http://www.lri.fr/~paulin/MathInfo

20 février 2013

TD 4 - Cardinal, Ensembles dénombrables, Récurrence

Exercice 1 Ensembles

Soit E un ensemble de cardinal 4 et F un ensemble de cardinal 5.

- 1. Donner le cardinal des ensembles suivants :
 - $-E\times F$;
 - $-E \rightarrow F$;
 - $-\wp(E\times F).$
- 2. Donner le cardinal des ensembles suivants :
 - $-(E \times E) \rightarrow E$, l'ensemble des applications de $E \times E$ dans E;
 - $E \to (E \to E)$, l'ensemble des applications de E dans l'ensemble $E \to E$ des applications de E dans E.

En déduire l'existence d'une bijection de $(E \times E) \to E$ dans $E \to (E \to E)$ (on ne cherchera pas à la construire explicitement).

3. Si $E = \{0, 1, 2, 3\}$, construire explicitement une bijection entre $\wp(E)$ et [0, n[où n est le cardinal de $\wp(E)$.

Exercice 2 Soit n un entier et A un ensemble fini, montrer que s'il existe une application surjective de A dans [0, n[alors $n \leq |A|$.

En déduire que si f est une application surjective dans $A \to B$ avec A et B des ensembles finis de même cardinal alors f est bijective.

Exercice 3 Soit l'ensemble \mathcal{S} des suites infinies de $\{0,1\}$, c'est-à-dire $\mathcal{S} = \mathbb{N} \to \{0,1\}$. Montrer que \mathcal{S} n'est pas dénombrable.

Idée : On suppose que l'on peut énumérer les suites à valeurs dans $\{0,1\}$ et on regardera la suite diagonale $(u_n)_{n\in\mathbb{N}}$ définie par $u_n=1-v(n)$ avec v la suite de numéro n.

Exercice 4 Optionnel Soit E un ensemble quelconque, montrer qu'il n'y a pas de bijection entre E et $\wp(E)$.

Exercice 5 Récurrence sur les entiers

Soit une tablette de chocolat comportant n carrés.

On souhaite la découper et pour cela on prend un morceau qui a au moins deux carrés et on sépare ce morceau en deux (le nombre de carrés dans chaque morceau est arbitraire)

Montrer que pour séparer la tablette en n morceaux, il faut procéder à exactement n-1 découpes.