Isabelle Tutorial:
System, HOL and Proofs

Burkhart Wol ff

Universite Paris-Sud

The Isabelle
System Framework

What is Isabelle as a System ?

®* A Document Processor

* .. where documents have a unique name
* ... may acyclicly import documents
* .. and consists of an command sequence
* .. where new commands may be intfroduced
on the fly (i.e. the system framework is
extensible).

* A session (a collection of documents organized in
a hierachy) may be “frozen” to a session (or
configuration)

* A session is evaluated concurrently and
asynchronisly on all what the “user sees”, its
jEdit editor is an IDE

What is Isabelle as a System ?
* Global View of a “session”

Document/ | cmd
\
“TheonyX A, -
cmd
v
cmd
B [_cmd \4\
i <
cmd
! C Cr?d
cmd cmd
y 3
cmd cm d
! v
cmd cmd

——

D cmd

What is Isabelle as a System ?
* Global View

DocumeL A [omd

“TheonyX
cmd
v
cmd

B

{om detailed view:

v
CIild C L cmd
cmd cmd
y 3
cmd cmd
! !
cmd cmd

e

\

——

D cmd

What is Isabelle as a System ?

* Document “positions” were evaluated to an
implicit state, the theory context ©
Document / A [omd

\
“TheonyX -
cmd
;
cmd
B [omd \\
:)
cmd C L cmd .
. 2 “semantic”’
cmd cmd)
x > evaluation
CTd CIie as SML
cmd cde function

D cmd

What is Isabelle as a System ?

* Document “positions” were evaluated to an

implicit state, the theory context ©

Document /
“TheonyX

B cmd

cmd

cmd

cmd

cmd

et A cmd
3

Note:

emd the theory cgntext |
v ©® can contain a “type signature”
cmd and a “term signature”, “axioms”,
but also system configuration
information etc.
C L ocmd .
‘“ “semantic”
cmd :
- evaluation
CIie as SML
cmd function

(

D cmd

What is Isabelle as a System ?

* Document “positions” were evaluated to an
implicit state, the theory context ©

Document / Note:
“Theor A CI?d ... and this 1s at the
e beginning a minimal
cmd intuitionistic logic called
\ 1n Isabelle/Pure
B | cmd) \
.)
cmd C L ocmd .
: v “semantic”
cmd cmd .
. > evaluation
CTd Eind as SML
=
cmd cmd function

D cmd

What is Isabelle as a System ?
* Example

theory D
imports B C
begin

section{* First Section *}
text{* Some mathematical text: @{text \<alpha>}."}
ML{* fun fac x = if x = 0 then 1 else x*fac(x-1) *}

ML{* fac 10 *}
end

What is Isabelle as a System ?
* Example

‘theory D
imports B C
begin

section{* First Section *}

text{* Some mathematical text: @{text \<alpha>}."}

ML{* fun fac x = if x = 0 then 1 else x*fac(x-1) *}

ML{* fac 10 *}
end

What is Isabelle as a System ?
* Example

‘theory D
imports B C
begin

section{* First Section *}

text{* Some mathematical text: @{text \<alpha>}."}

ML{* fun fac x = if x = 0 then 1 else x*fac(x-1) *}

ML{* fac10 *} = “fac” visible here because the
end M environment 1s part of © !!

Demo 1

* Start Isabelle (via the PIDE jEdit)
* Browse ,, demol.thy"

e Commands:
text section, subsection
ML

value

a browser for theorems: find__theorems
* Capabilities:

— hovering, jump-link,

Demo 1

® 00 | demol.thy (modified)

| m demol.thy (~fu-psud/fortesse/pub/presentations/2014-14-9-isabelle-tutorial /bu_sol... % | @ | isabelle ol

transcription, so “alpha is just equal to ‘<alpha= but = || | % (X
1ter: ")

can also be written a. - <

demol.thy

, , v demol E

Only in few cases one has to memorize. For them, A

) .) theory demol £

ASCII - oriented shortcuts like = can be given for ==, v section{* My very first experiments *} 3

=1

b subsection{* Thesis *} B

ik » subsection{* Apotheosis *} E'

¥ subsection{* "The Function" in SML *}

~ |subsection{* Apotheosis *} ML{* fun fac n = if n=0 then 1 else n * fac(n-!

ML{* fac 50%}
b subsection{* Using the code-generator to SML *}

w |text{* It may be necessary to get used to the PIDE - Paradigm:
always checking whenever typing. After a while, however,
one gets used to it. Don't forget to save from time to time !!! *}

= |subsection{* "The Function" in SML *}

ML{* fun fac n = if n=0 then 1 else n * fac(n-1) *}
ha ML{* fac SO*}

w |subsection{* Using the code-generator to SML *}

value "(2::nat) + 2"

M Auto update | Update | | Detach | [100% B

val it =
3041405320171337804361260816606475884437764156896051 2000000000000: int

i w -

subsection{* Using the code-generator to SML *}

B ~ Find | Qutput | Sledgehammer Symbols

31,12 (798/909) (isabelle,sidekick, ,UTF-8-Isabelle)

sauoRYL HIDPEPIS

Main
(Editing)
Panel

Demo 1

\

w |subsection{* Us

bsection{* "The Function" in SML *}

fac n = if n=0 then 1 else n * fac(n-1) *}

he code-generator to SML *}

value "(2::nat) + 2"

Detach | |100% v |

™ Auto update | Update | |

val it =
3041405320171337804361260816606475884437764156896051 2000000000000: int

B ~ Find | Qutput | Sledgehammer Symbols

i w -

subsection{* Using the code-generator to SML *}

8 00 " demol.thy (modified) !
| m demol.thy (~fu-psud/fortesse/pub/presentations/2014-14-9-isabelle-tutorial /bu_sol... % | @ | isabelle ol
transcription, so \alpha ises (X
P , s Filter: || | %
can also be writia — o
demol.thy
, , v demol E
Only in W cases one has to memorize. For them, A
) .) theory demol 5
oriented shortcuts like = can be given for ==. v section{* My very first experiments *} E
» subsection{* Thesis #} B
» subsection{* Apotheosis *} E'
¥ subsection{* "The Function" in SML #} -
Fubsection{* Apotheosis *} ML{* fun fac n = if n=0 then 1 else n * fac(n-: %
ML{* fac SO0%} ;
- b subsection{* Using the code-generator to SML *} =
~ Mtext{* It may be necessary to get used to the PIDE - Paradigm:

, , , =
always checking whenever typing. After a while, however, =
bne gets used to it. Don't forget to save from time to time !!! *} %

v

31,12 (798/909)

(isabelle,sidekick, ,UTF-8-Isabelle)

Output
Panel

Demo 1

= |subsection{* "The Function" in SML *}

« |ML{* fac 50*}

w |subsection{* Using the code-generator to SML *}

ML{* fun fac n = if n=0 then 1 else n * fac(n-1) *}

value "(2::nat) +

| Detach |

M Auto update | Update |

3041409320171337804361 26081 66064768844377641568960512000000000000: int

8 00 " demol.thy (modified) !
| m demol.thy (~fu-psud/fortesse/pub/presentations/2014-14-9-isabelle-tutorial /bu_sol... % | @ | isabelle ol
transcription, so “alpha is just equal to ‘<alpha= but = || | % (X
ter: b
can also be written a. — o
demol.thy
, , v demol E
Only in few cases one has to memorize. For them, A
) .) theory demol 5
ASCII - oriented shortcuts like = can be given for ==, v section{* My very first experiments *} E
» subsection{* Thesis #} B
ik » subsection{* Apotheosis *} E'
. ¥ subsection{* "The Function" in SML *} -
~ |subsection{* Apotheosis *} ML{* fun fac n = if n=0 then 1 else n * fac(n-! %
ML{* fac S0*} =
- b subsection{* Using the code-generator to SML *} =
w |text{* It may be necessary to get used to the PIDE - Paradigm:

, , , =
always checking whenever typing. After a while, however, =
one gets used to it. Don't forget to save from time to time !!! *} %

v

i

w -

S

B «

tput | Sledgehammer Symbols

ubsection{* Using the code-generator to SML *}

31,12 (798/909)

(isabelle,sidekick, ,UTF-8-Isabelle)

Demo 1

8 00

| demol.thy (modified)

Sidekick Panel
[Documentatio
Panel |
Theories Panel

w |text{* It may be necessary to get used to the PIDE - Paradigm:

| m demol.thy (~fu-psud/fortesse/pub/presentations/2014-14-9-isabelle-tutorial /bu_sol... % |

transcription, so “alpha is just equal to ‘<alpha= but
can also be written a.

Only in few cases one has to memorize. For them,
ASCII - oriented shortcuts like = can be given for ==.

*}

+ |subsection{* Apotheosis *}

always checking whenever typing. After a while, however,
one gets used to it. Don't forget to save from time to time !!! *}

= |subsection{* "The Function" in SML *}

ML{* fun fac n = if n=0 then 1 else n * fac(n-1) *}

ML{* fac 50*}

subsection{* Using the code-generator to SML *}

value "(2::nat) + 2"

| Detach | |100%

] M Auto update | Update |

val it =
3041405320171337804361260816606475884437764156896051 2000000000000: int

B ~ Find | Qutput | Sledgehammer Symbols

e
@ | isabelle =
%]
Filter | %C,
b d
demol
v d g
theory demol S
section{* My very first experiments *} &
» subsection{* Thesis #} B
» subsection{* Apotheosis *} E'
¥ subsection{* "The Function" in SML #}
. [
ML{* fun fac n = if n=0 then 1 else n * f o
ML{+ fac 50%} ‘ %
. . [l
b subsection{* Using the code-generator to SML * =
-
=
m
2
=,
v

i w

-

subse

ion{* Using the code-generator

SML *}

31,12 (798/909)

(isabelle,side

UTF-8-Isabelle) B 14:11 |

Parallel
Nano-Kernel
LCF-Archi-
tecture

1n the

iEdit - GUI
(PIDE)

fine-grained,
asynchronous
parallelism

(Isabelle2009-2)

P o T

Example.thy {(modified)

| B Example.thy (~/tmp/)

theory Example
imports Main
begin

inductive path for rel :: "'a = 'a = bool" where
base: "path rel x x"
| step: "rel x y = path rel y z = path rel x z"

theorem example:
fixes x z :: 'a assumes "path rel x z" shows "P x z"
using assms
proof induct
case (base x)
show "P x x" by auto
next
case (step x y z)
note rel x y and "path rel y z
moreover note P y z°
ultimately show "P x z" by auto
ged

end

16,20 (318/422) (isabelle,none,UTF-8-lsabelle)- - - - UCGKEEB/554Mb 1:41 PM

[]

What is Isabelle as a System ?
* Example with definitions and proofs:

theory Test
imports Main (* = HOL Library *)
begin

definition H : “bool \<Rightarrow> bool \<Rightarrow> bool”
where “H xy == (x \<or>y) \<and> (x \<noteg> y)”

lemma <SomeName> : “A \<and> B \<longrightarrow> B”
<tactical proof or declarative proof>
done

What is Isabelle as a System ?
* The jEdit - IDE will parse and print this to:

theory Test
imports Main (* = HOL Library *)
begin

definition H : “bool = bool = bool”
where ‘Hxy==(Xvy)aX#Yy’

lemma <SomeName> : “AArB — B’
<tactical proof or declarative proof>
done

Use completion and tooltips !

Revision: Pure Syntax
(the syntax for ,rule“formation)

 Example: The language ,Pure":

2 ={ (all, (a— Prop) — Prop), (* 1I17)
(_ = _, Prop — Prop — Prop), (*==>7)
(_ = _,o0o—>o— Prop)} (* == *)

« Note that we use schematic type variables to denote
conceptually infinite signatures :

(_ = _, Prop — Prop — Prop), (_ = _, bool — bool — Prop),

(_ = _, nat - nat — Prop), ...

—

« Caveat: Isabelle uses = instead of — in types, sorry for the confusion.

09/20/16 B. Wolft - M2 - PIA 20

Simple Proof Commands

 Simple (Backward) Proofs:

lemma <thmname> :
[<contextelem>" shows] “<phi>"
<proof>

There are different formats of proofs, we concentrate on the
simplest one:

apply(<method >) ... apply(<method >) done

Simple Proof Commands

* Simple (Backward) Proofs:

lemma <thmname> :
[<contextelem>" shows] “<phi>"
<proof>

example:

lemma m : "conc (Seq a (Seq b Empty)) (Seq c Empty) =
Seq a (Seqg b (Seq ¢ Empty))"”
apply(simp) done

This type of proof evolves “bottom up” from the conclusion to
the assumptions.
apply(bla) done is syntactically equivalent to by bla.

A Summary of Proof Methods

« The most elementary proof method is the rule <thmname> method.
It is used for infroduction rules. It proceeds in three phases:

— lifting of <thmname> over the parameters
of the current (first) goal (fiddling with quantifiers)

— lifting of <thmname> over the assumptions
of the current (first) goal (see pp. 25)

— constructing an instance of <thmname> by unification;
this means that the conclusion of <thmname> must finally match
(modulo B and a red.) against the conclusion of the current (first) goal.

« The user can help this process by using the variant:

—rule_tac <subst>in <thmname>

_ ... where <subst> is of the form:
X1=”q)1” and Xn=”(l)

and the xi are the variables of <thmname>

n

A Summary of Proof Methods

« An important variant is erule <thmname> method.
It is used for elimination rules. It proceeds in three phases:

— lifting of <thmname> over the assumptions
of the current (first) goal (see pp. 25)

— lifting of <thmname> over the parameters
of the current (first) goal (fiddling with quantifiers)

— constructing an instance of <thmname> by unification;
this means that the conclusion of <thmname> must finally match (modulo 3
and a red.) against the conclusion of the current (first) goal,
moreover, the first premise of <thmname> must match (modulo $ and a red.)
against one of the assumptions of the current goal.

« The user can help this process by using the variant:

—erule_tac <subst>in <thmname>

A Summary of Proof Methods
* An important method the assumption method.

It is used for final situations, where the
conclusion of a goal can be discharged by one
of the assumptions.

It suffices that one of the assumptions

match (modulo B and a red.) against the conclusion.

At a Glance

* low-level methods (without substitution)

— assumption (unifies conclusion vs. a premise)

— subst <thmname>

does one rewrite-step
(by instantiating the HOL subst-rule)

—rule[_tac <subst> in] <thmname>
PROLOG - like resolution step using HO-Unification

— erule[_tac <subst> in] <thmname>
elimination resolution (for ND elimination rules)

—drule[tac <subst> in] <thmname>

destruction resolution (for ND destruction rules)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

