Preuves Interactives et Applications

Christine Paulin & Burkhart Wolff

http://www.lri.fr/~paulin/PreuvesInteractives

Université Paris-Saclay

HOL and its Specification Constructs
Revisions

• What is “typed λ-calculus”
• What is “β-reduction”
• Using typed λ-calculus to represent logical systems
• What is “natural deduction” ? (from another perspective)
Revisions: Typed λ-calculus

• Rules over a global signature Σ:

$$ (c, \tau_c) \in \Sigma \quad \frac{\rho \vdash C : \tau_c}{\rho, x : \tau \vdash t : \sigma} \quad \frac{\rho \vdash \lambda x. t : \tau \rightarrow \sigma}{\rho \vdash f : \tau \rightarrow \sigma \quad \rho \vdash t : \tau} \quad \frac{X_1 : \tau_1, \ldots, X_p : \tau_p \vdash X_i : \tau_i}{\rho \vdash f t : \sigma} $$

• We assume $\Sigma =$

$$(_+___, \text{nat} \rightarrow \text{nat} \rightarrow \text{nat}), (_0_, \text{nat}), (_\text{Suc} __, \text{nat} \rightarrow \text{nat}), (_=__, \text{nat} \rightarrow \text{nat} \rightarrow \text{bool}), (_\text{True}_, \text{bool}), (_\text{False}_, \text{bool}), (_=__, \text{bool} \rightarrow \text{bool} \rightarrow \text{bool})$$
Revisions: Typed λ-calculus

• Examples: Are there variable environments ρ such that the following terms are typable in Σ: (note that we use infix notation: we write “$0 + x$” instead of “$+__ 0 x$“)

- $(_+_ 0) = (\text{Suc} \ x)$
- $((x + y) = (y + x)) = \text{False}$
- $f(_+_ 0) = (\lambda c. \ g c) \ x$
- $+__ z (+__ (\text{Suc} 0)) = (0 + f \text{ False})$
- $a + b = (\text{True} = c)$
Revisions: β-reduction

- Assume that we want to find typed solutions for $?X, ?Y, ?Z$ such that the following terms become equivalent modulo α-conversion and β-reduction:
 - $?X \ a \ =?= \ a + ?Y$
 - $(\lambda c. \ g \ c) \ =?= \ (\lambda x. \ ?Y \ x)$
 - $(\lambda c. \ ?X \ c) \ a \ =?= \ ?Y$
 - $\lambda a. \ (\lambda c. \ X \ c) \ a \ =?= \ (\lambda x. \ ?Y)$

- Note: Variables like $?X, ?Y, ?Z$ are called schematic variables; they play a major role in Isabelles Rule-Instantiation Mechanism

- Are the solutions for schematic variables always unique?
Deduction

- Logic Whirl-Pool of the 20ies (Girard) as response to foundational problems in Mathematics

 - growing uneasiness over the question:

 What is a proof?

 Are there limits of provability?
Deduction

• Historical context in the 20ies:
 – 1500 false proofs of „all parallels do not intersect in infinity“
 – lots of proofs and refutations of „all polyhedrons are eularian“ (Lakatosz)
 – Frege’s axiomatic set theory proven inconsistent by Russel
 – Science vs. Marxism debate (Popper)

\[E = F + K - 2 \]
Deduction

• Historical context in the 20ies:
 – this seemed quite far away from Leipnitz vision of
 „Calculemus!“ (We don`t agree? Let`s calculate ...)
 of what constitutes, well,
 Science ...
Deduction

• Historical context in the 20ies:
 – attempts to formalize the intuition of „deduction“ by Frege, Hilbert, Russel, Lukasiewics, ...
 – 2 Calculi presented by Gerhard Gentzen in 1934.

• „natürliches Schliessen“ (natural deduction):

• „Sequenzkalkül“ (sequent calculus)

\[
\begin{align*}
\Gamma \vdash A \lor B & \quad \Gamma \cup \{A\} \vdash C & \quad \Gamma \cup \{B\} \vdash C \\
\hline
\Gamma \vdash C
\end{align*}
\]
Deduction

- An Inference System (or Logical Calculus) allows to infer formulas from a set of elementary judgements (axioms) and inferred judgements by rules:

\[
\begin{array}{c}
A_1 \quad \ldots \quad A_n \\
\hline
A_{n+1}
\end{array}
\]

“from the assumptions \(A_1 \) to \(A_n \), you can infer the conclusion \(A_{n+1} \).” A rule with \(n=0 \) is an elementary fact. Variables occurring in the formulas \(A_n \) can be arbitrarily substituted.
Deduction

- judgements discussed in this course (or elsewhere):

 \(t : \tau \) \quad "term \(t \) has type \(\tau \)"
 \(\Gamma \vdash \phi \) \quad "formula \(\phi \) is valid under assumptions \(\Gamma \)"
 \(\vdash \{ P \} \ x:= x+1 \ \{ Q \} \) \quad "Hoare Triple"

 \(\phi \) prop \quad "\(\phi \) is a property"
 \(\phi \) valid \quad "\(\phi \) is a valid (true) property"
 \(x \) mortal \(\implies \) sokrates mortal \quad --- judgements with free variable

 etc ...
Natural Deduction

- An Inference System for the equality operator (or “HO Equational Logic”) looks like this:

\[
\text{(where the first rule is an elementary fact).}
\]
Natural Deduction

- the same thing presented a bit more neatly (without prop):

\[\frac{x = x}{s = t} \quad \frac{t = s}{r = s \quad s = t} \quad \frac{r = s \quad s = t}{r = t} \]

\[\frac{\forall x. s \ x = t \ x}{s = t} \quad \frac{s = t \quad P s}{P t} \]

(equality on functions as above ("extensional equality") is an HO principle, and it is a classical principle).
Representing logical systems in the typed λ-calculus

• It is straightforward to use the typed λ-terms as a syntactic means to represent logics; including binding issues related to quantifiers like \forall, \exists, ...

• Example: The Isabelle language „Pure“:
It consists of typed λ-terms with constants:
 – foundational types “prop” and “_ => _” (“_ \Rightarrow _”)
 – the Pure (universal) quantifier
 all :: “(\alpha \rightarrow Prop) \rightarrow Prop”
 (“$\forall x. P x$”, “\<And> x. P x” “!!x. P x”)
 – the Pure implication “A ===> B” (“_ \Longrightarrow _”)
 – the Pure equality “A == B” “A \equiv B”
Pure: A (Meta)-Language for Deductive Systems

- Pure is a language to write logical rules.
- Wr. Isabelle, it is the meta-language, i.e. the built-in formula language.
- Equivalent notations for natural deduction rules:

$$\begin{align*}
 A_1 \implies (\ldots \implies (A_n \implies A_{n+1})\ldots),
 \hline
 \[A_1; \ldots; A_n\] \implies A_{n+1},
 \hline
 \begin{array}{c}
 A_1 \\
 \ldots \\
 A_n \\
 \hline
 \end{array}
 \Rightarrow A_{n+1}
\end{align*}$$

Theorem

assumes A_1

and A_n

shows A_{n+1}
„Pure“: A (Meta)-Language for Deductive Systems

• Some more complex rules involving the concept of “Discharge” of (formerly hypothetical) assumptions:

\[(P \rightarrow Q) \rightarrow R : \]

theorem
assumes "P \rightarrow Q"
shows "R"

\[
\begin{array}{c}
[P] \\
\vdash \\
Q \\
\hline
R
\end{array}
\]
Propositional Logic as ND calculus

• Some (almost) basic rules in HOL

\[
\begin{align*}
\frac{Q}{\neg \neg \neg \neg \neg Q} & \quad \frac{\neg \neg Q}{Q} \quad \frac{\neg \neg \neg \neg \neg B}{\neg \neg \neg \neg \neg A \rightarrow B} \\
\text{notnotE} & \quad \text{impI} & \quad \text{mp}
\end{align*}
\]

\[
\begin{align*}
\frac{A}{A \lor B} & \quad \frac{A \lor B}{Q} \\
\text{disjI1} & \quad \text{disjI2}
\end{align*}
\]
Propositional Logic as ND calculus

- Some (almost) basic rules in HOL

\[
\begin{align*}
\frac{A \land B}{Q} & \quad \text{conjE} \\
\frac{Q}{A \land B} & \quad \text{conjI}
\end{align*}
\]

\[
\begin{align*}
[A, B] \\
\cdot \\
\cdot \\
\end{align*}
\]
Key Concepts: Rule-Instances

- A Rule-Instance is a rule where the free variables in its judgements were substituted by a common substitution σ:

\[
\begin{align*}
\frac{A \quad B}{A \land B} & \text{conjI} \\
\sigma & \\
\frac{3 < x \quad x \leq y}{3 < x \land x \leq y}
\end{align*}
\]

where σ is $\{A \mapsto 3 < x, B \mapsto x \leq y\}$.
Key Concepts: Formal Proofs

- A series of inference rule instances is usually displayed as a Proof Tree (or: Derivation or: Formal Proof)

\[
\begin{align*}
\text{sym} & \quad f(a, b) = a & \quad f(a, b) = a & \quad f(f(a, b), b) = c \\
\hline
a = f(a, b) & \quad f(a, b) = c & \quad \text{trans} & \quad g(a) = g(a) \\
\hline
\text{refl} & \quad a = c & \quad \text{subst} & \quad g(a) = g(c)
\end{align*}
\]

- The hypothetical facts at the leaves are called the assumptions of the proof (here \(f(a, b) = a \) and \(f(f(a, b), b) = c \)).
Key Concepts: Discharge

- A key requisite of ND is the concept of **discharge** of assumptions allowed by some rules (like \(\text{impI} \)).

\[
\begin{align*}
&\frac{[f(a, b) = a]}{\text{sym}} \quad \frac{[f(a, b) = a]}{\text{sym}} \quad f(f(a, b), b) = c \\
& \quad \ quad
Key Concepts: Global Assumptions

- The set of (proof-global) assumptions gives rise to the notation:

\[\{ f(a, b) = a, f(f(a, b), b) = c \} \vdash g(a) = g(c) \]

written:

\[A \vdash \phi \]

or when emphasising the global theory (also called: global context):

\[A \vdash_E \phi \]
Sequent-style calculus

- Gentzen introduced and alternative “style” to natural deduction: Sequent style rules.
 - Idea: using the tuples $A \vdash \phi$ as basic judgments of the rules.

\[
\begin{align*}
\Gamma, A & \vdash B \\
\hline
\Gamma & \vdash A \rightarrow B
\end{align*}
\]
Sequent-style calculus

- in contrast to:

\[
\begin{align*}
\frac{[A]}{B} & \quad \frac{A \rightarrow B}{B} \\
\vdots & \\
\end{align*}
\]
Sequent-style vs. ND calculus

- Both styles are linked by two transformations called “lifting over assumptions.” Lifting over assumptions transforms:

\[
\begin{array}{c}
A_1 \ldots A_n \\
\hline
A_{n+1}
\end{array}
\]

where we consider for the moment \(\vdash \) just equivalent to meta implication \(\rightarrow \).
Quantifiers

- When reasoning over logics with quantifiers (such as FOL, set-theory, TLA, ..., and of course: HOL), the additional concept of "parameters" of a rule is necessary. We assume that there is an infinite set of variables and that it is always possible to find a "fresh" unused one ...

- Consider:

\[\forall x. P(x) \]

for any term \(t \)

\[P(t) \]

\[\forall x. P(x) \]

for any fresh variable \(u \)

\[P(u) \]

\[[P(y)]_y \]

\[\cdots \]

\[\forall x. P(x) \]

\[Q \]

\[Q \]

\[[P(n)]_n \]

\[\cdots \]

\[P(0) \]

\[P(Suc \ n) \]

\[\forall x. P(x) \]
Quantifiers

- For all I, Isabelle allows certain free variables ?X, ?Y, ?Z that represent "wholes" in a term that can be filled in later by substitution; Coq requires the instantiation when applying the rule.

- Isabelle uses a built-in ("meta")-quantifier $\forall x. P x$ already seen on page 13; Coq uses internally a similar concept not explicitly revealed to the user.
Introduction to Isabelle/HOL
Basic HOL Syntax

• HOL (= Higher-Order Logic) goes back to Alonzo Church who invented this in the 30ies ...

• “Classical” Logic over the λ-calculus with Curry-style typing (in contrast to Coq)

• Logical type: “bool” injects to “prop”. i.e

 \[\text{Trueprop} :: \text{“bool \Rightarrow prop”} \]

is wrapped around any HOL-Term without being printed:

 \[\text{Trueprop A \Rightarrow Trueprop B} \] is printed: \(A \Rightarrow B \) but \(A::\text{bool} \)!
Basic HOL Syntax

• Logical connective syntax (Unicode + ASCII):
 input: print: alt-ascii input

 – “_ \<and>_ _” “_\^_” “_& _”
 – “_ \<or>_ _” “__v_” “_ |_ ”
 – “_ \<longrightarrow>_ _” “_ \rightarrow_ _” “_ --> _”
 – “_ \<not>_ _” “_\neg_” “_~ _”
 – “\<forall> x. P“ “\forall x. P” “! x. P x”
 – “\<exists> x. P“ “\exists x. P” “? x. P x”
Basic HOL Rules

• HOL is an equational logic, i.e. a system with the constant “_=_::'a 'a bool” and the rules:

\[
\begin{align*}
\text{refl} &: x = x \\
\text{sym} &: \frac{s = t}{t = s} \\
\text{trans} &: \frac{r = s \quad s = t}{r = t}
\end{align*}
\]

\[
\begin{align*}
\text{ext} &: \frac{\forall x. s \ x = t \ x}{s = t} \\
\text{subst} &: \frac{s = t \quad P s}{P t}
\end{align*}
\]
Basic HOL Rules

- HOL is an equational logic, i.e. a system with the constant "__::'a 'a bool" and the rules:

\[
\begin{align*}
\text{refl} & : x = x \\
\text{sym} & : s = t \Rightarrow t = s \\
\text{trans} & : r = s \Rightarrow s = t \Rightarrow r = t
\end{align*}
\]

\[
\begin{align*}
\text{ext} & : \forall x. s \ x = t \ x \\
\text{subst} & : s = t \quad P \ s \Rightarrow P \ t
\end{align*}
\]

which rule makes HOL "higher-order"??
Basic HOL Rules

• Some (almost) basic rules in HOL

\[
\begin{align*}
\text{conjI} & : \\
A \land B & \quad Q \\
\hline \\
& Q \\
\text{conjE} & : \\
A \land B & \quad A \quad B \\
\hline \\
& A \land B
\end{align*}
\]
The quantifier rules of HOL.

- The quantifier rules of HOL.
 \[\forall x. P \quad \Rightarrow \quad \forall x. P \]
 \[\exists x. Q \quad \Rightarrow \quad \exists x. Q \]

- The quantifier rules of HOL.
 \[\forall x. P \quad \Rightarrow \quad \forall x. P \]
 \[\exists x. Q \quad \Rightarrow \quad \exists x. Q \]

- The quantifier rules of HOL.
 \[\forall x. P \quad \Rightarrow \quad \forall x. P \]
 \[\exists x. Q \quad \Rightarrow \quad \exists x. Q \]

- The quantifier rules of HOL.
 \[\forall x. P \quad \Rightarrow \quad \forall x. P \]
 \[\exists x. Q \quad \Rightarrow \quad \exists x. Q \]

- The quantifier rules of HOL.
 \[\forall x. P \quad \Rightarrow \quad \forall x. P \]
 \[\exists x. Q \quad \Rightarrow \quad \exists x. Q \]

- The quantifier rules of HOL.
 \[\forall x. P \quad \Rightarrow \quad \forall x. P \]
 \[\exists x. Q \quad \Rightarrow \quad \exists x. Q \]

- The quantifier rules of HOL.
 \[\forall x. P \quad \Rightarrow \quad \forall x. P \]
 \[\exists x. Q \quad \Rightarrow \quad \exists x. Q \]

- The quantifier rules of HOL.
 \[\forall x. P \quad \Rightarrow \quad \forall x. P \]
 \[\exists x. Q \quad \Rightarrow \quad \exists x. Q \]

- The quantifier rules of HOL.
 \[\forall x. P \quad \Rightarrow \quad \forall x. P \]
 \[\exists x. Q \quad \Rightarrow \quad \exists x. Q \]

- The quantifier rules of HOL.
 \[\forall x. P \quad \Rightarrow \quad \forall x. P \]
 \[\exists x. Q \quad \Rightarrow \quad \exists x. Q \]

- The quantifier rules of HOL.
 \[\forall x. P \quad \Rightarrow \quad \forall x. P \]
 \[\exists x. Q \quad \Rightarrow \quad \exists x. Q \]

- The quantifier rules of HOL.
 \[\forall x. P \quad \Rightarrow \quad \forall x. P \]
 \[\exists x. Q \quad \Rightarrow \quad \exists x. Q \]

- The quantifier rules of HOL.
 \[\forall x. P \quad \Rightarrow \quad \forall x. P \]
 \[\exists x. Q \quad \Rightarrow \quad \exists x. Q \]

- The quantifier rules of HOL.
 \[\forall x. P \quad \Rightarrow \quad \forall x. P \]
 \[\exists x. Q \quad \Rightarrow \quad \exists x. Q \]
HOL Rules

- The quantifier rules of HOL:

\[
\begin{array}{c}
[P \ ?t; \forall x. P \ x] \\
\vdots \\
\forall x. P \ x \\
\hline
Q
\end{array}
\]

\[Q\]

\text{alldupE (unsafe, but complete)}
HOL Rules

• The quantifier rules of HOL:

\[
\begin{array}{c}
\forall x. P \ x \\
\vdots \\
\forall x. P \ x \\
\hline
Q
\end{array}
\]

\[
\begin{array}{c}
P \ ?t; \forall x. P \ x \\
\vdots \\
Q
\end{array}
\]

alldupE (unsafe, but complete)
HOL Rules

• The quantifier rules of HOL:

\[
\begin{align*}
P \ ?t & \quad \text{exl} \\
\exists x. P & \quad x \\
\end{align*}
\]

\[
\begin{align*}
[P(x)]_x & \\
\exists x. P(x) & \quad Q \\
\end{align*}
\]

exE
HOL Rules

• From these rules (which were defined actually slightly differently), a large body of other rules can be DERIVED (formally proven, and introduced as new rule in the proof environment).

Examples: see exercises.
Typed Set-theory in HOL

• The HOL Logic comes immediately with a typed set - theory: The type

\[\alpha \text{ set} \equiv \alpha \Rightarrow \text{bool}, \text{ that's it!} \]

can be defined isomorphically to its type of characteristic functions!

• THIS GIVES RISE TO A RICH SET THEORY DEVELOPPED IN THE LIBRARY (Set.thy).
Typed Set Theory: Syntax

• Logical connective syntax (Unicode + ASCII):

input:
“\in”
“\{.\}”
“\cup”
“\cap”
“\subseteq”

print:
“∈”
“{.}”
“∪”
“∩”
“⊆”

alt-ascii input
“:\:”
“\{.\}”
“\cup”
“\cap”
“\subseteq”

for example
“\{x. True \land x = x\}”

“\cup”
“\cap”
“\subseteq”
Conclusion

• Typed λ-calculus is a rich term language for the representation of logics, logical rules, and logical derivations (proofs)

• On the basis of typed λ-calculus, Higher-order logic (HOL) is fairly easy to represent

• ... the differences to first-order logic (FOL) are actually tiny.