two constructors corresponding to the graph of the function np = q on natural numbers.

2 Recursive types

A- Propose in Coq an inductive definition with parameter corresponding to the ML type of
polymorphic lists:

type ’a l i s t = n i l | cons of ’a * ’a l i s t

B- Coq library defines the binary product, the unit type and the type of natural numbers:

Inductive prod (A B : Type) : Type := pai r : A→ B→ prod A B.
Inductive unit : Type := tt : unit .
Inductive nat : Type := O : nat | S : nat → nat .

Construct an expression prodn in CCI of type Type → nat → Type which builds the n-ary
product of a given type A: (i.e. prodn A n is A× . . .×A (n times)). The definition will be by
recursion on n.

Give an expression length of type ∀A. list A→ nat which computes the length of a list.
Give an expression embed of type ∀A.∀l : list A. prodn A (length l) which translates a

list into a n-uple.

3 Termination of fixpoints

Are the following fixpoints well-founded in CCI ? explain why ?

Fixpoint leq (n p : nat) { st ruct n} : bool :=
match n with
| O⇒ true
| S n ’ ⇒ match p with O⇒ f a l s e | S p ’ ⇒ leq n ’ p ’ end
end .

Definition exp (p : nat) :=
(f i x f (n : nat) : nat :=
match leq p n with | true ⇒ S 0 | f a l s e ⇒ f (S n) + f (S n) end)
0.

Definition ackermann := f i x f (n : nat) : nat → nat := match n with
| O⇒ S
| S n ’ ⇒ f i x g (m: nat) : nat := match m with

| O⇒ f n ’ (S O)
| S m’ ⇒ f n ’ (g m’)
end

end .

1

4 Strong elimination

Let t1 and t2 be two arbitrary terms of type T1 and T2. Is the following function typable ?

Definition g (b : bool) := match b with true ⇒ t1 | f a l s e ⇒ t2 end .

If yes, give the corresponding return clause.

5 Restrictions on sorts in eliminations

A- We introduce the following definition of the true proposition:

Inductive True : Prop := I : True .

Write a function from unit to True which is one-to-one.
B- We now introduce

Inductive BOOL : Prop := TRUE : BOOL | FALSE : BOOL.

Can we show the equivalence between bool and BOOL ? Show that such an equivalence gives a
proof of the negation of the principle of ¡¡ proof-irrelevance ¿¿ in Prop, i. e. ∀P : Prop ∀p q :
P. p = q) .

6 The type W of well-founded trees (exam 2008)

The type W of well-founded trees is parameterised by a type A and a family of types B : A→
Type. It has only one constructor and is defined by :

Inductive W (A:Type) (B:A→ Type) : Type :=
node : fo ra l l (a :A) , (B a →W A B) →W A B.

The type A is used to parameterised the nodes and the type B a give the arity of the node
parameterised by a.

1. Give the type of dependent elimination for type W on sort Type.

2. In order to encode the type nat of natural numbers with O and S, we need two types of
nodes. We take A = bool. The constructor O corresponds to a = false, it does not
expect any argument so we take B false = empty. The constructor S corresponds to
a = true, it takes one argument, we define B true = unit.
Using this encoding, give the terms corresponding to nat, O et S.

3. Propose an encoding using W for the type tree of binary trees parameterised by a type of
values V , which means that we have a constructor leaf of type (treeV) and a constructor
bin of type treeV → V → treeV → treeV . Define the type and its constructors using
this encoding.

4. Given a variable n of type nat, build two functions f1 and f2 of type unit → nat such
that ∀x : unit, fi x = n is provable but such that f1 and f2 are not convertible.

5. Which consequence does it have on the encoding of nat using W? Propose an equality
on the type W which solves this problem.

2

