Preuves Interactives et Applications

Christine Paulin & Burkhart Wolff

http://www.lri.fr/ ~paulin/PreuvesInteractives

Université Paris-Saclay

HOL and its Specification Constructs

1

Revisions

Revision: Documents and Commands

 Isabelle has (similar to Eclipse) a "document-centric" view of development: there is a notion on an entire "project" which is processed globally.

 Documents (~ projects in Eclipse) consists of files (with potentially different file-type);
 .thy files consists of headers commands.

What is Isabelle as a System ?

Global View of a "session"

What is Isabelle as a System ?

Global View

Revision: Documents and Commands

• Each position in document corresponds

-to a "local context" Θ , Γ

• There are specific "Inspection Commands"

that give access to information in the contexts

- thm, term, typ, value, prop : global context

- print_cases, facts, ..., thm : local context

What is Isabelle as a System ?

Document "positions" were evaluated to an implicit state, the theory context Θ

"semantic" evaluation as SML function

Inspection Commands

• Type-checking terms:

term "<hol-term>"

example: term "(a::nat) + b = b + a"

• Evaluating terms:

value "<hol-term>"

Simple Proof Commands

• Simple (Backward) Proofs:

```
lemma <thmname> :
  [<contextelem><sup>+</sup> shows] ``<phi>"
  <proof>
```

There are different formats of proofs, we concentrate on the simplest one:

```
apply(<method<sub>1</sub>>) ... apply(<method<sub>n</sub>>) done
```

Exercise demo3.thy

• Examples

 $\begin{array}{l} \text{lemma X1 : ``A \Longrightarrow B \Longrightarrow C \Longrightarrow (A \land B) \land C`'} \\ (* \text{ output: } \llbracket A; B; C] \rrbracket \Rightarrow (A \land B) \land C) *) \end{array}$

lemma X2 : assume "A" and "B" and "C" shows "(A
$$\land$$
 B) \land C"

lemma X2 : assume h1: "A" and h2: "B" and h3: "C" shows "(A \wedge B) \wedge C"

How to built theories in a logically safe manner ?

• Beyond the question:

Is the Kernel of Isabelle correct?

there is the question:

Is the HOL Library consistent?

What guarantees can we have for systems with 15000 rules ???

B. Wolff - M2 - PIA

Isabelle Specification Constructs

Constant Definitions:

definition f::"< τ >"

where <name> : "f $x_1 \dots x_n = \langle t \rangle$ "

example: definition C::"bool \Rightarrow bool"

where "C x = x"

• Type Definitions:

example: typedef even = "{x::int. x mod 2 = 0}"

Isabelle Specification Constructs

and

Theory Construction by Conservative Extension

Semantics of "Constant Definition"

• Constant definition:

definition f::" $<\tau>$ " where <name> : "f x₁ ... x_n = <expr>"

 $\left(\Sigma \ \oplus \ f::\tau \ , \ A \ \oplus \ \left\{f_def \mapsto ``f x_{_{1}} \dots x_{_{n}} = <expr>'' \right\}\right) \ "\in" \Theta'$

- * where f is "fresh" in Θ
- $\lambda x_1 \dots x_n = \langle expr \rangle$ is closed [and type-closed]
- f does not occur in <expr>

Semantics of a "Type Definition"

- Idea: Similar to constant definitions; we define the new entity ("a type") by an old one.
- For Type Definitions, we define the new type to be isomorphic to a (non-empty) subset of an old one.
- The Isomorphism is stated by three (conservative) axioms.

Semantics of a "Type Definition"

 Idea: Similar to constant definitions; we define the new entity ("a type") by an old one.

Isabelle Specification Constructs

• Type definition:

- where the type-constructor κ is "fresh" in Θ
- expr is closed

10/12/16 . <expr:: ('a₁..'a_n) τ sets with non-empty (to be proven by a witness)⁷

Isabelle Specification Constructs

• Major example: The introduction of the cartesian product:

subsubsection {* Type definition *} definition Pair_Rep :: "'a \Rightarrow 'b \Rightarrow 'a \Rightarrow 'b \Rightarrow bool" where "Pair Rep a b = ($\lambda x y$, x = a $\land y$ = b)"

definition "prod = {f. \exists a b. f = Pair_Rep (a :: 'a) (b :: 'b)}" typedef ('a, 'b) prod (infixr "*" 20) = "prod :: ('a \Rightarrow 'b \Rightarrow bool) set" unfolding prod def by auto

18

^{10/12/}type_notation (xsymbols)^{B.}"prod¹² - ("("(_ ×/ _)" [21, 20] 20)

 Datatype Definitions (similar SML): (Machinery behind : complex series of const and typedefs !)

datatype ('
$$a_1$$
...' a_n) Θ =
 :: "< τ >" | ... | :: "< τ >"

 Recursive Function Definitions: (Machinery behind: Veeery complex series of const and typedefs and automated proofs!)

```
fun <c> ::"<τ>" where

"<c> <pattern> = <t>"

| ...

| "<c> <pattern> = <t>"
```


 Datatype Definitions (similar SML): Examples:

datatype mynat = ZERO I SUC mynat

datatype 'a list = MT I CONS "'a" "'a list"

• Inductively Defined Sets:

inductive
$$[for :: "<\tau>"]$$

where $<$ thmname> : " $<\phi>$ "
 $| \dots$
 $| <$ thmname> = $<\phi>$

example: inductive path for rel ::"'a
$$\Rightarrow$$
 'a \Rightarrow bool"
where base : "path rel x x"
| step : "rel x y \Rightarrow path rel y z \Rightarrow path rel x z"

B. Wolff - M2 - PIA

• Extended Notation for Cartesian Products: records (as in SML or OCaml; gives a slightly OO-flavor)

record
$$= [+]$$

tag₁ :: " $<\tau_1>$ "
...
tag_n :: " $<\tau_n>$ "

- ... introduces also semantics and syntax for
 - selectors : tag₁ x
 - constructors : (tag₁ = x₁, ..., tag_n = x_n)
 - update-functions : $x (tag_1 := x_n)$

- Some composed methods

 (internally based on assumption, erule_tac and
 rule_tac + tactic code that constructs the
 substitutions)
 - subst <equation>

(one step left-to-right rewrite, choose any redex)

- subst <equation>[symmetric]

(one step right-to-left rewrite, choose any redex)

– subst (<n>) <equation>

(one step left-to-right rewrite, choose n-th redex)

- Some composed methods

 (internally based on assumption, erule_tac and
 rule_tac + tactic code that constructs the
 substitutions)
 - simp

(arbitrary number of left-to-right rewrites, assumption or rule refl attepted at the end; a global simpset in the background is used.)

- simp add: <equation> ... <equation>

- Some composed methods

 (internally based on assumption, erule_tac and
 rule_tac + tactic code that constructs the
 substitutions)
 - auto

(apply in exaustive, non-deterministic manner: all introduction rules, elimination rules and

– auto intro: <rule> ... <rule> elim: <erule> ... <erule> simp: <equation> ... <equation>

- Some composed methods

 (internally based on assumption, erule_tac and
 rule_tac + tactic code that constructs the
 substitutions)
 - cases "<formula>"
 (split top goal into 2 cases:
 <formula> is true or <formula> is false)
 - cases "<variable>"

(- precondition : <variable> has type t which is a data-type) search for splitting rule and do case-split over this variable.

_ induct_tac ,<variable>"

(- precondition : <variable> has type t which is a data-type) search for induction rule and do induction over this variable.

Screenshot with Examples

