
Master Parisien de Recherche en Informatique 2010–2011
Proof Assistants

TD/TP 6 – Reflection
2011-01-26

1 Encoding Propositions
1. Define an inductive type formula representing logical formulas (∧, ∨, ¬, ⇒) whose atoms are

relations (=, ≤, <) between natural numbers.

2. Define a recursive function interp_formula: formula -> Prop that converts an inductive formula
to the corresponding logical proposition.

3. Define a recursive tactic reify_formula that takes a logical proposition and returns an inductive
formula whose application to interp_formula is β-convertible to the given proposition.

For instance, the following piece of script has to work fine:

Goal forall m n : nat , m + n <= n -> m = 0 /\ 0 <= n.
intros m n.
match goal with
| |- ?g => let f := reify_formula g in change (interp_formula f)
end.

2 Small Scale Reflection
1. Define the three functions eq_bool, le_bool, lt_bool on natural numbers and prove that they

are equivalent to the corresponding relations. For instance, the lemma for ≤ is:

Lemma le_bool_correct : forall m n : nat ,
le_bool m n = true <-> m <= n.

2. Define four functions and_bool, or_bool, not_bool, imp_bool and prove that they are equivalent
to the corresponding connectors. For instance, the lemma for ⇒ is:

Lemma imp_bool_correct : forall p q : bool ,
imp_bool p q = true <-> (p = true -> q = true).

3. Define a function bool_formula such that the following theorem holds:

Theorem bool_formula_correct : forall f : formula ,
bool_formula f = true <-> interp_formula f.

3 Classical Logic in a Decidable World
1. Define a tactic that replaces the goal G by the goal ¬G⇒ G (assuming it can be reified).

2. Define a tactic that removes all the ¬ and ⇒ connectors of the goal (assuming it can be reified).
The negation ¬ might still appear in front of equalities.

1

