Preuves Interactives
et Applications

Christine Paulin & Burkhart Wolff

http://www.lri.fr/ “paulin/PreuvesInteractives

Universite Paris-Saclay

HOL and its Specification
Constructs

B. Wolft - M2 - PIA

Revision: Documents and Commands

* Isabelle has (similar to Eclipse) a
,document-centric” view of development:

there is a notion on an entire “project”
which is processed globally.

* Documents (™ projects in Eclipse) consists of
files (with potentially different file-type);
.thy files consists of headers commands.

09/28/16 B. Wolft - M2 - PIA 2

What is Isabelle as a System ?
* Global View of a “session”

Document/ | cmd
\
“TheonyX A, -
cmd
v
cmd
B [_cmd \4\
i <
cmd
! C Cr?d
cmd cmd
y ¢
cmd cm d
! v
cmd cmd

——

D cmd

What is Isabelle as a System ?
* Global View

DocumeL A [omd

“TheonyX
cmd
v
cmd

B

{om detailed view:

v
CIild C L cmd
cmd cmd
y 3
cmd cmd
! !
cmd cmd

e

\

——

D cmd

Revision: Documents and Commands

* Each position in document corresponds
—to a “global context” o

—to a “local context” o r

* There are specific , Inspection Commands"

that give access to information in the contexts

—thm, term, typ, value, prop : global context
— print_cases, facts, ..., thm : local context

09/28/16 B. Wolft - M2 - PIA 5

What is Isabelle as a System ?

* Document “positions” were evaluated to an
implicit state, the theory context ©
Document / A [omd

\
“TheonyX -
cmd
;
cmd
B [omd \\
:)
cmd C L cmd .
. 2 “semantic”’
cmd cmd)
x > evaluation
CTd CIie as SML
cmd cde function

D cmd

Inspection Commands

* Type-checking fterms:

term “<hol-term>"

example: term “(a::nat) + b =b + a"

* Evaluating terms:

value “<hol-term>"

example: term “(3::nat) + 4 = 7"
09/28/16 B. Wolff - M2 - PIA

Simple Proof Commands

 Simple (Backward) Proofs:

lemma <thmname> :
[<contextelem>" shows] “<phi>"
<proof>

There are different formats of proofs, we concentrate on the
simplest one:

apply(<method.>) ... apply(<method >) done

Exercise demo3.thy

* Examples

lemma X1:"A=B=>C=AAB)AC"
(* output: [A; B; C]= (AAB)AC) ™)

lemma X2 : assume “A” and “B” and “C”
shows “(AAB) A C”

lemma X2 : assume h1: “A” and h2: “B” and h3: “C”
shows “(A A B) A C”

09/28/16 B. Wolft - M2 - PIA

Specification Commands

* Simple Definitions (Non-Rec. core variant):

definition f::“"<t>"
where <name> : “f X, oo X = <t>"

example: definition C::"bool = bool"

where "C x = x"

* Type Definitions:

typedef ('a,..'a) k =
“<set-expr>" <proof>

09/28/16 example: typedefeyen 5,0%;int. x mod 2 = 0}

10

Isabelle Specification Constructs

* Major example:
The introduction of the cartesian product:

subsubsection {* Type definition *}

definition Pair Rep ::™a = 'b = 'a = 'b = bool"
where "Pair Repab=(Axy.x=aaAy=Db)"

definition "prod = {f. 3 ab. f = Pair_Rep (a :: 'a) (b :: 'b)}"
typedef (‘a, 'b) prod (infixr "*" 20) = "prod :: ('a = 'b = bool) set"
unfolding prod_def by auto
928tgpe notation (xsymbols)B-"prod®? - (" %/)" [21, 20] 20) 1

Specification Mechanism Commands

 Datatype Definitions (similar SML):

(Machinery behind : complex series of const and typedefs !)

datatype ('a,..'a_) © =
<c> V<> | L] <

cC> ..

\\ <T> n

e Recursive Function Definitions:

(Machinery behind: Veeery complex series of const and

typedefs and automated proofs!)

09/28/16

fun <c> :“<1t>" where

“<c> <pattern> =

| “<c> <pattern> =

<t>ll

<t> n

12

Specification Mechanism Commands

 Datatype Definitions (similar SML): O
(Machinery behind : complex !) \\0

datatype ('a,. a9°® ond

V< \\CI’ Sc> i
”?* 6\ o

» Recursive Funchg eﬁm‘ﬁ‘“onse\ov
(Machinery kehl %\%eq% complex!)

09/28/16

\

ftér’q*\<c Q™M <1t>" where
\(\ “6c> <pattern> = <t>"
N
| “<c> <pattern> = <t>"

13

Specification Mechanism Commands

* Datatype Definitions (similar SML):
Examples:

datatype mynat = ZERO | SUC mynat
datatype 'a list = MT | CONS "'a" "'a list"

09/28/16 B. Wolft - M2 - PIA 14

Specification Mechanism Commands

* Inductively Defined Sets:

iInductive

<c> [for <v>:: “<t>"]

where <thmname> : "<¢>"

| <thmname> = <¢>

example: inductive path for rel ::"'a = 'a = bool"
where base : “path rel x x”

09/28/16

step : “rel x y = path rel y z= path rel x 2"

B. Wolft - M2 - PIA

15

Specification Mechanism Commands

« Extended Notation for Cartesian Products: records
(as in SML or OCaml; gives a slightly OO-flavor)

record <c> = [<record> +]
tagy :: “<t1>"

tagn.: <tn>"

* .. introduces also semantics and syntax for
_ selectors : tagy X
— constructors : (tagy =Xq, ..., tagn =X,)
— update-functions : x (tag; := X,)

09/28/16 B. Wolft - M2 - PIA 16

More on Proof-Methods

* Some composed methods
(internally based on assumption, erule_tac and
rule_tac + tactic code that constructs the
substitutions)
— subst <equation>
(one step left-to-right rewrite, choose any redex)
— subst <equation>[symmetric]
(one step right-to-left rewrite, choose any redex)

— subst (<n>) <equation>
(one step left-to-right rewrite, choose n-th redex)

09/28/16 B. Wolft - M2 - PIA

17

More on Proof-Methods

* Some composed methods
(internally based on assumption, erule_tac and
rule_tac + tactic code that constructs the
substitutions)
— simp

(arbitrary number of left-to-right rewrites, assumption
or rule refl attepted at the end; a global simpset
in the background is used.)

— simp add: <equation> ... <equation>

09/28/16 B. Wolft - M2 - PIA 18

More on Proof-Methods

* Some composed methods
(internally based on assumption, erule_tac and
rule_tac + tactic code that constructs the
substitutions)

— auto
(apply in exaustive, non-deterministic manner:
all introduction rules, elimination rules and

— auto intro: <rule> ... <rule>
elim: <erule> ... <erule>
simp: <equation> ... <equation>

09/28/16 B. Wolft - M2 - PIA

19

More on Proof-Methods

* Some composed methods
(internally based on assumption, erule_tac and
rule_tac + tactic code that constructs the
substitutions)

_ cases ,<formula>*
(split top goal into 2 cases:
<formula> is true or <formula> is false)

_ cases ,<variable>"
(- precondition : <variable> has type t which is a data-type)
search for splitting rule and do case-split over this variable.

_ induct_tac ,<variable>"
(- precondition : <variable> has type t which is a data-type)
search for induction rule and do induction over this variable.

09/28/16 B. Wolft - M2 - PIA

20

Screenshot with Examples

File Edit Search Markers Folding View Utilities Macros Plugins Help

| O Seq.thy (~/Papers/isar-book/Qrsay/Wwwi)

imports Main

|'] isabelle v
i

: Filter. Y
begin a
¥ Seq.thy S
& ¥ theory Seq -
- datatype ' seq = Empty | Seq 'a "'3 seq" ¥ header {* Finite sequences *}
theory Seq —
c datatype 'a seq = Empty | Sé E
~ |fun conc :: ["'a seq = 'a seq = 'a SEC]"| fun conc © "a seq = 'a seq -JEN
fun reverse :: "aseq='ase ™
whe rED ¥ lemma conc_empty: "conc xs
n E .t n type ' b}r
cConc Em S = ¥s
" PLy ¥ y " » lemma conc_assoc: "conc (¢
| "conc (Seq x xs) ys = Seq x (conc xs ys) » lemma reverse_conc: "revers
. » lemma reverse_reverse: "rev
end
v [fun reverse :: "'a seq = 'a seq"
where
"reverse Empty = Empty"
=3
| "reverse (Seq x xs) = conc (reverse xs) (Seq x Empty)" v
4% T
100% |:J [[] Tracing (] Auto update | Update
'Y
constants "
conc :: "'a seq = 'a seq = 'a seq"
Found termination order: "(\p. size (fst p)) <*mlex*> {}"
=
L
09/28/16 B | - [Output 1 Prover Session Tr\‘ . /_ e

10,6 (149/731)

(isabelle, sidekick,UTF-8-sabelle) - - - - UGIEERE4Mb 5:57 PM

21

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

