Master Parisien de Recherche en Informatique Proof Assistants 2010 - 2011

TD/TP 6 - Reflection

2011-01-26

1 Encoding Propositions

- 1. Define an inductive type formula representing logical formulas $(\land, \lor, \neg, \Rightarrow)$ whose atoms are relations $(=, \leq, <)$ between natural numbers.
- 2. Define a recursive function interp_formula: formula -> Prop that converts an inductive formula to the corresponding logical proposition.
- 3. Define a recursive tactic reify_formula that takes a logical proposition and returns an inductive formula whose application to interp_formula is β -convertible to the given proposition.

For instance, the following piece of script has to work fine:

```
Goal forall m n : nat, m + n <= n -> m = 0 /\ 0 <= n.
intros m n.
match goal with
| |- ?g => let f := reify_formula g in change (interp_formula f)
end.
```

2 Small Scale Reflection

1. Define the three functions eq_bool, le_bool, lt_bool on natural numbers and prove that they are equivalent to the corresponding relations. For instance, the lemma for \leq is:

Lemma le_bool_correct : forall m n : nat, le_bool m n = true <-> m <= n.</pre>

 Define four functions and_bool, or_bool, not_bool, imp_bool and prove that they are equivalent to the corresponding connectors. For instance, the lemma for ⇒ is:

Lemma imp_bool_correct : forall p q : bool, imp_bool p q = true <-> (p = true -> q = true).

3. Define a function bool_formula such that the following theorem holds:

Theorem bool_formula_correct : forall f : formula, bool_formula f = true <-> interp_formula f.

3 Classical Logic in a Decidable World

- 1. Define a tactic that replaces the goal G by the goal $\neg G \Rightarrow G$ (assuming it can be reified).
- 2. Define a tactic that removes all the \neg and \Rightarrow connectors of the goal (assuming it can be reified). The negation \neg might still appear in front of equalities.