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     Revisions 
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Revision: Documents and Commands
! Isabelle has (similar to Eclipse) a 

„document-centric“ view of development:

there is a notion on an entire “project”
which is processed globally.

! Documents (~ projects in Eclipse) consists of
files (with potentially different file-type);
.thy files consists of headers commands.



  

What is Isabelle as a System ? 
! Global View of a “session“
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What is Isabelle as a System ? 
! Global View
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Revision: Documents and Commands
! Each position in document corresponds

– to a “global context” Θ
– to a “local context” Θ, Γ

! There are specific „Inspection Commands“

that give access to information in the contexts
– thm, term, typ, value, prop  : global context
– print_cases, facts, ... , thm  : local context



  

What is Isabelle as a System ? 
! Document “positions” were evaluated to an

implicit state, the theory context T
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Inspection Commands

! Type-checking terms:

          
                example: term “(a::nat) + b = b + a"

! Evaluating terms:
                

           example: term “(3::nat) + 4 = 7"

term “<hol-term>”

value “<hol-term>”    



  

Simple Proof Commands

! Simple (Backward) Proofs: 

There are different formats of proofs, we concentrate on the 
simplest one:

apply(<method1>) ... apply(<methodn>) done

lemma  <thmname> : 
[<contextelem>+ shows] “<phi>”       
 <proof>
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Exercise demo3.thy
! Examples

lemma X1 : “A  B  C  (A  B)  C”⟹ ⟹ ⟹ ∧ ∧
           (* output: A; B; C   (A B) C⟦ ⟧ ⟹ ∧ ∧  ) *)

lemma X2 : assume “A” and “B” and “C” 
                   shows “(A  B)  C”∧ ∧

lemma X2 : assume h1: “A” and h2: “B” and h3: “C” 
                   shows “(A  B)  C”∧ ∧
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How to built theories 
in a logically safe manner ?

• Beyond the question: 

Is the Kernel of Isabelle correct ?

there is the question:

Is the HOL Library consistent ?

   What guarantees can we have for 
   systems with 15000 rules ???
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Isabelle Specification Constructs

! Constant Definitions:

          example: definition C::"bool  bool"⇒
                                where "C x = x"

! Type Definitions:

             example: typedef even = "{x::int. x mod 2 = 0}“

definition f::“<τ>”
where <name> : “f x1 … xn = <t>”    

typedef ('α1..'αn) κ = 

 “<set-expr>” <proof>     
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Isabelle Specification Constructs
 
            and 

   Theory Construction by
   Conservative Extension 
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Semantics of „Constant Definition“
! Constant definition:

     (S, A) ”∈” T
 

(S ⊕ f::τ !  A ⊕ {f_def  ↦ “f x1 … xn = <expr>” }) ”∈” T'

• where f is “fresh” in T   
•  λ x1 … xn = <expr> is closed [and type-closed]
• f does not occur in <expr>

  definition f::“<τ>”
where <name> : “f x1 … xn = <expr>”    
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Semantics of a „Type Definition“

! Idea: Similar to constant definitions; we define
the new entity (“a type”) by an old one.          

! For Type Definitions, we define the new
type to be isomorphic to a (non-empty) 
subset of an old one.

! The Isomorphism is stated by three 
(conservative) axioms.
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Semantics of a „Type Definition“

! Idea: Similar to constant definitions; we define
the new entity (“a type”) by an old one.          

 ('α1..'αn)τ

(('α1..'αn)τ) set('α1..'αn) κ
Abs_κ

Rep_κ
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Isabelle Specification Constructs
! Type definition:

          (S, A) ”∈” T 

(S ⊕ ('α1..'αn) κ ⊕ Abs_κ::('α1..'αn)τ  ⇒ ('α1..'αn)κ 

                           ⊕ Rep_κ::('α1..'αn)κ ⇒ ('α1..'αn)τ     

 A ⊕ {Rep_κ_inverse  ↦ Abs_κ (Rep_κ x) = x }

     ⊕ {Rep_κ_inject     ↦ (Rep_κ x = Rep_κ y) = (x = y) }

     ⊕ {Rep_κ               ↦ Rep_κ x  {x. ∈ expr x}) ”∈” T'

• where the type-constructor κ is “fresh” in T   
• expr is closed

• <expr:: ('α1..'αn)τ set> is non-empty (to be proven by a witness)

typedef ('α1..'αn) κ = 

 “<expr:: (('α1..'αn)τ) set>” <proof>    
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Isabelle Specification Constructs
! Major example: 

The introduction of the cartesian product:
          
subsubsection {* Type definition *}

definition Pair_Rep :: "'a  'b  'a  'b  bool" ⇒ ⇒ ⇒ ⇒
where    "Pair_Rep a b = (λx y. x = a  y = b)"∧

definition "prod = {f. ∃ a b. f = Pair_Rep (a  'a) (b  'b)}"∷ ∷

typedef ('a, 'b) prod (infixr "*" 20) = "prod :: ('a  'b  bool) set"⇒ ⇒
                                                         unfolding prod_def by auto

type_notation (xsymbols)  "prod"  ("(_ ×/ _)" [21, 20] 20)
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Specification Mechanism Commands

! Datatype Definitions (similar SML):
(Machinery behind : complex series of const and typedefs !)

          
! Recursive Function Definitions:

(Machinery behind: Veeery complex series of const and 
typedefs and automated proofs!)

              

datatype ('a1..'an) T = 
 <c> :: “<τ>”  | … |  <c> :: “<τ>”   

fun <c> ::“<τ>” where
     “<c> <pattern> = <t>”

| ...
  |   “<c> <pattern> = <t>”             
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Specification Mechanism Commands

! Datatype Definitions (similar SML):
(Machinery behind : complex !)

          
! Recursive Function Definitions:

(Machinery behind: Veeery complex!)

              

datatype ('a1..'an) T = 
 <c> :: “<τ>”  | … |  <c> :: “<τ>”   

fun <c> ::“<τ>” where
     “<c> <pattern> = <t>”

| ...
  |   “<c> <pattern> = <t>”             

  

NO
TE:

 Is
abe

lle 
HO

L c
om

pile
s t

his
 

int
ern

ally
 to

 ax
iom

ati
c d

efin
itio

ns,
 

i.e.
 a 

“m
ode

l” i
n H

OL
!!!



10/12/16 B. Wolff - M2 - PIA 21

Specification Mechanism Commands

! Datatype Definitions (similar SML):
Examples:

datatype mynat = ZERO | SUC mynat

datatype 'a list = MT | CONS "'a" "'a list"
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Specification Mechanism Commands

! Inductively Defined Sets:

          

example: inductive path for rel ::"'a  'a  bool"⇒ ⇒
              where  base : “path rel x x”

            |    step : “rel x y ⟹ path rel y z ⟹ path rel x z”             

inductive     <c> [ for <v>:: “<τ>” ]
where  <thmname> : “<φ>” 
   | ...

       | <thmname> = <φ>            



10/12/16 B. Wolff - M2 - PIA 23

Specification Mechanism Commands

! Inductively Defined Sets:

          

example: inductive path for rel ::"'a  'a  bool"⇒ ⇒
              where  base : “path rel x x”

            |    step : “rel x y ⟹ path rel y z ⟹ path rel x z”             

inductive     <c> [ for <v>:: “<τ>” ]
where  <thmname> : “<φ>” 
   | ...

       | <thmname> = <φ>            
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Specification Mechanism Commands

! Extended Notation for Cartesian Products: records
(as in SML or OCaml; gives a slightly OO-flavor)

          
! ... introduces also semantics and syntax for

– selectors :  tag1 x

– constructors :       ⦇ tag1 = x1, ... , tagn = xn   ⦈

– update-functions : x  ⦇ tag1 := xn  ⦈
            

record     <c> = [<record> + ]
tag1 :: “<τ1>”

  ...
  tagn :: “<τn>”          
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     More on Proof Methods 
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More on Proof-Methods

! Some composed methods 
(internally based on assumption, erule_tac and
 rule_tac + tactic code that constructs the
 substitutions)

– subst <equation>
(one step left-to-right rewrite, choose any redex)

– subst <equation>[symmetric]
(one step right-to-left rewrite, choose any redex)

– subst (<n>) <equation>
(one step left-to-right rewrite, choose n-th redex)
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More on Proof-Methods

! Some composed methods 
(internally based on assumption, erule_tac and
 rule_tac + tactic code that constructs the
 substitutions)

– simp
(arbitrary number of left-to-right rewrites, assumption 

or rule refl attepted at the end; a global simpset
in the background is used.)

– simp add: <equation> ...  <equation>
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More on Proof-Methods

! Some composed methods 
(internally based on assumption, erule_tac and
 rule_tac + tactic code that constructs the
 substitutions)

– auto 
(apply in exaustive, non-deterministic manner:
 all introduction rules, elimination rules and 

– auto intro: <rule> ... <rule>
     elim: <erule> ... <erule>
     simp: <equation> ... <equation>
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More on Proof-Methods

! Some composed methods 
(internally based on assumption, erule_tac and
 rule_tac + tactic code that constructs the
 substitutions)

– cases „<formula>“
(split top goal into 2 cases: 
  <formula> is true or  <formula> is false)

– cases „<variable>“
(- precondition : <variable> has type t which is a data-type) 
search for splitting rule and do case-split over this variable.

– induct_tac „<variable>“
(- precondition : <variable> has type t which is a data-type) 
search for induction rule and do induction over this variable.
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Screenshot with Examples
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