

Isabelle Tutorial:
System, HOL and Proofs

 Burkhart Wolff
Université Paris-Sud

The Isabelle

System Framework

What is Isabelle as a System ?
 ! A Document Processor

! … where documents have a unique name
! … may acyclicly import documents
! … and consists of an command sequence
! … where new commands may be introduced

 on the fly (i.e. the system framework is
extensible).

● A session (a collection of documents organized in
a hierachy) may be “frozen” to a session (or
configuration)

● A session is evaluated concurrently and
asynchronisly on all what the “user sees”, its
jEdit editor is an IDE

What is Isabelle as a System ?
! Global View of a “session“

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

Document /
“Theory”

cmd

A

B
C

D

What is Isabelle as a System ?
! Global View

token

token

token

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

Document /
“Theory”

cmd

A

B
C

D

atom detailed view:

What is Isabelle as a System ?
! Document “positions” were evaluated to an

implicit state, the theory context T

Θ3

Θ0

Θ3 - 2

Θ3 - 1

“semantic”
evaluation
as SML
function

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

Document /
“Theory”

cmd

A

B
C

D

What is Isabelle as a System ?
! Document “positions” were evaluated to an

implicit state, the theory context T

Θ3

Θ0

Θ3 - 2

Θ3 - 1

“semantic”
evaluation
as SML
function

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

Document /
“Theory”

cmd

A

B
C

D

Note:
the theory context
T can contain a “type signature”
and a “term signature”, “axioms”,
but also system configuration
information etc.

What is Isabelle as a System ?
! Document “positions” were evaluated to an

implicit state, the theory context T

Θ3

Θ0

Θ3 - 2

Θ3 - 1

“semantic”
evaluation
as SML
function

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

Document /
“Theory”

cmd

A

B
C

D

Note:
… and this is at the
beginning a minimal
intuitionistic logic called
in Isabelle/Pure

What is Isabelle as a System ?
! Example

theory D
imports B C
begin
section{* First Section *}
text{* Some mathematical text: @{text \<alpha>}.*}
ML{* fun fac x = if x = 0 then 1 else x*fac(x-1) *}

 ML{* fac 10 *}
end

What is Isabelle as a System ?
! Example

theory D
imports B C
begin
section{* First Section *}
text{* Some mathematical text: @{text \<alpha>}.*}
ML{* fun fac x = if x = 0 then 1 else x*fac(x-1) *}

 ML{* fac 10 *}
end

What is Isabelle as a System ?
! Example

theory D
imports B C
begin
section{* First Section *}
text{* Some mathematical text: @{text \<alpha>}.*}
ML{* fun fac x = if x = 0 then 1 else x*fac(x-1) *}

 ML{* fac 10 *}
end

“fac” visible here because the
ML environment is part of T !!

Demo I
! Start Isabelle (via the PIDE jEdit)
! Browse „demo1.thy“
! Commands:

" text, section, subsection
" ML
" value
" a browser for theorems: find_theorems

! Capabilities:
– hovering, jump-link,

Demo I

Demo I

Main
(Editing)
Panel

Demo I

Output
Panel

Demo I

Sidekick Panel/
[Documentation
Panel |
Theories Panel]

Parallel
Nano-Kernel
LCF-Archi-
tecture

in the

jEdit - GUI
(PIDE)

fine-grained,
asynchronous
parallelism
(Isabelle2009-2)

What is Isabelle as a System ?
! Example with definitions and proofs:

theory Test
imports Main (* = HOL Library *)
begin

definition H : “bool \<Rightarrow> bool \<Rightarrow> bool”
where “H x y == (x \<or> y) \<and> (x \<noteq> y)”

lemma <SomeName> : “A \<and> B \<longrightarrow> B”
<tactical proof or declarative proof>
done

What is Isabelle as a System ?
! The jEdit - IDE will parse and print this to:

theory Test
imports Main (* = HOL Library *)
begin

definition H : “bool bool bool”⇒ ⇒
where “H x y == (x y) x ≠ y” ∨ ∧

lemma <SomeName> : “A B∧ ⟶ B”
<tactical proof or declarative proof>
done

Use completion and tooltips !

09/20/16 B. Wolff - M2 - PIA 20

Revision: Pure Syntax
(the syntax for „rule“formation)

• Example: The language „Pure“:
ΣPure = { (all, (α → Prop) → Prop), (* !! *)
 (_ ⟹ _, Prop → Prop → Prop), (* ==> *)
 (_ ≡ _, α → α → Prop)} (* == *)

• Note that we use schematic type variables to denote
conceptually infinite signatures :
(_ ≡ _, Prop → Prop → Prop), (_ ≡ _, bool → bool → Prop),
(_ ≡ _, nat → nat → Prop), ...

• Caveat: Isabelle uses ⇒ instead of in types, sorry for the confusion.→

Simple Proof Commands

! Simple (Backward) Proofs:

There are different formats of proofs, we concentrate on the
simplest one:

apply(<method1>) ... apply(<methodn>) done

lemma <thmname> :
[<contextelem>+ shows] “<phi>”
 <proof>

Simple Proof Commands

! Simple (Backward) Proofs:

example:
lemma m : "conc (Seq a (Seq b Empty)) (Seq c Empty) =

 Seq a (Seq b (Seq c Empty))"
 apply(simp) done

This type of proof evolves “bottom up” from the conclusion to
the assumptions.
apply(bla) done is syntactically equivalent to by bla.

lemma <thmname> :
[<contextelem>+ shows] “<phi>”
 <proof>

A Summary of Proof Methods

• The most elementary proof method is the rule <thmname> method.
It is used for introduction rules. It proceeds in three phases:

– lifting of <thmname> over the parameters
of the current (first) goal (fiddling with quantifiers)

– lifting of <thmname> over the assumptions
of the current (first) goal (see pp. 25)

– constructing an instance of <thmname> by unification;
this means that the conclusion of <thmname> must finally match
(modulo β and α red.) against the conclusion of the current (first) goal.

• The user can help this process by using the variant:
– rule_tac <subst> in <thmname>

– … where <subst> is of the form:
 x

1
=”φ

1
” and x

n
=”φ

n

and the xi are the variables of <thmname>

A Summary of Proof Methods

• An important variant is erule <thmname> method.
It is used for elimination rules. It proceeds in three phases:

– lifting of <thmname> over the assumptions
of the current (first) goal (see pp. 25)

– lifting of <thmname> over the parameters
of the current (first) goal (fiddling with quantifiers)

– constructing an instance of <thmname> by unification;
this means that the conclusion of <thmname> must finally match (modulo β
and α red.) against the conclusion of the current (first) goal,
moreover, the first premise of <thmname> must match (modulo β and α red.)
 against one of the assumptions of the current goal.

• The user can help this process by using the variant:
– erule_tac <subst> in <thmname>

A Summary of Proof Methods

• An important method the assumption method.

It is used for final situations, where the
conclusion of a goal can be discharged by one
of the assumptions.
It suffices that one of the assumptions
match (modulo β and α red.) against the conclusion.

At a Glance

• low-level methods (without substitution)
– assumption (unifies conclusion vs. a premise)
– subst <thmname>

 does one rewrite-step
 (by instantiating the HOL subst-rule)

– rule[_tac <subst> in] <thmname>
 PROLOG - like resolution step using HO-Unification

– erule[_tac <subst> in] <thmname>
 elimination resolution (for ND elimination rules)

– drule[_tac <subst> in] <thmname>
 destruction resolution (for ND destruction rules)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

