
10/12/16 B. Wolff - M2 - PIA 1

Preuves Interactives
et Applications

HOL and its Specification
Constructs

Université Paris-Saclay

Christine Paulin & Burkhart Wolff

http://www.lri.fr/ ̃paulin/PreuvesInteractives

10/12/16 B. Wolff - M2 - PIA 2

 Revisions

10/12/16 B. Wolff - M2 - PIA 3

Revision: Documents and Commands
! Isabelle has (similar to Eclipse) a

„document-centric“ view of development:

there is a notion on an entire “project”
which is processed globally.

! Documents (~ projects in Eclipse) consists of
files (with potentially different file-type);
.thy files consists of headers commands.

What is Isabelle as a System ?
! Global View of a “session“

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

Document /
“Theory”

cmd

A

B
C

D

What is Isabelle as a System ?
! Global View

token

token

token

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

Document /
“Theory”

cmd

A

B
C

D

atom detailed view:

10/12/16 B. Wolff - M2 - PIA 6

Revision: Documents and Commands
! Each position in document corresponds

– to a “global context” Θ
– to a “local context” Θ, Γ

! There are specific „Inspection Commands“

that give access to information in the contexts
– thm, term, typ, value, prop : global context
– print_cases, facts, ... , thm : local context

What is Isabelle as a System ?
! Document “positions” were evaluated to an

implicit state, the theory context T

Θ3

Θ0

Θ3 - 2

Θ3 - 1

“semantic”
evaluation
as SML
function

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

Document /
“Theory”

cmd

A

B
C

D

10/12/16 B. Wolff - M2 - PIA 8

Inspection Commands

! Type-checking terms:

 example: term “(a::nat) + b = b + a"

! Evaluating terms:

 example: term “(3::nat) + 4 = 7"

term “<hol-term>”

value “<hol-term>”

Simple Proof Commands

! Simple (Backward) Proofs:

There are different formats of proofs, we concentrate on the
simplest one:

apply(<method1>) ... apply(<methodn>) done

lemma <thmname> :
[<contextelem>+ shows] “<phi>”
 <proof>

10/12/16 B. Wolff - M2 - PIA 10

Exercise demo3.thy
! Examples

lemma X1 : “A B C (A B) C”⟹ ⟹ ⟹ ∧ ∧
 (* output: A; B; C (A B) C⟦ ⟧ ⟹ ∧ ∧) *)

lemma X2 : assume “A” and “B” and “C”
 shows “(A B) C”∧ ∧

lemma X2 : assume h1: “A” and h2: “B” and h3: “C”
 shows “(A B) C”∧ ∧

10/12/16 B. Wolff - M2 - PIA 11

How to built theories
in a logically safe manner ?

• Beyond the question:

Is the Kernel of Isabelle correct ?

there is the question:

Is the HOL Library consistent ?

 What guarantees can we have for
 systems with 15000 rules ???

10/12/16 B. Wolff - M2 - PIA 12

Isabelle Specification Constructs

! Constant Definitions:

 example: definition C::"bool bool"⇒
 where "C x = x"

! Type Definitions:

 example: typedef even = "{x::int. x mod 2 = 0}“

definition f::“<τ>”
where <name> : “f x1 … xn = <t>”

typedef ('α1..'αn) κ =

 “<set-expr>” <proof>

10/12/16 B. Wolff - M2 - PIA 13

Isabelle Specification Constructs

 and

 Theory Construction by
 Conservative Extension

10/12/16 B. Wolff - M2 - PIA 14

Semantics of „Constant Definition“
! Constant definition:

 (S, A) ”∈” T

(S ⊕ f::τ ! A ⊕ {f_def ↦ “f x1 … xn = <expr>” }) ”∈” T'

• where f is “fresh” in T
• λ x1 … xn = <expr> is closed [and type-closed]
• f does not occur in <expr>

 definition f::“<τ>”
where <name> : “f x1 … xn = <expr>”

10/12/16 B. Wolff - M2 - PIA 15

Semantics of a „Type Definition“

! Idea: Similar to constant definitions; we define
the new entity (“a type”) by an old one.

! For Type Definitions, we define the new
type to be isomorphic to a (non-empty)
subset of an old one.

! The Isomorphism is stated by three
(conservative) axioms.

10/12/16 B. Wolff - M2 - PIA 16

Semantics of a „Type Definition“

! Idea: Similar to constant definitions; we define
the new entity (“a type”) by an old one.

 ('α1..'αn)τ

(('α1..'αn)τ) set('α1..'αn) κ
Abs_κ

Rep_κ

10/12/16 B. Wolff - M2 - PIA 17

Isabelle Specification Constructs
! Type definition:

 (S, A) ”∈” T

(S ⊕ ('α1..'αn) κ ⊕ Abs_κ::('α1..'αn)τ ⇒ ('α1..'αn)κ

 ⊕ Rep_κ::('α1..'αn)κ ⇒ ('α1..'αn)τ

 A ⊕ {Rep_κ_inverse ↦ Abs_κ (Rep_κ x) = x }

 ⊕ {Rep_κ_inject ↦ (Rep_κ x = Rep_κ y) = (x = y) }

 ⊕ {Rep_κ ↦ Rep_κ x {x. ∈ expr x}) ”∈” T'

• where the type-constructor κ is “fresh” in T
• expr is closed

• <expr:: ('α1..'αn)τ set> is non-empty (to be proven by a witness)

typedef ('α1..'αn) κ =

 “<expr:: (('α1..'αn)τ) set>” <proof>

10/12/16 B. Wolff - M2 - PIA 18

Isabelle Specification Constructs
! Major example:

The introduction of the cartesian product:

subsubsection {* Type definition *}

definition Pair_Rep :: "'a 'b 'a 'b bool" ⇒ ⇒ ⇒ ⇒
where "Pair_Rep a b = (λx y. x = a y = b)"∧

definition "prod = {f. ∃ a b. f = Pair_Rep (a 'a) (b 'b)}"∷ ∷

typedef ('a, 'b) prod (infixr "*" 20) = "prod :: ('a 'b bool) set"⇒ ⇒
 unfolding prod_def by auto

type_notation (xsymbols) "prod" ("(_ ×/ _)" [21, 20] 20)

10/12/16 B. Wolff - M2 - PIA 19

Specification Mechanism Commands

! Datatype Definitions (similar SML):
(Machinery behind : complex series of const and typedefs !)

! Recursive Function Definitions:

(Machinery behind: Veeery complex series of const and
typedefs and automated proofs!)

datatype ('a1..'an) T =
 <c> :: “<τ>” | … | <c> :: “<τ>”

fun <c> ::“<τ>” where
 “<c> <pattern> = <t>”

| ...
 | “<c> <pattern> = <t>”

10/12/16 B. Wolff - M2 - PIA 20

Specification Mechanism Commands

! Datatype Definitions (similar SML):
(Machinery behind : complex !)

! Recursive Function Definitions:

(Machinery behind: Veeery complex!)

datatype ('a1..'an) T =
 <c> :: “<τ>” | … | <c> :: “<τ>”

fun <c> ::“<τ>” where
 “<c> <pattern> = <t>”

| ...
 | “<c> <pattern> = <t>”

NO
TE:

 Is
abe

lle
HO

L c
om

pile
s t

his

int
ern

ally
 to

 ax
iom

ati
c d

efin
itio

ns,

i.e.
 a

“m
ode

l” i
n H

OL
!!!

10/12/16 B. Wolff - M2 - PIA 21

Specification Mechanism Commands

! Datatype Definitions (similar SML):
Examples:

datatype mynat = ZERO | SUC mynat

datatype 'a list = MT | CONS "'a" "'a list"

10/12/16 B. Wolff - M2 - PIA 22

Specification Mechanism Commands

! Inductively Defined Sets:

example: inductive path for rel ::"'a 'a bool"⇒ ⇒
 where base : “path rel x x”

 | step : “rel x y ⟹ path rel y z ⟹ path rel x z”

inductive <c> [for <v>:: “<τ>”]
where <thmname> : “<φ>”
 | ...

 | <thmname> = <φ>

10/12/16 B. Wolff - M2 - PIA 23

Specification Mechanism Commands

! Inductively Defined Sets:

example: inductive path for rel ::"'a 'a bool"⇒ ⇒
 where base : “path rel x x”

 | step : “rel x y ⟹ path rel y z ⟹ path rel x z”

inductive <c> [for <v>:: “<τ>”]
where <thmname> : “<φ>”
 | ...

 | <thmname> = <φ>

NO
TE:

 Is
abe

lle
HO

L c
om

pile
s t

his

int
ern

ally
 to

 ax
iom

ati
c d

efin
itio

ns,

i.e.
 a

“m
ode

l” i
n H

OL
!!!

10/12/16 B. Wolff - M2 - PIA 24

Specification Mechanism Commands

! Extended Notation for Cartesian Products: records
(as in SML or OCaml; gives a slightly OO-flavor)

! ... introduces also semantics and syntax for

– selectors : tag1 x

– constructors : ⦇ tag1 = x1, ... , tagn = xn ⦈

– update-functions : x ⦇ tag1 := xn ⦈

record <c> = [<record> +]
tag1 :: “<τ1>”

 ...
 tagn :: “<τn>”

10/12/16 B. Wolff - M2 - PIA 25

 More on Proof Methods

10/12/16 B. Wolff - M2 - PIA 26

More on Proof-Methods

! Some composed methods
(internally based on assumption, erule_tac and
 rule_tac + tactic code that constructs the
 substitutions)

– subst <equation>
(one step left-to-right rewrite, choose any redex)

– subst <equation>[symmetric]
(one step right-to-left rewrite, choose any redex)

– subst (<n>) <equation>
(one step left-to-right rewrite, choose n-th redex)

10/12/16 B. Wolff - M2 - PIA 27

More on Proof-Methods

! Some composed methods
(internally based on assumption, erule_tac and
 rule_tac + tactic code that constructs the
 substitutions)

– simp
(arbitrary number of left-to-right rewrites, assumption

or rule refl attepted at the end; a global simpset
in the background is used.)

– simp add: <equation> ... <equation>

10/12/16 B. Wolff - M2 - PIA 28

More on Proof-Methods

! Some composed methods
(internally based on assumption, erule_tac and
 rule_tac + tactic code that constructs the
 substitutions)

– auto
(apply in exaustive, non-deterministic manner:
 all introduction rules, elimination rules and

– auto intro: <rule> ... <rule>
 elim: <erule> ... <erule>
 simp: <equation> ... <equation>

10/12/16 B. Wolff - M2 - PIA 29

More on Proof-Methods

! Some composed methods
(internally based on assumption, erule_tac and
 rule_tac + tactic code that constructs the
 substitutions)

– cases „<formula>“
(split top goal into 2 cases:
 <formula> is true or <formula> is false)

– cases „<variable>“
(- precondition : <variable> has type t which is a data-type)
search for splitting rule and do case-split over this variable.

– induct_tac „<variable>“
(- precondition : <variable> has type t which is a data-type)
search for induction rule and do induction over this variable.

10/12/16 B. Wolff - M2 - PIA 30

Screenshot with Examples

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

