1 Encoding Propositions

1. Define an inductive type formula representing logical formulas (\land, \lor, \neg, \Rightarrow) whose atoms are relations ($=$, \leq, $<$) between natural numbers.

2. Define a recursive function $\text{interp_formula}: \text{formula} \rightarrow \text{Prop}$ that converts an inductive formula to the corresponding logical proposition.

3. Define a recursive tactic reify_formula that takes a logical proposition and returns an inductive formula whose application to interp_formula is β-convertible to the given proposition.

For instance, the following piece of script has to work fine:

\begin{verbatim}
Goal forall m n : nat, m + n <= n -> m = 0 /
\end{verbatim}

\begin{verbatim}
| |- ?g => let f := reify_formula g in change (interp_formula f)
end.
\end{verbatim}

2 Small Scale Reflection

1. Define the three functions eq_bool, le_bool, lt_bool on natural numbers and prove that they are equivalent to the corresponding relations. For instance, the lemma for \leq is:

\begin{verbatim}
Lemma le_bool_correct : forall m n : nat,
\end{verbatim}

\begin{verbatim}
le_bool m n = true <-> m <= n.
\end{verbatim}

2. Define four functions and_bool, or_bool, not_bool, imp_bool and prove that they are equivalent to the corresponding connectors. For instance, the lemma for \Rightarrow is:

\begin{verbatim}
Lemma imp_bool_correct : forall p q : bool,
\end{verbatim}

\begin{verbatim}
imp_bool p q = true <-> (p = true -> q = true).
\end{verbatim}

3. Define a function bool_formula such that the following theorem holds:

\begin{verbatim}
Theorem bool_formula_correct : forall f : formula,
\end{verbatim}

\begin{verbatim}
bool_formula f = true <-> interp_formula f.
\end{verbatim}

3 Classical Logic in a Decidable World

1. Define a tactic that replaces the goal G by the goal $\neg G \Rightarrow G$ (assuming it can be reified).

2. Define a tactic that removes all the \neg and \Rightarrow connectors of the goal (assuming it can be reified).

The negation \neg might still appear in front of equalities.