
Master Parisien de Recherche en Informatique 2010–2011
Proof Assistants

TD/TP 7 – Verifying Imperative Programs
2011-02-01

Using Why
Assuming file f.why contains some program and specification, running why –coq f.why will produce a
Coq file f_why.v containing all the verification conditions, while gwhy f.why will open the graphical
user interface.

1 McCarthy’s 91 function
McCarthy’s 91 function is the function f from Z to Z defined by

f(n) =

{
f(f(n+ 11)) if n ≤ 100
n− 10 otherwise.

1. Define function f in Why. The Why syntax for a recursive function is

let rec f (n:int) : int = ...

2. f(n) is 91 when n ≤ 100 and n − 10 otherwise. Annotate f accordingly and prove in Coq the
generated VCs.

3. Prove in Coq the termination of f by inserting the following variant

let rec f (n:int) : int { variant max(0,101-n) } = ...

Since max is not a primitive function, you must introduce it with a logic and axiomatize it with
an axiom.

2 Fibonacci function
1. Introduce the Fibonacci function F with a logic and three axioms in Why. We recall that F (0) =

F (1) = 1 and F (n) = F (n− 1) + F (n− 2) for n ≥ 2.

2. Define a recursive function f1 computing F (with a naive, i.e. exponential, algorithm). Prove its
correctness and termination in Coq.

3. Define a function f2 computing F using a linear algorithm which maintains F (n− 1) and F (n) in
two references. Prove its correctness and termination in Coq.

4. Define a third Why function f3 computing F (n), using the same linear algorithm but using a
recursive function instead of a loop. Note how the loop invariant is naturally transformed into a
precondition.

3 Minimum and maximum of an array
1. Fill the precondition of the following function so that the postcondition holds. Add an invariant

and a variant so that the Why function is completely and automatically proved by Alt-Ergo.

let dummy_loop (n : int) =
let i = ref 0 in while !i < n do i := !i + 2 done; !i
{ result = n or result = n + 1 }

1



2. Define an abstract datatype for representing pairs of values with generic types in Why. Realize it
in Coq.

3. Fill the body of the following Why function, so that it returns the indexes of the minimum and
maximum elements of its array argument. Note: the standard fast algorithm scans two elements
at each step, so its complexity is 3n/2 comparisons for an array of length n.

include "arrays.why"
let fast_minmax (t : int array) =

{ array_length(t) >= 1 }
mk_pair 0 0
{ forall i : int. 0 <= i < array_length(t) ->

t[first(result )] <= t[i] <= t[second(result )] }

4 For-loops (exam 2003–2004)
The semantic of for i = e1 to e2 do e3 done can be specified as: e1 and e2 are evaluated only once (values
v1 and v2); if v1 > v2, the loop is skipped, otherwise e3 is evaluated iteratively with i = v1, v1+1, . . . , v2.
Note that i is visible only in e3 and it is not writable.

1. Define a Coq function of type Z->Z->Z that is equivalent to the following Caml program. An
auxiliary function (inductively defined on nat) has to be used.

let f a b =
let d = ref 1 in
for i = a to b do d := 19 * !d + i done;
!d

2. Complete the following Hoare rules and explain why they are sound. Note that a and b are not
expressions but constant integers.

{(a > . . .) ∧ . . .} for i = a to b do s done {Q}

{(. . . ≤ i ≤ . . .) ∧ I(i)} s {I(. . .)}
{a ≤ . . . ∧ I(. . .)} for i = a to b do s done {I(. . .)}

3. An induction principle for_rec is needed to prove in Coq programs using for loops. It has the
following type:

forall (a b:Z), a <= b+1 ->
forall (P : Z -> Set),

P a -> (forall i, a <= i <= b -> P i -> P (i+1))
-> P (b+1).

Prove for_rec or define its value. One can use an auxiliary function inductively defined on nat,
as was done in the first question.

4. By using for_rec, define in Coq a function sqr of type

forall z:Z, z>=0 -> { s:Z | s=z*z }

that matches the following Caml program

let sqr z =
let s = ref 0 in
for i = 0 to z-1 do s := !s + 2*i + 1 done;
!s

2


