1 Monades

1.1 Exceptions

Consider the type of binary trees with leaves labelled by natural numbers:

\[
\text{Inductive tree : Type := } \\
\text{ Leaf : nat -> tree | Node : tree -> tree -> tree.}
\]

1- Write a function expecting a tree as argument and returning either Some \(n \) where \(n \) is the product of all leaves if its greater than 0, or None if one of the leaves is null.

2- Define the exception monad. Beside the usual monad operations, it should have 2 operations: raise to raise an exception, and try to catch it. Hint: use the option type.

3- Rewrite the function computing the product of leaves, this time using the exception mechanism to return 0 as soon as a leaf is null.

1.2 Non determinism

Write the non-determinism monad, that lets you execute non deterministically a task among a finite number of possible tasks. Beside the usual monad operations, it should have one operation \(\text{par} \) of type \(M(A) \rightarrow M(A) \rightarrow M(A) \) such that \(\text{par } e_1 e_2 \) executes non deterministically either \(e_1 \) or \(e_2 \).

2 Modules

1- Write a module signature representing a carrier type and a preorder on that type.

2- Write a module signature representing a functor expecting as argument a carrier type and a boolean-valued order, and producing a finite set structure implementing the following operations: membership, empty set, adding an element, removing an element, together with the basic properties of these operations.

3- Implement this functor signature using lists to represent finite sets.