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System Framework

 



  

What is Isabelle as a System ? 
 ! A Document Processor

!  … where documents have a unique name
!  … may acyclicly import documents
!  … and consists of an command sequence
!  … where new commands may be introduced 

    on the fly (i.e. the system framework is 
extensible).

●  A session (a collection of documents organized in 
a hierachy) may be “frozen” to a session (or 
configuration) 

● A session is evaluated concurrently and 
asynchronisly on all what the “user sees”, its 
jEdit editor is an IDE  



  

What is Isabelle as a System ? 
! Global View of a “session“
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atom detailed view:                 



  

What is Isabelle as a System ? 
! Document “positions” were evaluated to an

implicit state, the theory context T
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Note: 
the theory context 
T can contain a “type signature”
and a “term signature”, “axioms”, 
but also system configuration 
information etc.



  

What is Isabelle as a System ? 
! Document “positions” were evaluated to an

implicit state, the theory context T
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Note: 
… and this is at the 
beginning a minimal 
intuitionistic logic called 
in Isabelle/Pure



  

What is Isabelle as a System ? 
! Example

theory D
imports B C
begin
section{* First Section *} 
text{* Some mathematical text: @{text \<alpha>}.*} 
ML{* fun fac x = if x = 0 then 1 else x*fac(x-1) *}

   ML{* fac 10  *}
end 
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What is Isabelle as a System ? 
! Example

theory D
imports B C
begin
section{* First Section *} 
text{* Some mathematical text: @{text \<alpha>}.*} 
ML{* fun fac x = if x = 0 then 1 else x*fac(x-1) *}

   ML{* fac 10  *}
end 

“fac” visible here because the 
ML environment is part of T !!



  

Demo I 
! Start Isabelle (via the PIDE jEdit)
! Browse „demo1.thy“
! Commands:

" text, section, subsection
" ML
" value
" a browser for theorems: find_theorems

! Capabilities:
– hovering, jump-link, 



  

Demo I 



  

Demo I 

Main 
(Editing)
Panel



  

Demo I 

Output
Panel



  

Demo I 

Sidekick Panel/
[Documentation 
Panel |
Theories Panel]



  

Parallel 
Nano-Kernel 
LCF-Archi-
tecture

in the 

jEdit - GUI
(PIDE)

fine-grained, 
asynchronous 
parallelism
(Isabelle2009-2) 



  

What is Isabelle as a System ? 
! Example with definitions and proofs:

theory Test
imports Main  (* = HOL Library *) 
begin

definition H : “bool \<Rightarrow> bool \<Rightarrow> bool”
where  “H x y == (x \<or> y) \<and> (x \<noteq> y)”  

lemma <SomeName> : “A \<and> B \<longrightarrow> B”
<tactical proof or declarative proof>
done



  

What is Isabelle as a System ? 
! The jEdit - IDE will parse and print this to:

theory Test
imports Main  (* = HOL Library *) 
begin

definition H : “bool  bool  bool”⇒ ⇒
where  “H x y == (x  y)  x ≠ y”  ∨ ∧

lemma <SomeName> : “A  B∧   ⟶ B”
<tactical proof or declarative proof>
done

Use completion and tooltips !
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Revision: Pure Syntax
(the syntax for „rule“formation)

• Example: The language „Pure“:
ΣPure = { (all,  (α → Prop) → Prop),         (* !! *)
   (_  ⟹ _, Prop → Prop → Prop),   (* ==> *)
    (_ ≡ _, α → α → Prop)}              (* == *)

• Note that we use schematic type variables to denote
conceptually infinite signatures :
(_ ≡ _, Prop → Prop → Prop), (_ ≡ _, bool → bool → Prop),
(_ ≡ _, nat → nat → Prop), ...

• Caveat: Isabelle uses  ⇒  instead of  in types, sorry for the confusion.→



  

Simple Proof Commands

! Simple (Backward) Proofs: 

There are different formats of proofs, we concentrate on the 
simplest one:

apply(<method1>) ... apply(<methodn>) done

lemma  <thmname> : 
[<contextelem>+ shows] “<phi>”       
 <proof>



  

Simple Proof Commands

! Simple (Backward) Proofs: 

example: 
lemma m : "conc (Seq a (Seq b Empty)) (Seq c Empty) = 

     Seq a (Seq b (Seq c Empty))"
         apply(simp) done

This type of proof evolves “bottom up” from the conclusion to
the assumptions.   
apply(bla) done is syntactically equivalent to by bla.

lemma  <thmname> : 
[<contextelem>+ shows] “<phi>”       
 <proof>



  

A Summary of Proof Methods

• The most elementary proof method is the  rule <thmname> method. 
It is used for introduction rules. It proceeds in three phases:

– lifting of <thmname> over the parameters
of the current (first) goal (fiddling with quantifiers)

– lifting of <thmname> over the assumptions
of the current (first) goal (see  pp. 25)

– constructing an instance of <thmname> by unification;
this means that the conclusion of <thmname> must finally match 
(modulo β and α red.) against the conclusion of the current (first) goal.

• The user can help this process by using the variant:
– rule_tac   <subst> in <thmname>

– … where <subst> is of the form:
         x

1
=”φ

1
” and x

n
=”φ

n 

and the xi are the variables of  <thmname>



  

A Summary of Proof Methods

• An important variant is  erule <thmname> method. 
It is used for elimination  rules. It proceeds in three phases:

– lifting of <thmname> over the assumptions
of the current (first) goal (see  pp. 25)

– lifting of <thmname> over the parameters
of the current (first) goal (fiddling with quantifiers)

– constructing an instance of <thmname> by unification;
this means that the conclusion of <thmname> must finally match (modulo β 
and α red.) against the conclusion of the current (first) goal, 
moreover, the first premise of <thmname> must match (modulo β and α red.) 
 against one of the assumptions of the current goal.

• The user can help this process by using the variant:
– erule_tac   <subst> in <thmname>



  

A Summary of Proof Methods

• An important method the assumption method. 

It is used for final situations, where the 
conclusion of a goal can be discharged by one 
of the assumptions.
It suffices that one of the assumptions 
match (modulo β and α red.) against the conclusion.
 



  

At a Glance

• low-level methods (without substitution)
– assumption (unifies conclusion vs. a premise)
– subst <thmname>

 does one rewrite-step 
 (by instantiating the HOL subst-rule)

– rule[_tac   <subst> in] <thmname> 
 PROLOG - like resolution step using HO-Unification

– erule[_tac   <subst> in] <thmname>
 elimination resolution (for ND elimination rules)

– drule[_tac   <subst> in] <thmname>
    destruction resolution  (for ND destruction rules)
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