Proof Assistants

TD 3- Recursive functions

1 Recursion

1.1 Fibonacci

1- Write the function computing the Fibonacci sequence, following its definition F'(0) = 0,
F(1)=1and F(n+2) = F(n) + F(n+ 1). Compute F(4).

2- We want to write a scheme mimicking the recursive calls of Fibonacci. For this purpose,
we introduce a parameterized type P such that P(n) is the type of the value returned for
the input n. We also assume we are given the value at 0, the value at 1 and the value at
n + 2 computed from the values at n and n + 1:

Section FibPrinciple.

Variable P : nat -> Type.

Variable PO: P O.

Variable P1: P 1.

Variable Pr : forall n, Pn ->P (Sn) ->P (S (S n)).

Write a function P£ib1 of type Vn, P(n).

3- We now want to write a more efficient scheme, that makes only one recursive call. The
idea is to compute F(n) and F'(n + 1) at the same time. Using the same parameters as in
the previous question, write a function

On va maintenant écrire un schéma plus efficace, qui ne fait qu'un seul appel récursif. L’idée
est de calculer en méme temps F'(n) et F(n + 1). En utilisant les mémes paramétres que
pour la question précédente, écrire une fonction P£ib2 of type Vn, P(n) * P(n + 1).

4- Close the section:

End FibPrinciple.

Constants Pfib1l and Pfib2 now have 4 extra arguments corresponding to P, PO, P1 and Pr.
Instantiate these 2 schemes in order to compute the Fibonacci sequence, and compute F'(4)
with both functions.

1.2 Lists

We are now considering lists of elements of type A.

Require Import List.
Parameter A : Type.



1- Write a function split that splits a list in 2 listes of similar lengths. Taking Fibonacci
as a model, write an induction scheme associated to split.

2- Prove that each list returned by split is of length less or equal to the input list. We also
prove that if the input list has length greater or equal than 1, then the returned lists have a
length strictly smaller then the input.

3- Let 1le:A->A->bool be an order ond A. Write a function taking as argument a liste and
an integer n, and that reurns the liste using the Quicksort algorithm, not going further than
depth n. Prove that this function does not depend on n beyond some bound.

2 Partial functions

Variables (t : A) (F : nat -> nat -> A -> A).

We wish to define function f such that f(n,n) =t and f(n,m) = F(n,m, f(n,m — 1)) for
n < m. Show the following lemma, the resulting proof should be in any case a subproof of
that of n < m:

Lemma le_pred : forall nm, n <=m ->n <> m -> n <= pred m.

Write the function f having as a third argument the proof that n and m belong to the
domain.



