
Proof assistants
TD 4- Monads and Modules

1 Monades

1.1 Exceptions

Consider the type of binary trees with leaves labelled by natural numbers:

Inductive tree : Type :=
Leaf : nat -> tree | Node : tree -> tree -> tree.

1- Write a function expecting a tree as argument and returning either Some n where n is the
product of all leaves if its greater than 0, or None if one of the leaves is null.
2- Define the exception monad. Beside the usual monad operations, it should have 2 opera-
tions: raise to raise an exception, and try to catch it. Hint: use the option type.
3- Rewrite the fonction computing the product of leaves, this time using the exception
mechanism to return 0 as soon as a leaf is null.

1.2 Non determinism

Write the non-determinism monad, that lets you execute non deterministically a task among
a finite number of possible tasks. Beside the usual monad operations, it should have one
operation par of type M(A) → M(A) → M(A) such that par e1 e2 executes non deter-
ministically either e1 or e2.

2 Modules
1- Write a module signature representing a carrier type and a preorder on that type.
2- Write a module signature representing a functor expecting as argument a carrier type
and a boolean-valued order, and producing a finite set structure implementing the following
operations: membership, empty set, adding an element, removing an element, together with
the basic properties of these operations.
3- Implement this functor signature using lists to represent finite sets.

1


