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The Isabelle
System Framework



What is Isabelle as a System ?

®* A Document Processor

* .. where documents have a unique name
* ... may acyclicly import documents
* .. and consists of an command sequence
* .. where new commands may be intfroduced
on the fly (i.e. the system framework is
extensible).

* A session (a collection of documents organized in
a hierachy) may be “frozen” to a session (or
configuration)

* A session is evaluated concurrently and
asynchronisly on all what the “user sees”, its
jEdit editor is an IDE



What is Isabelle as a System ?
* Global View of a “session”
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What is Isabelle as a System ?

* Document “positions” were evaluated to an
implicit state, the theory context ©
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What is Isabelle as a System ?

* Document “positions” were evaluated to an
implicit state, the theory context ©
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What is Isabelle as a System ?
* Example

theory D
imports B C
begin

section{* First Section *}
text{* Some mathematical text: @{text \<alpha>}."}
ML{* fun fac x = if x = 0 then 1 else x*fac(x-1) *}

ML{* fac 10 *}
end
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* Example
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What is Isabelle as a System ?
* Example

‘theory D
imports B C
begin

section{* First Section *}

text{* Some mathematical text: @{text \<alpha>}."}

ML{* fun fac x = if x = 0 then 1 else x*fac(x-1) *}

ML{* fac10 *} = “fac” visible here because the
end M environment 1s part of © !!




Demo 1

* Start Isabelle (via the PIDE jEdit)
* Browse ,, demol.thy"

e Commands:
text section, subsection
ML

value

a browser for theorems: find__theorems
* Capabilities:

— hovering, jump-link,
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fine-grained,
asynchronous
parallelism

(Isabelle2009-2)
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Example.thy {(modified)

| B Example.thy (~/tmp/)

theory Example
imports Main
begin

inductive path for rel :: "'a = 'a = bool" where
base: "path rel x x"
| step: "rel x y = path rel y z = path rel x z"

theorem example:
fixes x z :: 'a assumes "path rel x z" shows "P x z"
using assms
proof induct
case (base x)
show "P x x" by auto
next
case (step x y z)
note rel x y and "path rel y z
moreover note P y z°
ultimately show "P x z" by auto
ged

end

16,20 (318/422) (isabelle,none,UTF-8-lsabelle)- - - - UCGKEEB/554Mb 1:41 PM
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What is Isabelle as a System ?
* Example with definitions and proofs:

theory Test
imports Main (* = HOL Library *)
begin

definition H : “bool \<Rightarrow> bool \<Rightarrow> bool”
where “H xy == (x \<or>y) \<and> (x \<noteg> y)”

lemma <SomeName> : “A \<and> B \<longrightarrow> B”
<tactical proof or declarative proof>
done




What is Isabelle as a System ?
* The jEdit - IDE will parse and print this to:

theory Test
imports Main (* = HOL Library *)
begin

definition H : “bool = bool = bool”
where ‘Hxy==(Xvy)aX#Yy’

lemma <SomeName> : “AArB — B’
<tactical proof or declarative proof>
done

Use completion and tooltips !



Revision: Pure Syntax
(the syntax for ,rule“formation)

 Example: The language ,Pure":

2 ={ (all, (a— Prop) — Prop), (* 1I17)
(_ = _, Prop — Prop — Prop), (*==>7)
(_ = _,o0o—>o— Prop)} (* == *)

« Note that we use schematic type variables to denote
conceptually infinite signatures :

(_ = _, Prop — Prop — Prop), (_ = _, bool — bool — Prop),

(_ = _, nat - nat — Prop), ...

—

« Caveat: Isabelle uses = instead of — in types, sorry for the confusion.

09/20/16 B. Wolft - M2 - PIA 20



Simple Proof Commands

 Simple (Backward) Proofs:

lemma <thmname> :
[ <contextelem>" shows] “<phi>"
<proof>

There are different formats of proofs, we concentrate on the
simplest one:

apply(<method >) ... apply(<method >) done



Simple Proof Commands

* Simple (Backward) Proofs:

lemma <thmname> :
[ <contextelem>" shows] “<phi>"
<proof>

example:

lemma m : "conc (Seq a (Seq b Empty)) (Seq c Empty) =
Seq a (Seqg b (Seq ¢ Empty))"”
apply(simp) done

This type of proof evolves “bottom up” from the conclusion to
the assumptions.
apply(bla) done is syntactically equivalent to by bla.



A Summary of Proof Methods

« The most elementary proof method is the rule <thmname> method.
It is used for infroduction rules. It proceeds in three phases:

— lifting of <thmname> over the parameters
of the current (first) goal (fiddling with quantifiers)

— lifting of <thmname> over the assumptions
of the current (first) goal (see pp. 25)

— constructing an instance of <thmname> by unification;
this means that the conclusion of <thmname> must finally match
(modulo B and a red.) against the conclusion of the current (first) goal.

« The user can help this process by using the variant:

—rule_tac <subst>in <thmname>

_ ... where <subst> is of the form:
X1=”q)1” and Xn=”(l)

and the xi are the variables of <thmname>

n



A Summary of Proof Methods

« An important variant is erule <thmname> method.
It is used for elimination rules. It proceeds in three phases:

— lifting of <thmname> over the assumptions
of the current (first) goal (see pp. 25)

— lifting of <thmname> over the parameters
of the current (first) goal (fiddling with quantifiers)

— constructing an instance of <thmname> by unification;
this means that the conclusion of <thmname> must finally match (modulo 3
and a red.) against the conclusion of the current (first) goal,
moreover, the first premise of <thmname> must match (modulo $ and a red.)
against one of the assumptions of the current goal.

« The user can help this process by using the variant:

—erule_tac <subst>in <thmname>



A Summary of Proof Methods
* An important method the assumption method.

It is used for final situations, where the
conclusion of a goal can be discharged by one
of the assumptions.

It suffices that one of the assumptions

match (modulo B and a red.) against the conclusion.



At a Glance

* low-level methods (without substitution)

— assumption (unifies conclusion vs. a premise)

— subst <thmname>

does one rewrite-step
(by instantiating the HOL subst-rule)

—rule[_tac <subst> in] <thmname>
PROLOG - like resolution step using HO-Unification

— erule[ _tac <subst> in] <thmname>
elimination resolution (for ND elimination rules)

—drule[ tac <subst> in] <thmname>

destruction resolution (for ND destruction rules)
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