
09/28/16 B. Wolff - M2 - PIA 1

Preuves Interactives
et Applications

HOL and its Specification
Constructs

Université Paris-Saclay

Christine Paulin & Burkhart Wolff

http://www.lri.fr/ ̃paulin/PreuvesInteractives

09/28/16 B. Wolff - M2 - PIA 2

Revision: Documents and Commands
! Isabelle has (similar to Eclipse) a

„document-centric“ view of development:

there is a notion on an entire “project”
which is processed globally.

! Documents (~ projects in Eclipse) consists of
files (with potentially different file-type);
.thy files consists of headers commands.

What is Isabelle as a System ?
! Global View of a “session“

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

Document /
“Theory”

cmd

A

B
C

D

What is Isabelle as a System ?
! Global View

token

token

token

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

Document /
“Theory”

cmd

A

B
C

D

atom detailed view:

09/28/16 B. Wolff - M2 - PIA 5

Revision: Documents and Commands
! Each position in document corresponds

– to a “global context” Θ
– to a “local context” Θ, Γ

! There are specific „Inspection Commands“

that give access to information in the contexts
– thm, term, typ, value, prop : global context
– print_cases, facts, ... , thm : local context

What is Isabelle as a System ?
! Document “positions” were evaluated to an

implicit state, the theory context T

Θ3

Θ0

Θ3 - 2

Θ3 - 1

“semantic”
evaluation
as SML
function

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

Document /
“Theory”

cmd

A

B
C

D

09/28/16 B. Wolff - M2 - PIA 7

Inspection Commands

! Type-checking terms:

 example: term “(a::nat) + b = b + a"

! Evaluating terms:

 example: term “(3::nat) + 4 = 7"

term “<hol-term>”

value “<hol-term>”

Simple Proof Commands

! Simple (Backward) Proofs:

There are different formats of proofs, we concentrate on the
simplest one:

apply(<method1>) ... apply(<methodn>) done

lemma <thmname> :
[<contextelem>+ shows] “<phi>”
 <proof>

09/28/16 B. Wolff - M2 - PIA 9

Exercise demo3.thy
! Examples

lemma X1 : “A B C (A B) C”⟹ ⟹ ⟹ ∧ ∧
 (* output: A; B; C (A B) C⟦ ⟧ ⟹ ∧ ∧) *)

lemma X2 : assume “A” and “B” and “C”
 shows “(A B) C”∧ ∧

lemma X2 : assume h1: “A” and h2: “B” and h3: “C”
 shows “(A B) C”∧ ∧

09/28/16 B. Wolff - M2 - PIA 10

Specification Commands

! Simple Definitions (Non-Rec. core variant):

 example: definition C::"bool bool"⇒

 where "C x = x"

! Type Definitions:

 example: typedef even = "{x::int. x mod 2 = 0}

definition f::“<τ>”
where <name> : “f x1 … xn = <t>”

typedef ('α1..'αn) κ =

 “<set-expr>” <proof>

09/28/16 B. Wolff - M2 - PIA 11

Isabelle Specification Constructs
! Major example:

The introduction of the cartesian product:

subsubsection {* Type definition *}

definition Pair_Rep :: "'a 'b 'a 'b bool" ⇒ ⇒ ⇒ ⇒
where "Pair_Rep a b = (λx y. x = a y = b)"∧

definition "prod = {f. ∃ a b. f = Pair_Rep (a 'a) (b 'b)}"∷ ∷

typedef ('a, 'b) prod (infixr "*" 20) = "prod :: ('a 'b bool) set"⇒ ⇒

 unfolding prod_def by auto

type_notation (xsymbols) "prod" ("(_ ×/ _)" [21, 20] 20)

09/28/16 B. Wolff - M2 - PIA 12

Specification Mechanism Commands

! Datatype Definitions (similar SML):
(Machinery behind : complex series of const and typedefs !)

! Recursive Function Definitions:

(Machinery behind: Veeery complex series of const and
typedefs and automated proofs!)

datatype ('a1..'an) T =
 <c> :: “<τ>” | … | <c> :: “<τ>”

fun <c> ::“<τ>” where
 “<c> <pattern> = <t>”

| ...
 | “<c> <pattern> = <t>”

09/28/16 B. Wolff - M2 - PIA 13

Specification Mechanism Commands

! Datatype Definitions (similar SML):
(Machinery behind : complex !)

! Recursive Function Definitions:

(Machinery behind: Veeery complex!)

datatype ('a1..'an) T =
 <c> :: “<τ>” | … | <c> :: “<τ>”

fun <c> ::“<τ>” where
 “<c> <pattern> = <t>”

| ...
 | “<c> <pattern> = <t>”

NO
TE:

 Is
abe

lle
HO

L c
om

pile
s t

his

int
ern

ally
 to

 ax
iom

ati
c d

efin
itio

ns,

i.e.
 a

“m
ode

l” i
n H

OL
!!!

09/28/16 B. Wolff - M2 - PIA 14

Specification Mechanism Commands

! Datatype Definitions (similar SML):
Examples:

datatype mynat = ZERO | SUC mynat

datatype 'a list = MT | CONS "'a" "'a list"

09/28/16 B. Wolff - M2 - PIA 15

Specification Mechanism Commands

! Inductively Defined Sets:

example: inductive path for rel ::"'a 'a bool"⇒ ⇒
 where base : “path rel x x”

 | step : “rel x y ⟹ path rel y z ⟹ path rel x z”

inductive <c> [for <v>:: “<τ>”]
where <thmname> : “<φ>”
 | ...

 | <thmname> = <φ>

09/28/16 B. Wolff - M2 - PIA 16

Specification Mechanism Commands

! Extended Notation for Cartesian Products: records
(as in SML or OCaml; gives a slightly OO-flavor)

! ... introduces also semantics and syntax for

– selectors : tag1 x

– constructors : ⦇ tag1 = x1, ... , tagn = xn ⦈

– update-functions : x ⦇ tag1 := xn ⦈

record <c> = [<record> +]
tag1 :: “<τ1>”

 ...
 tagn :: “<τn>”

09/28/16 B. Wolff - M2 - PIA 17

More on Proof-Methods

! Some composed methods
(internally based on assumption, erule_tac and
 rule_tac + tactic code that constructs the
 substitutions)

– subst <equation>
(one step left-to-right rewrite, choose any redex)

– subst <equation>[symmetric]
(one step right-to-left rewrite, choose any redex)

– subst (<n>) <equation>
(one step left-to-right rewrite, choose n-th redex)

09/28/16 B. Wolff - M2 - PIA 18

More on Proof-Methods

! Some composed methods
(internally based on assumption, erule_tac and
 rule_tac + tactic code that constructs the
 substitutions)

– simp
(arbitrary number of left-to-right rewrites, assumption

or rule refl attepted at the end; a global simpset
in the background is used.)

– simp add: <equation> ... <equation>

09/28/16 B. Wolff - M2 - PIA 19

More on Proof-Methods

! Some composed methods
(internally based on assumption, erule_tac and
 rule_tac + tactic code that constructs the
 substitutions)

– auto
(apply in exaustive, non-deterministic manner:
 all introduction rules, elimination rules and

– auto intro: <rule> ... <rule>
 elim: <erule> ... <erule>
 simp: <equation> ... <equation>

09/28/16 B. Wolff - M2 - PIA 20

More on Proof-Methods

! Some composed methods
(internally based on assumption, erule_tac and
 rule_tac + tactic code that constructs the
 substitutions)

– cases „<formula>“
(split top goal into 2 cases:
 <formula> is true or <formula> is false)

– cases „<variable>“
(- precondition : <variable> has type t which is a data-type)
search for splitting rule and do case-split over this variable.

– induct_tac „<variable>“
(- precondition : <variable> has type t which is a data-type)
search for induction rule and do induction over this variable.

09/28/16 B. Wolff - M2 - PIA 21

Screenshot with Examples

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

